LLVM 19.0.0git
TargetLowering.h
Go to the documentation of this file.
1//===- llvm/CodeGen/TargetLowering.h - Target Lowering Info -----*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8///
9/// \file
10/// This file describes how to lower LLVM code to machine code. This has two
11/// main components:
12///
13/// 1. Which ValueTypes are natively supported by the target.
14/// 2. Which operations are supported for supported ValueTypes.
15/// 3. Cost thresholds for alternative implementations of certain operations.
16///
17/// In addition it has a few other components, like information about FP
18/// immediates.
19///
20//===----------------------------------------------------------------------===//
21
22#ifndef LLVM_CODEGEN_TARGETLOWERING_H
23#define LLVM_CODEGEN_TARGETLOWERING_H
24
25#include "llvm/ADT/APInt.h"
26#include "llvm/ADT/ArrayRef.h"
27#include "llvm/ADT/DenseMap.h"
29#include "llvm/ADT/StringRef.h"
40#include "llvm/IR/Attributes.h"
41#include "llvm/IR/CallingConv.h"
42#include "llvm/IR/DataLayout.h"
44#include "llvm/IR/Function.h"
45#include "llvm/IR/InlineAsm.h"
46#include "llvm/IR/Instruction.h"
48#include "llvm/IR/Type.h"
53#include <algorithm>
54#include <cassert>
55#include <climits>
56#include <cstdint>
57#include <iterator>
58#include <map>
59#include <string>
60#include <utility>
61#include <vector>
62
63namespace llvm {
64
65class AssumptionCache;
66class CCState;
67class CCValAssign;
70class Constant;
71class FastISel;
72class FunctionLoweringInfo;
73class GlobalValue;
74class Loop;
75class GISelKnownBits;
76class IntrinsicInst;
77class IRBuilderBase;
78struct KnownBits;
79class LLVMContext;
80class MachineBasicBlock;
81class MachineFunction;
82class MachineInstr;
83class MachineJumpTableInfo;
84class MachineLoop;
85class MachineRegisterInfo;
86class MCContext;
87class MCExpr;
88class Module;
89class ProfileSummaryInfo;
90class TargetLibraryInfo;
91class TargetMachine;
92class TargetRegisterClass;
93class TargetRegisterInfo;
94class TargetTransformInfo;
95class Value;
96
97namespace Sched {
98
100 None, // No preference
101 Source, // Follow source order.
102 RegPressure, // Scheduling for lowest register pressure.
103 Hybrid, // Scheduling for both latency and register pressure.
104 ILP, // Scheduling for ILP in low register pressure mode.
105 VLIW, // Scheduling for VLIW targets.
106 Fast, // Fast suboptimal list scheduling
107 Linearize // Linearize DAG, no scheduling
109
110} // end namespace Sched
111
112// MemOp models a memory operation, either memset or memcpy/memmove.
113struct MemOp {
114private:
115 // Shared
116 uint64_t Size;
117 bool DstAlignCanChange; // true if destination alignment can satisfy any
118 // constraint.
119 Align DstAlign; // Specified alignment of the memory operation.
120
121 bool AllowOverlap;
122 // memset only
123 bool IsMemset; // If setthis memory operation is a memset.
124 bool ZeroMemset; // If set clears out memory with zeros.
125 // memcpy only
126 bool MemcpyStrSrc; // Indicates whether the memcpy source is an in-register
127 // constant so it does not need to be loaded.
128 Align SrcAlign; // Inferred alignment of the source or default value if the
129 // memory operation does not need to load the value.
130public:
131 static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign,
132 Align SrcAlign, bool IsVolatile,
133 bool MemcpyStrSrc = false) {
134 MemOp Op;
135 Op.Size = Size;
136 Op.DstAlignCanChange = DstAlignCanChange;
137 Op.DstAlign = DstAlign;
138 Op.AllowOverlap = !IsVolatile;
139 Op.IsMemset = false;
140 Op.ZeroMemset = false;
141 Op.MemcpyStrSrc = MemcpyStrSrc;
142 Op.SrcAlign = SrcAlign;
143 return Op;
144 }
145
146 static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign,
147 bool IsZeroMemset, bool IsVolatile) {
148 MemOp Op;
149 Op.Size = Size;
150 Op.DstAlignCanChange = DstAlignCanChange;
151 Op.DstAlign = DstAlign;
152 Op.AllowOverlap = !IsVolatile;
153 Op.IsMemset = true;
154 Op.ZeroMemset = IsZeroMemset;
155 Op.MemcpyStrSrc = false;
156 return Op;
157 }
158
159 uint64_t size() const { return Size; }
161 assert(!DstAlignCanChange);
162 return DstAlign;
163 }
164 bool isFixedDstAlign() const { return !DstAlignCanChange; }
165 bool allowOverlap() const { return AllowOverlap; }
166 bool isMemset() const { return IsMemset; }
167 bool isMemcpy() const { return !IsMemset; }
169 return isMemcpy() && !DstAlignCanChange;
170 }
171 bool isZeroMemset() const { return isMemset() && ZeroMemset; }
172 bool isMemcpyStrSrc() const {
173 assert(isMemcpy() && "Must be a memcpy");
174 return MemcpyStrSrc;
175 }
177 assert(isMemcpy() && "Must be a memcpy");
178 return SrcAlign;
179 }
180 bool isSrcAligned(Align AlignCheck) const {
181 return isMemset() || llvm::isAligned(AlignCheck, SrcAlign.value());
182 }
183 bool isDstAligned(Align AlignCheck) const {
184 return DstAlignCanChange || llvm::isAligned(AlignCheck, DstAlign.value());
185 }
186 bool isAligned(Align AlignCheck) const {
187 return isSrcAligned(AlignCheck) && isDstAligned(AlignCheck);
188 }
189};
190
191/// This base class for TargetLowering contains the SelectionDAG-independent
192/// parts that can be used from the rest of CodeGen.
194public:
195 /// This enum indicates whether operations are valid for a target, and if not,
196 /// what action should be used to make them valid.
197 enum LegalizeAction : uint8_t {
198 Legal, // The target natively supports this operation.
199 Promote, // This operation should be executed in a larger type.
200 Expand, // Try to expand this to other ops, otherwise use a libcall.
201 LibCall, // Don't try to expand this to other ops, always use a libcall.
202 Custom // Use the LowerOperation hook to implement custom lowering.
203 };
204
205 /// This enum indicates whether a types are legal for a target, and if not,
206 /// what action should be used to make them valid.
207 enum LegalizeTypeAction : uint8_t {
208 TypeLegal, // The target natively supports this type.
209 TypePromoteInteger, // Replace this integer with a larger one.
210 TypeExpandInteger, // Split this integer into two of half the size.
211 TypeSoftenFloat, // Convert this float to a same size integer type.
212 TypeExpandFloat, // Split this float into two of half the size.
213 TypeScalarizeVector, // Replace this one-element vector with its element.
214 TypeSplitVector, // Split this vector into two of half the size.
215 TypeWidenVector, // This vector should be widened into a larger vector.
216 TypePromoteFloat, // Replace this float with a larger one.
217 TypeSoftPromoteHalf, // Soften half to i16 and use float to do arithmetic.
218 TypeScalarizeScalableVector, // This action is explicitly left unimplemented.
219 // While it is theoretically possible to
220 // legalize operations on scalable types with a
221 // loop that handles the vscale * #lanes of the
222 // vector, this is non-trivial at SelectionDAG
223 // level and these types are better to be
224 // widened or promoted.
225 };
226
227 /// LegalizeKind holds the legalization kind that needs to happen to EVT
228 /// in order to type-legalize it.
229 using LegalizeKind = std::pair<LegalizeTypeAction, EVT>;
230
231 /// Enum that describes how the target represents true/false values.
233 UndefinedBooleanContent, // Only bit 0 counts, the rest can hold garbage.
234 ZeroOrOneBooleanContent, // All bits zero except for bit 0.
235 ZeroOrNegativeOneBooleanContent // All bits equal to bit 0.
236 };
237
238 /// Enum that describes what type of support for selects the target has.
240 ScalarValSelect, // The target supports scalar selects (ex: cmov).
241 ScalarCondVectorVal, // The target supports selects with a scalar condition
242 // and vector values (ex: cmov).
243 VectorMaskSelect // The target supports vector selects with a vector
244 // mask (ex: x86 blends).
245 };
246
247 /// Enum that specifies what an atomic load/AtomicRMWInst is expanded
248 /// to, if at all. Exists because different targets have different levels of
249 /// support for these atomic instructions, and also have different options
250 /// w.r.t. what they should expand to.
252 None, // Don't expand the instruction.
253 CastToInteger, // Cast the atomic instruction to another type, e.g. from
254 // floating-point to integer type.
255 LLSC, // Expand the instruction into loadlinked/storeconditional; used
256 // by ARM/AArch64.
257 LLOnly, // Expand the (load) instruction into just a load-linked, which has
258 // greater atomic guarantees than a normal load.
259 CmpXChg, // Expand the instruction into cmpxchg; used by at least X86.
260 MaskedIntrinsic, // Use a target-specific intrinsic for the LL/SC loop.
261 BitTestIntrinsic, // Use a target-specific intrinsic for special bit
262 // operations; used by X86.
263 CmpArithIntrinsic,// Use a target-specific intrinsic for special compare
264 // operations; used by X86.
265 Expand, // Generic expansion in terms of other atomic operations.
266
267 // Rewrite to a non-atomic form for use in a known non-preemptible
268 // environment.
270 };
271
272 /// Enum that specifies when a multiplication should be expanded.
273 enum class MulExpansionKind {
274 Always, // Always expand the instruction.
275 OnlyLegalOrCustom, // Only expand when the resulting instructions are legal
276 // or custom.
277 };
278
279 /// Enum that specifies when a float negation is beneficial.
280 enum class NegatibleCost {
281 Cheaper = 0, // Negated expression is cheaper.
282 Neutral = 1, // Negated expression has the same cost.
283 Expensive = 2 // Negated expression is more expensive.
284 };
285
286 /// Enum of different potentially desirable ways to fold (and/or (setcc ...),
287 /// (setcc ...)).
288 enum AndOrSETCCFoldKind : uint8_t {
289 None = 0, // No fold is preferable.
290 AddAnd = 1, // Fold with `Add` op and `And` op is preferable.
291 NotAnd = 2, // Fold with `Not` op and `And` op is preferable.
292 ABS = 4, // Fold with `llvm.abs` op is preferable.
293 };
294
296 public:
297 Value *Val = nullptr;
299 Type *Ty = nullptr;
300 bool IsSExt : 1;
301 bool IsZExt : 1;
302 bool IsInReg : 1;
303 bool IsSRet : 1;
304 bool IsNest : 1;
305 bool IsByVal : 1;
306 bool IsByRef : 1;
307 bool IsInAlloca : 1;
309 bool IsReturned : 1;
310 bool IsSwiftSelf : 1;
311 bool IsSwiftAsync : 1;
312 bool IsSwiftError : 1;
314 MaybeAlign Alignment = std::nullopt;
315 Type *IndirectType = nullptr;
316
322
323 void setAttributes(const CallBase *Call, unsigned ArgIdx);
324 };
325 using ArgListTy = std::vector<ArgListEntry>;
326
327 virtual void markLibCallAttributes(MachineFunction *MF, unsigned CC,
328 ArgListTy &Args) const {};
329
331 switch (Content) {
333 // Extend by adding rubbish bits.
334 return ISD::ANY_EXTEND;
336 // Extend by adding zero bits.
337 return ISD::ZERO_EXTEND;
339 // Extend by copying the sign bit.
340 return ISD::SIGN_EXTEND;
341 }
342 llvm_unreachable("Invalid content kind");
343 }
344
345 explicit TargetLoweringBase(const TargetMachine &TM);
348 virtual ~TargetLoweringBase() = default;
349
350 /// Return true if the target support strict float operation
351 bool isStrictFPEnabled() const {
352 return IsStrictFPEnabled;
353 }
354
355protected:
356 /// Initialize all of the actions to default values.
357 void initActions();
358
359public:
360 const TargetMachine &getTargetMachine() const { return TM; }
361
362 virtual bool useSoftFloat() const { return false; }
363
364 /// Return the pointer type for the given address space, defaults to
365 /// the pointer type from the data layout.
366 /// FIXME: The default needs to be removed once all the code is updated.
367 virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS = 0) const {
368 return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
369 }
370
371 /// Return the in-memory pointer type for the given address space, defaults to
372 /// the pointer type from the data layout.
373 /// FIXME: The default needs to be removed once all the code is updated.
374 virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS = 0) const {
375 return MVT::getIntegerVT(DL.getPointerSizeInBits(AS));
376 }
377
378 /// Return the type for frame index, which is determined by
379 /// the alloca address space specified through the data layout.
381 return getPointerTy(DL, DL.getAllocaAddrSpace());
382 }
383
384 /// Return the type for code pointers, which is determined by the program
385 /// address space specified through the data layout.
387 return getPointerTy(DL, DL.getProgramAddressSpace());
388 }
389
390 /// Return the type for operands of fence.
391 /// TODO: Let fence operands be of i32 type and remove this.
392 virtual MVT getFenceOperandTy(const DataLayout &DL) const {
393 return getPointerTy(DL);
394 }
395
396 /// Return the type to use for a scalar shift opcode, given the shifted amount
397 /// type. Targets should return a legal type if the input type is legal.
398 /// Targets can return a type that is too small if the input type is illegal.
399 virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const;
400
401 /// Returns the type for the shift amount of a shift opcode. For vectors,
402 /// returns the input type. For scalars, behavior depends on \p LegalTypes. If
403 /// \p LegalTypes is true, calls getScalarShiftAmountTy, otherwise uses
404 /// pointer type. If getScalarShiftAmountTy or pointer type cannot represent
405 /// all possible shift amounts, returns MVT::i32. In general, \p LegalTypes
406 /// should be set to true for calls during type legalization and after type
407 /// legalization has been completed.
408 EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
409 bool LegalTypes = true) const;
410
411 /// Return the preferred type to use for a shift opcode, given the shifted
412 /// amount type is \p ShiftValueTy.
414 virtual LLT getPreferredShiftAmountTy(LLT ShiftValueTy) const {
415 return ShiftValueTy;
416 }
417
418 /// Returns the type to be used for the index operand of:
419 /// ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT,
420 /// ISD::INSERT_SUBVECTOR, and ISD::EXTRACT_SUBVECTOR
421 virtual MVT getVectorIdxTy(const DataLayout &DL) const {
422 return getPointerTy(DL);
423 }
424
425 /// Returns the type to be used for the EVL/AVL operand of VP nodes:
426 /// ISD::VP_ADD, ISD::VP_SUB, etc. It must be a legal scalar integer type,
427 /// and must be at least as large as i32. The EVL is implicitly zero-extended
428 /// to any larger type.
429 virtual MVT getVPExplicitVectorLengthTy() const { return MVT::i32; }
430
431 /// This callback is used to inspect load/store instructions and add
432 /// target-specific MachineMemOperand flags to them. The default
433 /// implementation does nothing.
436 }
437
438 /// This callback is used to inspect load/store SDNode.
439 /// The default implementation does nothing.
443 }
444
447 AssumptionCache *AC = nullptr,
448 const TargetLibraryInfo *LibInfo = nullptr) const;
450 const DataLayout &DL) const;
452 const DataLayout &DL) const;
453
454 virtual bool isSelectSupported(SelectSupportKind /*kind*/) const {
455 return true;
456 }
457
458 /// Return true if the @llvm.get.active.lane.mask intrinsic should be expanded
459 /// using generic code in SelectionDAGBuilder.
460 virtual bool shouldExpandGetActiveLaneMask(EVT VT, EVT OpVT) const {
461 return true;
462 }
463
464 virtual bool shouldExpandGetVectorLength(EVT CountVT, unsigned VF,
465 bool IsScalable) const {
466 return true;
467 }
468
469 /// Return true if the @llvm.experimental.cttz.elts intrinsic should be
470 /// expanded using generic code in SelectionDAGBuilder.
471 virtual bool shouldExpandCttzElements(EVT VT) const { return true; }
472
473 /// Return the minimum number of bits required to hold the maximum possible
474 /// number of trailing zero vector elements.
476 bool ZeroIsPoison,
477 const ConstantRange *VScaleRange) const;
478
479 // Return true if op(vecreduce(x), vecreduce(y)) should be reassociated to
480 // vecreduce(op(x, y)) for the reduction opcode RedOpc.
481 virtual bool shouldReassociateReduction(unsigned RedOpc, EVT VT) const {
482 return true;
483 }
484
485 /// Return true if it is profitable to convert a select of FP constants into
486 /// a constant pool load whose address depends on the select condition. The
487 /// parameter may be used to differentiate a select with FP compare from
488 /// integer compare.
489 virtual bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const {
490 return true;
491 }
492
493 /// Return true if multiple condition registers are available.
495 return HasMultipleConditionRegisters;
496 }
497
498 /// Return true if the target has BitExtract instructions.
499 bool hasExtractBitsInsn() const { return HasExtractBitsInsn; }
500
501 /// Return the preferred vector type legalization action.
504 // The default action for one element vectors is to scalarize
506 return TypeScalarizeVector;
507 // The default action for an odd-width vector is to widen.
508 if (!VT.isPow2VectorType())
509 return TypeWidenVector;
510 // The default action for other vectors is to promote
511 return TypePromoteInteger;
512 }
513
514 // Return true if the half type should be promoted using soft promotion rules
515 // where each operation is promoted to f32 individually, then converted to
516 // fp16. The default behavior is to promote chains of operations, keeping
517 // intermediate results in f32 precision and range.
518 virtual bool softPromoteHalfType() const { return false; }
519
520 // Return true if, for soft-promoted half, the half type should be passed
521 // passed to and returned from functions as f32. The default behavior is to
522 // pass as i16. If soft-promoted half is not used, this function is ignored
523 // and values are always passed and returned as f32.
524 virtual bool useFPRegsForHalfType() const { return false; }
525
526 // There are two general methods for expanding a BUILD_VECTOR node:
527 // 1. Use SCALAR_TO_VECTOR on the defined scalar values and then shuffle
528 // them together.
529 // 2. Build the vector on the stack and then load it.
530 // If this function returns true, then method (1) will be used, subject to
531 // the constraint that all of the necessary shuffles are legal (as determined
532 // by isShuffleMaskLegal). If this function returns false, then method (2) is
533 // always used. The vector type, and the number of defined values, are
534 // provided.
535 virtual bool
537 unsigned DefinedValues) const {
538 return DefinedValues < 3;
539 }
540
541 /// Return true if integer divide is usually cheaper than a sequence of
542 /// several shifts, adds, and multiplies for this target.
543 /// The definition of "cheaper" may depend on whether we're optimizing
544 /// for speed or for size.
545 virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const { return false; }
546
547 /// Return true if the target can handle a standalone remainder operation.
548 virtual bool hasStandaloneRem(EVT VT) const {
549 return true;
550 }
551
552 /// Return true if SQRT(X) shouldn't be replaced with X*RSQRT(X).
553 virtual bool isFsqrtCheap(SDValue X, SelectionDAG &DAG) const {
554 // Default behavior is to replace SQRT(X) with X*RSQRT(X).
555 return false;
556 }
557
558 /// Reciprocal estimate status values used by the functions below.
562 Enabled = 1
563 };
564
565 /// Return a ReciprocalEstimate enum value for a square root of the given type
566 /// based on the function's attributes. If the operation is not overridden by
567 /// the function's attributes, "Unspecified" is returned and target defaults
568 /// are expected to be used for instruction selection.
570
571 /// Return a ReciprocalEstimate enum value for a division of the given type
572 /// based on the function's attributes. If the operation is not overridden by
573 /// the function's attributes, "Unspecified" is returned and target defaults
574 /// are expected to be used for instruction selection.
576
577 /// Return the refinement step count for a square root of the given type based
578 /// on the function's attributes. If the operation is not overridden by
579 /// the function's attributes, "Unspecified" is returned and target defaults
580 /// are expected to be used for instruction selection.
581 int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const;
582
583 /// Return the refinement step count for a division of the given type based
584 /// on the function's attributes. If the operation is not overridden by
585 /// the function's attributes, "Unspecified" is returned and target defaults
586 /// are expected to be used for instruction selection.
587 int getDivRefinementSteps(EVT VT, MachineFunction &MF) const;
588
589 /// Returns true if target has indicated at least one type should be bypassed.
590 bool isSlowDivBypassed() const { return !BypassSlowDivWidths.empty(); }
591
592 /// Returns map of slow types for division or remainder with corresponding
593 /// fast types
595 return BypassSlowDivWidths;
596 }
597
598 /// Return true only if vscale must be a power of two.
599 virtual bool isVScaleKnownToBeAPowerOfTwo() const { return false; }
600
601 /// Return true if Flow Control is an expensive operation that should be
602 /// avoided.
603 bool isJumpExpensive() const { return JumpIsExpensive; }
604
605 // Costs parameters used by
606 // SelectionDAGBuilder::shouldKeepJumpConditionsTogether.
607 // shouldKeepJumpConditionsTogether will use these parameter value to
608 // determine if two conditions in the form `br (and/or cond1, cond2)` should
609 // be split into two branches or left as one.
610 //
611 // BaseCost is the cost threshold (in latency). If the estimated latency of
612 // computing both `cond1` and `cond2` is below the cost of just computing
613 // `cond1` + BaseCost, the two conditions will be kept together. Otherwise
614 // they will be split.
615 //
616 // LikelyBias increases BaseCost if branch probability info indicates that it
617 // is likely that both `cond1` and `cond2` will be computed.
618 //
619 // UnlikelyBias decreases BaseCost if branch probability info indicates that
620 // it is likely that both `cond1` and `cond2` will be computed.
621 //
622 // Set any field to -1 to make it ignored (setting BaseCost to -1 results in
623 // `shouldKeepJumpConditionsTogether` always returning false).
628 };
629 // Return params for deciding if we should keep two branch conditions merged
630 // or split them into two separate branches.
631 // Arg0: The binary op joining the two conditions (and/or).
632 // Arg1: The first condition (cond1)
633 // Arg2: The second condition (cond2)
634 virtual CondMergingParams
636 const Value *) const {
637 // -1 will always result in splitting.
638 return {-1, -1, -1};
639 }
640
641 /// Return true if selects are only cheaper than branches if the branch is
642 /// unlikely to be predicted right.
645 }
646
647 virtual bool fallBackToDAGISel(const Instruction &Inst) const {
648 return false;
649 }
650
651 /// Return true if the following transform is beneficial:
652 /// fold (conv (load x)) -> (load (conv*)x)
653 /// On architectures that don't natively support some vector loads
654 /// efficiently, casting the load to a smaller vector of larger types and
655 /// loading is more efficient, however, this can be undone by optimizations in
656 /// dag combiner.
657 virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT,
658 const SelectionDAG &DAG,
659 const MachineMemOperand &MMO) const;
660
661 /// Return true if the following transform is beneficial:
662 /// (store (y (conv x)), y*)) -> (store x, (x*))
663 virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT,
664 const SelectionDAG &DAG,
665 const MachineMemOperand &MMO) const {
666 // Default to the same logic as loads.
667 return isLoadBitCastBeneficial(StoreVT, BitcastVT, DAG, MMO);
668 }
669
670 /// Return true if it is expected to be cheaper to do a store of vector
671 /// constant with the given size and type for the address space than to
672 /// store the individual scalar element constants.
673 virtual bool storeOfVectorConstantIsCheap(bool IsZero, EVT MemVT,
674 unsigned NumElem,
675 unsigned AddrSpace) const {
676 return IsZero;
677 }
678
679 /// Allow store merging for the specified type after legalization in addition
680 /// to before legalization. This may transform stores that do not exist
681 /// earlier (for example, stores created from intrinsics).
682 virtual bool mergeStoresAfterLegalization(EVT MemVT) const {
683 return true;
684 }
685
686 /// Returns if it's reasonable to merge stores to MemVT size.
687 virtual bool canMergeStoresTo(unsigned AS, EVT MemVT,
688 const MachineFunction &MF) const {
689 return true;
690 }
691
692 /// Return true if it is cheap to speculate a call to intrinsic cttz.
693 virtual bool isCheapToSpeculateCttz(Type *Ty) const {
694 return false;
695 }
696
697 /// Return true if it is cheap to speculate a call to intrinsic ctlz.
698 virtual bool isCheapToSpeculateCtlz(Type *Ty) const {
699 return false;
700 }
701
702 /// Return true if ctlz instruction is fast.
703 virtual bool isCtlzFast() const {
704 return false;
705 }
706
707 /// Return true if ctpop instruction is fast.
708 virtual bool isCtpopFast(EVT VT) const {
709 return isOperationLegal(ISD::CTPOP, VT);
710 }
711
712 /// Return the maximum number of "x & (x - 1)" operations that can be done
713 /// instead of deferring to a custom CTPOP.
714 virtual unsigned getCustomCtpopCost(EVT VT, ISD::CondCode Cond) const {
715 return 1;
716 }
717
718 /// Return true if instruction generated for equality comparison is folded
719 /// with instruction generated for signed comparison.
720 virtual bool isEqualityCmpFoldedWithSignedCmp() const { return true; }
721
722 /// Return true if the heuristic to prefer icmp eq zero should be used in code
723 /// gen prepare.
724 virtual bool preferZeroCompareBranch() const { return false; }
725
726 /// Return true if it is cheaper to split the store of a merged int val
727 /// from a pair of smaller values into multiple stores.
728 virtual bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const {
729 return false;
730 }
731
732 /// Return if the target supports combining a
733 /// chain like:
734 /// \code
735 /// %andResult = and %val1, #mask
736 /// %icmpResult = icmp %andResult, 0
737 /// \endcode
738 /// into a single machine instruction of a form like:
739 /// \code
740 /// cc = test %register, #mask
741 /// \endcode
742 virtual bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const {
743 return false;
744 }
745
746 /// Return true if it is valid to merge the TargetMMOFlags in two SDNodes.
747 virtual bool
749 const MemSDNode &NodeY) const {
750 return true;
751 }
752
753 /// Use bitwise logic to make pairs of compares more efficient. For example:
754 /// and (seteq A, B), (seteq C, D) --> seteq (or (xor A, B), (xor C, D)), 0
755 /// This should be true when it takes more than one instruction to lower
756 /// setcc (cmp+set on x86 scalar), when bitwise ops are faster than logic on
757 /// condition bits (crand on PowerPC), and/or when reducing cmp+br is a win.
758 virtual bool convertSetCCLogicToBitwiseLogic(EVT VT) const {
759 return false;
760 }
761
762 /// Return the preferred operand type if the target has a quick way to compare
763 /// integer values of the given size. Assume that any legal integer type can
764 /// be compared efficiently. Targets may override this to allow illegal wide
765 /// types to return a vector type if there is support to compare that type.
766 virtual MVT hasFastEqualityCompare(unsigned NumBits) const {
767 MVT VT = MVT::getIntegerVT(NumBits);
769 }
770
771 /// Return true if the target should transform:
772 /// (X & Y) == Y ---> (~X & Y) == 0
773 /// (X & Y) != Y ---> (~X & Y) != 0
774 ///
775 /// This may be profitable if the target has a bitwise and-not operation that
776 /// sets comparison flags. A target may want to limit the transformation based
777 /// on the type of Y or if Y is a constant.
778 ///
779 /// Note that the transform will not occur if Y is known to be a power-of-2
780 /// because a mask and compare of a single bit can be handled by inverting the
781 /// predicate, for example:
782 /// (X & 8) == 8 ---> (X & 8) != 0
783 virtual bool hasAndNotCompare(SDValue Y) const {
784 return false;
785 }
786
787 /// Return true if the target has a bitwise and-not operation:
788 /// X = ~A & B
789 /// This can be used to simplify select or other instructions.
790 virtual bool hasAndNot(SDValue X) const {
791 // If the target has the more complex version of this operation, assume that
792 // it has this operation too.
793 return hasAndNotCompare(X);
794 }
795
796 /// Return true if the target has a bit-test instruction:
797 /// (X & (1 << Y)) ==/!= 0
798 /// This knowledge can be used to prevent breaking the pattern,
799 /// or creating it if it could be recognized.
800 virtual bool hasBitTest(SDValue X, SDValue Y) const { return false; }
801
802 /// There are two ways to clear extreme bits (either low or high):
803 /// Mask: x & (-1 << y) (the instcombine canonical form)
804 /// Shifts: x >> y << y
805 /// Return true if the variant with 2 variable shifts is preferred.
806 /// Return false if there is no preference.
808 // By default, let's assume that no one prefers shifts.
809 return false;
810 }
811
812 /// Return true if it is profitable to fold a pair of shifts into a mask.
813 /// This is usually true on most targets. But some targets, like Thumb1,
814 /// have immediate shift instructions, but no immediate "and" instruction;
815 /// this makes the fold unprofitable.
817 CombineLevel Level) const {
818 return true;
819 }
820
821 /// Should we tranform the IR-optimal check for whether given truncation
822 /// down into KeptBits would be truncating or not:
823 /// (add %x, (1 << (KeptBits-1))) srccond (1 << KeptBits)
824 /// Into it's more traditional form:
825 /// ((%x << C) a>> C) dstcond %x
826 /// Return true if we should transform.
827 /// Return false if there is no preference.
829 unsigned KeptBits) const {
830 // By default, let's assume that no one prefers shifts.
831 return false;
832 }
833
834 /// Given the pattern
835 /// (X & (C l>>/<< Y)) ==/!= 0
836 /// return true if it should be transformed into:
837 /// ((X <</l>> Y) & C) ==/!= 0
838 /// WARNING: if 'X' is a constant, the fold may deadlock!
839 /// FIXME: we could avoid passing XC, but we can't use isConstOrConstSplat()
840 /// here because it can end up being not linked in.
843 unsigned OldShiftOpcode, unsigned NewShiftOpcode,
844 SelectionDAG &DAG) const {
845 if (hasBitTest(X, Y)) {
846 // One interesting pattern that we'd want to form is 'bit test':
847 // ((1 << Y) & C) ==/!= 0
848 // But we also need to be careful not to try to reverse that fold.
849
850 // Is this '1 << Y' ?
851 if (OldShiftOpcode == ISD::SHL && CC->isOne())
852 return false; // Keep the 'bit test' pattern.
853
854 // Will it be '1 << Y' after the transform ?
855 if (XC && NewShiftOpcode == ISD::SHL && XC->isOne())
856 return true; // Do form the 'bit test' pattern.
857 }
858
859 // If 'X' is a constant, and we transform, then we will immediately
860 // try to undo the fold, thus causing endless combine loop.
861 // So by default, let's assume everyone prefers the fold
862 // iff 'X' is not a constant.
863 return !XC;
864 }
865
866 // Return true if its desirable to perform the following transform:
867 // (fmul C, (uitofp Pow2))
868 // -> (bitcast_to_FP (add (bitcast_to_INT C), Log2(Pow2) << mantissa))
869 // (fdiv C, (uitofp Pow2))
870 // -> (bitcast_to_FP (sub (bitcast_to_INT C), Log2(Pow2) << mantissa))
871 //
872 // This is only queried after we have verified the transform will be bitwise
873 // equals.
874 //
875 // SDNode *N : The FDiv/FMul node we want to transform.
876 // SDValue FPConst: The Float constant operand in `N`.
877 // SDValue IntPow2: The Integer power of 2 operand in `N`.
879 SDValue IntPow2) const {
880 // Default to avoiding fdiv which is often very expensive.
881 return N->getOpcode() == ISD::FDIV;
882 }
883
884 // Given:
885 // (icmp eq/ne (and X, C0), (shift X, C1))
886 // or
887 // (icmp eq/ne X, (rotate X, CPow2))
888
889 // If C0 is a mask or shifted mask and the shift amt (C1) isolates the
890 // remaining bits (i.e something like `(x64 & UINT32_MAX) == (x64 >> 32)`)
891 // Do we prefer the shift to be shift-right, shift-left, or rotate.
892 // Note: Its only valid to convert the rotate version to the shift version iff
893 // the shift-amt (`C1`) is a power of 2 (including 0).
894 // If ShiftOpc (current Opcode) is returned, do nothing.
896 EVT VT, unsigned ShiftOpc, bool MayTransformRotate,
897 const APInt &ShiftOrRotateAmt,
898 const std::optional<APInt> &AndMask) const {
899 return ShiftOpc;
900 }
901
902 /// These two forms are equivalent:
903 /// sub %y, (xor %x, -1)
904 /// add (add %x, 1), %y
905 /// The variant with two add's is IR-canonical.
906 /// Some targets may prefer one to the other.
907 virtual bool preferIncOfAddToSubOfNot(EVT VT) const {
908 // By default, let's assume that everyone prefers the form with two add's.
909 return true;
910 }
911
912 // By default prefer folding (abs (sub nsw x, y)) -> abds(x, y). Some targets
913 // may want to avoid this to prevent loss of sub_nsw pattern.
914 virtual bool preferABDSToABSWithNSW(EVT VT) const {
915 return true;
916 }
917
918 // Return true if the target wants to transform Op(Splat(X)) -> Splat(Op(X))
919 virtual bool preferScalarizeSplat(SDNode *N) const { return true; }
920
921 // Return true if the target wants to transform:
922 // (TruncVT truncate(sext_in_reg(VT X, ExtVT))
923 // -> (TruncVT sext_in_reg(truncate(VT X), ExtVT))
924 // Some targets might prefer pre-sextinreg to improve truncation/saturation.
925 virtual bool preferSextInRegOfTruncate(EVT TruncVT, EVT VT, EVT ExtVT) const {
926 return true;
927 }
928
929 /// Return true if the target wants to use the optimization that
930 /// turns ext(promotableInst1(...(promotableInstN(load)))) into
931 /// promotedInst1(...(promotedInstN(ext(load)))).
933
934 /// Return true if the target can combine store(extractelement VectorTy,
935 /// Idx).
936 /// \p Cost[out] gives the cost of that transformation when this is true.
937 virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx,
938 unsigned &Cost) const {
939 return false;
940 }
941
942 /// Return true if the target shall perform extract vector element and store
943 /// given that the vector is known to be splat of constant.
944 /// \p Index[out] gives the index of the vector element to be extracted when
945 /// this is true.
947 Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const {
948 return false;
949 }
950
951 /// Return true if inserting a scalar into a variable element of an undef
952 /// vector is more efficiently handled by splatting the scalar instead.
953 virtual bool shouldSplatInsEltVarIndex(EVT) const {
954 return false;
955 }
956
957 /// Return true if target always benefits from combining into FMA for a
958 /// given value type. This must typically return false on targets where FMA
959 /// takes more cycles to execute than FADD.
960 virtual bool enableAggressiveFMAFusion(EVT VT) const { return false; }
961
962 /// Return true if target always benefits from combining into FMA for a
963 /// given value type. This must typically return false on targets where FMA
964 /// takes more cycles to execute than FADD.
965 virtual bool enableAggressiveFMAFusion(LLT Ty) const { return false; }
966
967 /// Return the ValueType of the result of SETCC operations.
968 virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context,
969 EVT VT) const;
970
971 /// Return the ValueType for comparison libcalls. Comparison libcalls include
972 /// floating point comparison calls, and Ordered/Unordered check calls on
973 /// floating point numbers.
974 virtual
976
977 /// For targets without i1 registers, this gives the nature of the high-bits
978 /// of boolean values held in types wider than i1.
979 ///
980 /// "Boolean values" are special true/false values produced by nodes like
981 /// SETCC and consumed (as the condition) by nodes like SELECT and BRCOND.
982 /// Not to be confused with general values promoted from i1. Some cpus
983 /// distinguish between vectors of boolean and scalars; the isVec parameter
984 /// selects between the two kinds. For example on X86 a scalar boolean should
985 /// be zero extended from i1, while the elements of a vector of booleans
986 /// should be sign extended from i1.
987 ///
988 /// Some cpus also treat floating point types the same way as they treat
989 /// vectors instead of the way they treat scalars.
990 BooleanContent getBooleanContents(bool isVec, bool isFloat) const {
991 if (isVec)
992 return BooleanVectorContents;
993 return isFloat ? BooleanFloatContents : BooleanContents;
994 }
995
997 return getBooleanContents(Type.isVector(), Type.isFloatingPoint());
998 }
999
1000 /// Promote the given target boolean to a target boolean of the given type.
1001 /// A target boolean is an integer value, not necessarily of type i1, the bits
1002 /// of which conform to getBooleanContents.
1003 ///
1004 /// ValVT is the type of values that produced the boolean.
1006 EVT ValVT) const {
1007 SDLoc dl(Bool);
1008 EVT BoolVT =
1009 getSetCCResultType(DAG.getDataLayout(), *DAG.getContext(), ValVT);
1011 return DAG.getNode(ExtendCode, dl, BoolVT, Bool);
1012 }
1013
1014 /// Return target scheduling preference.
1016 return SchedPreferenceInfo;
1017 }
1018
1019 /// Some scheduler, e.g. hybrid, can switch to different scheduling heuristics
1020 /// for different nodes. This function returns the preference (or none) for
1021 /// the given node.
1023 return Sched::None;
1024 }
1025
1026 /// Return the register class that should be used for the specified value
1027 /// type.
1028 virtual const TargetRegisterClass *getRegClassFor(MVT VT, bool isDivergent = false) const {
1029 (void)isDivergent;
1030 const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1031 assert(RC && "This value type is not natively supported!");
1032 return RC;
1033 }
1034
1035 /// Allows target to decide about the register class of the
1036 /// specific value that is live outside the defining block.
1037 /// Returns true if the value needs uniform register class.
1039 const Value *) const {
1040 return false;
1041 }
1042
1043 /// Return the 'representative' register class for the specified value
1044 /// type.
1045 ///
1046 /// The 'representative' register class is the largest legal super-reg
1047 /// register class for the register class of the value type. For example, on
1048 /// i386 the rep register class for i8, i16, and i32 are GR32; while the rep
1049 /// register class is GR64 on x86_64.
1050 virtual const TargetRegisterClass *getRepRegClassFor(MVT VT) const {
1051 const TargetRegisterClass *RC = RepRegClassForVT[VT.SimpleTy];
1052 return RC;
1053 }
1054
1055 /// Return the cost of the 'representative' register class for the specified
1056 /// value type.
1057 virtual uint8_t getRepRegClassCostFor(MVT VT) const {
1058 return RepRegClassCostForVT[VT.SimpleTy];
1059 }
1060
1061 /// Return the preferred strategy to legalize tihs SHIFT instruction, with
1062 /// \p ExpansionFactor being the recursion depth - how many expansion needed.
1067 };
1070 unsigned ExpansionFactor) const {
1071 if (ExpansionFactor == 1)
1074 }
1075
1076 /// Return true if the target has native support for the specified value type.
1077 /// This means that it has a register that directly holds it without
1078 /// promotions or expansions.
1079 bool isTypeLegal(EVT VT) const {
1080 assert(!VT.isSimple() ||
1081 (unsigned)VT.getSimpleVT().SimpleTy < std::size(RegClassForVT));
1082 return VT.isSimple() && RegClassForVT[VT.getSimpleVT().SimpleTy] != nullptr;
1083 }
1084
1086 /// ValueTypeActions - For each value type, keep a LegalizeTypeAction enum
1087 /// that indicates how instruction selection should deal with the type.
1088 LegalizeTypeAction ValueTypeActions[MVT::VALUETYPE_SIZE];
1089
1090 public:
1092 std::fill(std::begin(ValueTypeActions), std::end(ValueTypeActions),
1093 TypeLegal);
1094 }
1095
1097 return ValueTypeActions[VT.SimpleTy];
1098 }
1099
1101 ValueTypeActions[VT.SimpleTy] = Action;
1102 }
1103 };
1104
1106 return ValueTypeActions;
1107 }
1108
1109 /// Return pair that represents the legalization kind (first) that needs to
1110 /// happen to EVT (second) in order to type-legalize it.
1111 ///
1112 /// First: how we should legalize values of this type, either it is already
1113 /// legal (return 'Legal') or we need to promote it to a larger type (return
1114 /// 'Promote'), or we need to expand it into multiple registers of smaller
1115 /// integer type (return 'Expand'). 'Custom' is not an option.
1116 ///
1117 /// Second: for types supported by the target, this is an identity function.
1118 /// For types that must be promoted to larger types, this returns the larger
1119 /// type to promote to. For integer types that are larger than the largest
1120 /// integer register, this contains one step in the expansion to get to the
1121 /// smaller register. For illegal floating point types, this returns the
1122 /// integer type to transform to.
1123 LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const;
1124
1125 /// Return how we should legalize values of this type, either it is already
1126 /// legal (return 'Legal') or we need to promote it to a larger type (return
1127 /// 'Promote'), or we need to expand it into multiple registers of smaller
1128 /// integer type (return 'Expand'). 'Custom' is not an option.
1130 return getTypeConversion(Context, VT).first;
1131 }
1133 return ValueTypeActions.getTypeAction(VT);
1134 }
1135
1136 /// For types supported by the target, this is an identity function. For
1137 /// types that must be promoted to larger types, this returns the larger type
1138 /// to promote to. For integer types that are larger than the largest integer
1139 /// register, this contains one step in the expansion to get to the smaller
1140 /// register. For illegal floating point types, this returns the integer type
1141 /// to transform to.
1142 virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const {
1143 return getTypeConversion(Context, VT).second;
1144 }
1145
1146 /// For types supported by the target, this is an identity function. For
1147 /// types that must be expanded (i.e. integer types that are larger than the
1148 /// largest integer register or illegal floating point types), this returns
1149 /// the largest legal type it will be expanded to.
1150 EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const {
1151 assert(!VT.isVector());
1152 while (true) {
1153 switch (getTypeAction(Context, VT)) {
1154 case TypeLegal:
1155 return VT;
1156 case TypeExpandInteger:
1157 VT = getTypeToTransformTo(Context, VT);
1158 break;
1159 default:
1160 llvm_unreachable("Type is not legal nor is it to be expanded!");
1161 }
1162 }
1163 }
1164
1165 /// Vector types are broken down into some number of legal first class types.
1166 /// For example, EVT::v8f32 maps to 2 EVT::v4f32 with Altivec or SSE1, or 8
1167 /// promoted EVT::f64 values with the X86 FP stack. Similarly, EVT::v2i64
1168 /// turns into 4 EVT::i32 values with both PPC and X86.
1169 ///
1170 /// This method returns the number of registers needed, and the VT for each
1171 /// register. It also returns the VT and quantity of the intermediate values
1172 /// before they are promoted/expanded.
1173 unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT,
1174 EVT &IntermediateVT,
1175 unsigned &NumIntermediates,
1176 MVT &RegisterVT) const;
1177
1178 /// Certain targets such as MIPS require that some types such as vectors are
1179 /// always broken down into scalars in some contexts. This occurs even if the
1180 /// vector type is legal.
1182 LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT,
1183 unsigned &NumIntermediates, MVT &RegisterVT) const {
1184 return getVectorTypeBreakdown(Context, VT, IntermediateVT, NumIntermediates,
1185 RegisterVT);
1186 }
1187
1189 unsigned opc = 0; // target opcode
1190 EVT memVT; // memory VT
1191
1192 // value representing memory location
1194
1195 // Fallback address space for use if ptrVal is nullptr. std::nullopt means
1196 // unknown address space.
1197 std::optional<unsigned> fallbackAddressSpace;
1198
1199 int offset = 0; // offset off of ptrVal
1200 uint64_t size = 0; // the size of the memory location
1201 // (taken from memVT if zero)
1202 MaybeAlign align = Align(1); // alignment
1203
1205 IntrinsicInfo() = default;
1206 };
1207
1208 /// Given an intrinsic, checks if on the target the intrinsic will need to map
1209 /// to a MemIntrinsicNode (touches memory). If this is the case, it returns
1210 /// true and store the intrinsic information into the IntrinsicInfo that was
1211 /// passed to the function.
1214 unsigned /*Intrinsic*/) const {
1215 return false;
1216 }
1217
1218 /// Returns true if the target can instruction select the specified FP
1219 /// immediate natively. If false, the legalizer will materialize the FP
1220 /// immediate as a load from a constant pool.
1221 virtual bool isFPImmLegal(const APFloat & /*Imm*/, EVT /*VT*/,
1222 bool ForCodeSize = false) const {
1223 return false;
1224 }
1225
1226 /// Targets can use this to indicate that they only support *some*
1227 /// VECTOR_SHUFFLE operations, those with specific masks. By default, if a
1228 /// target supports the VECTOR_SHUFFLE node, all mask values are assumed to be
1229 /// legal.
1230 virtual bool isShuffleMaskLegal(ArrayRef<int> /*Mask*/, EVT /*VT*/) const {
1231 return true;
1232 }
1233
1234 /// Returns true if the operation can trap for the value type.
1235 ///
1236 /// VT must be a legal type. By default, we optimistically assume most
1237 /// operations don't trap except for integer divide and remainder.
1238 virtual bool canOpTrap(unsigned Op, EVT VT) const;
1239
1240 /// Similar to isShuffleMaskLegal. Targets can use this to indicate if there
1241 /// is a suitable VECTOR_SHUFFLE that can be used to replace a VAND with a
1242 /// constant pool entry.
1244 EVT /*VT*/) const {
1245 return false;
1246 }
1247
1248 /// How to legalize this custom operation?
1250 return Legal;
1251 }
1252
1253 /// Return how this operation should be treated: either it is legal, needs to
1254 /// be promoted to a larger size, needs to be expanded to some other code
1255 /// sequence, or the target has a custom expander for it.
1257 if (VT.isExtended()) return Expand;
1258 // If a target-specific SDNode requires legalization, require the target
1259 // to provide custom legalization for it.
1260 if (Op >= std::size(OpActions[0]))
1261 return Custom;
1262 return OpActions[(unsigned)VT.getSimpleVT().SimpleTy][Op];
1263 }
1264
1265 /// Custom method defined by each target to indicate if an operation which
1266 /// may require a scale is supported natively by the target.
1267 /// If not, the operation is illegal.
1268 virtual bool isSupportedFixedPointOperation(unsigned Op, EVT VT,
1269 unsigned Scale) const {
1270 return false;
1271 }
1272
1273 /// Some fixed point operations may be natively supported by the target but
1274 /// only for specific scales. This method allows for checking
1275 /// if the width is supported by the target for a given operation that may
1276 /// depend on scale.
1278 unsigned Scale) const {
1279 auto Action = getOperationAction(Op, VT);
1280 if (Action != Legal)
1281 return Action;
1282
1283 // This operation is supported in this type but may only work on specific
1284 // scales.
1285 bool Supported;
1286 switch (Op) {
1287 default:
1288 llvm_unreachable("Unexpected fixed point operation.");
1289 case ISD::SMULFIX:
1290 case ISD::SMULFIXSAT:
1291 case ISD::UMULFIX:
1292 case ISD::UMULFIXSAT:
1293 case ISD::SDIVFIX:
1294 case ISD::SDIVFIXSAT:
1295 case ISD::UDIVFIX:
1296 case ISD::UDIVFIXSAT:
1297 Supported = isSupportedFixedPointOperation(Op, VT, Scale);
1298 break;
1299 }
1300
1301 return Supported ? Action : Expand;
1302 }
1303
1304 // If Op is a strict floating-point operation, return the result
1305 // of getOperationAction for the equivalent non-strict operation.
1307 unsigned EqOpc;
1308 switch (Op) {
1309 default: llvm_unreachable("Unexpected FP pseudo-opcode");
1310#define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
1311 case ISD::STRICT_##DAGN: EqOpc = ISD::DAGN; break;
1312#define CMP_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN) \
1313 case ISD::STRICT_##DAGN: EqOpc = ISD::SETCC; break;
1314#include "llvm/IR/ConstrainedOps.def"
1315 }
1316
1317 return getOperationAction(EqOpc, VT);
1318 }
1319
1320 /// Return true if the specified operation is legal on this target or can be
1321 /// made legal with custom lowering. This is used to help guide high-level
1322 /// lowering decisions. LegalOnly is an optional convenience for code paths
1323 /// traversed pre and post legalisation.
1325 bool LegalOnly = false) const {
1326 if (LegalOnly)
1327 return isOperationLegal(Op, VT);
1328
1329 return (VT == MVT::Other || isTypeLegal(VT)) &&
1330 (getOperationAction(Op, VT) == Legal ||
1331 getOperationAction(Op, VT) == Custom);
1332 }
1333
1334 /// Return true if the specified operation is legal on this target or can be
1335 /// made legal using promotion. This is used to help guide high-level lowering
1336 /// decisions. LegalOnly is an optional convenience for code paths traversed
1337 /// pre and post legalisation.
1339 bool LegalOnly = false) const {
1340 if (LegalOnly)
1341 return isOperationLegal(Op, VT);
1342
1343 return (VT == MVT::Other || isTypeLegal(VT)) &&
1344 (getOperationAction(Op, VT) == Legal ||
1345 getOperationAction(Op, VT) == Promote);
1346 }
1347
1348 /// Return true if the specified operation is legal on this target or can be
1349 /// made legal with custom lowering or using promotion. This is used to help
1350 /// guide high-level lowering decisions. LegalOnly is an optional convenience
1351 /// for code paths traversed pre and post legalisation.
1353 bool LegalOnly = false) const {
1354 if (LegalOnly)
1355 return isOperationLegal(Op, VT);
1356
1357 return (VT == MVT::Other || isTypeLegal(VT)) &&
1358 (getOperationAction(Op, VT) == Legal ||
1359 getOperationAction(Op, VT) == Custom ||
1360 getOperationAction(Op, VT) == Promote);
1361 }
1362
1363 /// Return true if the operation uses custom lowering, regardless of whether
1364 /// the type is legal or not.
1365 bool isOperationCustom(unsigned Op, EVT VT) const {
1366 return getOperationAction(Op, VT) == Custom;
1367 }
1368
1369 /// Return true if lowering to a jump table is allowed.
1370 virtual bool areJTsAllowed(const Function *Fn) const {
1371 if (Fn->getFnAttribute("no-jump-tables").getValueAsBool())
1372 return false;
1373
1374 return isOperationLegalOrCustom(ISD::BR_JT, MVT::Other) ||
1376 }
1377
1378 /// Check whether the range [Low,High] fits in a machine word.
1379 bool rangeFitsInWord(const APInt &Low, const APInt &High,
1380 const DataLayout &DL) const {
1381 // FIXME: Using the pointer type doesn't seem ideal.
1382 uint64_t BW = DL.getIndexSizeInBits(0u);
1383 uint64_t Range = (High - Low).getLimitedValue(UINT64_MAX - 1) + 1;
1384 return Range <= BW;
1385 }
1386
1387 /// Return true if lowering to a jump table is suitable for a set of case
1388 /// clusters which may contain \p NumCases cases, \p Range range of values.
1389 virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases,
1390 uint64_t Range, ProfileSummaryInfo *PSI,
1391 BlockFrequencyInfo *BFI) const;
1392
1393 /// Returns preferred type for switch condition.
1395 EVT ConditionVT) const;
1396
1397 /// Return true if lowering to a bit test is suitable for a set of case
1398 /// clusters which contains \p NumDests unique destinations, \p Low and
1399 /// \p High as its lowest and highest case values, and expects \p NumCmps
1400 /// case value comparisons. Check if the number of destinations, comparison
1401 /// metric, and range are all suitable.
1402 bool isSuitableForBitTests(unsigned NumDests, unsigned NumCmps,
1403 const APInt &Low, const APInt &High,
1404 const DataLayout &DL) const {
1405 // FIXME: I don't think NumCmps is the correct metric: a single case and a
1406 // range of cases both require only one branch to lower. Just looking at the
1407 // number of clusters and destinations should be enough to decide whether to
1408 // build bit tests.
1409
1410 // To lower a range with bit tests, the range must fit the bitwidth of a
1411 // machine word.
1412 if (!rangeFitsInWord(Low, High, DL))
1413 return false;
1414
1415 // Decide whether it's profitable to lower this range with bit tests. Each
1416 // destination requires a bit test and branch, and there is an overall range
1417 // check branch. For a small number of clusters, separate comparisons might
1418 // be cheaper, and for many destinations, splitting the range might be
1419 // better.
1420 return (NumDests == 1 && NumCmps >= 3) || (NumDests == 2 && NumCmps >= 5) ||
1421 (NumDests == 3 && NumCmps >= 6);
1422 }
1423
1424 /// Return true if the specified operation is illegal on this target or
1425 /// unlikely to be made legal with custom lowering. This is used to help guide
1426 /// high-level lowering decisions.
1427 bool isOperationExpand(unsigned Op, EVT VT) const {
1428 return (!isTypeLegal(VT) || getOperationAction(Op, VT) == Expand);
1429 }
1430
1431 /// Return true if the specified operation is legal on this target.
1432 bool isOperationLegal(unsigned Op, EVT VT) const {
1433 return (VT == MVT::Other || isTypeLegal(VT)) &&
1434 getOperationAction(Op, VT) == Legal;
1435 }
1436
1437 /// Return how this load with extension should be treated: either it is legal,
1438 /// needs to be promoted to a larger size, needs to be expanded to some other
1439 /// code sequence, or the target has a custom expander for it.
1440 LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT,
1441 EVT MemVT) const {
1442 if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1443 unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
1444 unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
1446 MemI < MVT::VALUETYPE_SIZE && "Table isn't big enough!");
1447 unsigned Shift = 4 * ExtType;
1448 return (LegalizeAction)((LoadExtActions[ValI][MemI] >> Shift) & 0xf);
1449 }
1450
1451 /// Return true if the specified load with extension is legal on this target.
1452 bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1453 return getLoadExtAction(ExtType, ValVT, MemVT) == Legal;
1454 }
1455
1456 /// Return true if the specified load with extension is legal or custom
1457 /// on this target.
1458 bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1459 return getLoadExtAction(ExtType, ValVT, MemVT) == Legal ||
1460 getLoadExtAction(ExtType, ValVT, MemVT) == Custom;
1461 }
1462
1463 /// Same as getLoadExtAction, but for atomic loads.
1465 EVT MemVT) const {
1466 if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1467 unsigned ValI = (unsigned)ValVT.getSimpleVT().SimpleTy;
1468 unsigned MemI = (unsigned)MemVT.getSimpleVT().SimpleTy;
1470 MemI < MVT::VALUETYPE_SIZE && "Table isn't big enough!");
1471 unsigned Shift = 4 * ExtType;
1472 LegalizeAction Action =
1473 (LegalizeAction)((AtomicLoadExtActions[ValI][MemI] >> Shift) & 0xf);
1474 assert((Action == Legal || Action == Expand) &&
1475 "Unsupported atomic load extension action.");
1476 return Action;
1477 }
1478
1479 /// Return true if the specified atomic load with extension is legal on
1480 /// this target.
1481 bool isAtomicLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const {
1482 return getAtomicLoadExtAction(ExtType, ValVT, MemVT) == Legal;
1483 }
1484
1485 /// Return how this store with truncation should be treated: either it is
1486 /// legal, needs to be promoted to a larger size, needs to be expanded to some
1487 /// other code sequence, or the target has a custom expander for it.
1489 if (ValVT.isExtended() || MemVT.isExtended()) return Expand;
1490 unsigned ValI = (unsigned) ValVT.getSimpleVT().SimpleTy;
1491 unsigned MemI = (unsigned) MemVT.getSimpleVT().SimpleTy;
1493 "Table isn't big enough!");
1494 return TruncStoreActions[ValI][MemI];
1495 }
1496
1497 /// Return true if the specified store with truncation is legal on this
1498 /// target.
1499 bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const {
1500 return isTypeLegal(ValVT) && getTruncStoreAction(ValVT, MemVT) == Legal;
1501 }
1502
1503 /// Return true if the specified store with truncation has solution on this
1504 /// target.
1505 bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const {
1506 return isTypeLegal(ValVT) &&
1507 (getTruncStoreAction(ValVT, MemVT) == Legal ||
1508 getTruncStoreAction(ValVT, MemVT) == Custom);
1509 }
1510
1511 virtual bool canCombineTruncStore(EVT ValVT, EVT MemVT,
1512 bool LegalOnly) const {
1513 if (LegalOnly)
1514 return isTruncStoreLegal(ValVT, MemVT);
1515
1516 return isTruncStoreLegalOrCustom(ValVT, MemVT);
1517 }
1518
1519 /// Return how the indexed load should be treated: either it is legal, needs
1520 /// to be promoted to a larger size, needs to be expanded to some other code
1521 /// sequence, or the target has a custom expander for it.
1522 LegalizeAction getIndexedLoadAction(unsigned IdxMode, MVT VT) const {
1523 return getIndexedModeAction(IdxMode, VT, IMAB_Load);
1524 }
1525
1526 /// Return true if the specified indexed load is legal on this target.
1527 bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const {
1528 return VT.isSimple() &&
1529 (getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
1530 getIndexedLoadAction(IdxMode, VT.getSimpleVT()) == Custom);
1531 }
1532
1533 /// Return how the indexed store should be treated: either it is legal, needs
1534 /// to be promoted to a larger size, needs to be expanded to some other code
1535 /// sequence, or the target has a custom expander for it.
1536 LegalizeAction getIndexedStoreAction(unsigned IdxMode, MVT VT) const {
1537 return getIndexedModeAction(IdxMode, VT, IMAB_Store);
1538 }
1539
1540 /// Return true if the specified indexed load is legal on this target.
1541 bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const {
1542 return VT.isSimple() &&
1543 (getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
1544 getIndexedStoreAction(IdxMode, VT.getSimpleVT()) == Custom);
1545 }
1546
1547 /// Return how the indexed load should be treated: either it is legal, needs
1548 /// to be promoted to a larger size, needs to be expanded to some other code
1549 /// sequence, or the target has a custom expander for it.
1550 LegalizeAction getIndexedMaskedLoadAction(unsigned IdxMode, MVT VT) const {
1551 return getIndexedModeAction(IdxMode, VT, IMAB_MaskedLoad);
1552 }
1553
1554 /// Return true if the specified indexed load is legal on this target.
1555 bool isIndexedMaskedLoadLegal(unsigned IdxMode, EVT VT) const {
1556 return VT.isSimple() &&
1557 (getIndexedMaskedLoadAction(IdxMode, VT.getSimpleVT()) == Legal ||
1559 }
1560
1561 /// Return how the indexed store should be treated: either it is legal, needs
1562 /// to be promoted to a larger size, needs to be expanded to some other code
1563 /// sequence, or the target has a custom expander for it.
1564 LegalizeAction getIndexedMaskedStoreAction(unsigned IdxMode, MVT VT) const {
1565 return getIndexedModeAction(IdxMode, VT, IMAB_MaskedStore);
1566 }
1567
1568 /// Return true if the specified indexed load is legal on this target.
1569 bool isIndexedMaskedStoreLegal(unsigned IdxMode, EVT VT) const {
1570 return VT.isSimple() &&
1571 (getIndexedMaskedStoreAction(IdxMode, VT.getSimpleVT()) == Legal ||
1573 }
1574
1575 /// Returns true if the index type for a masked gather/scatter requires
1576 /// extending
1577 virtual bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const { return false; }
1578
1579 // Returns true if Extend can be folded into the index of a masked gathers/scatters
1580 // on this target.
1581 virtual bool shouldRemoveExtendFromGSIndex(SDValue Extend, EVT DataVT) const {
1582 return false;
1583 }
1584
1585 // Return true if the target supports a scatter/gather instruction with
1586 // indices which are scaled by the particular value. Note that all targets
1587 // must by definition support scale of 1.
1589 uint64_t ElemSize) const {
1590 // MGATHER/MSCATTER are only required to support scaling by one or by the
1591 // element size.
1592 if (Scale != ElemSize && Scale != 1)
1593 return false;
1594 return true;
1595 }
1596
1597 /// Return how the condition code should be treated: either it is legal, needs
1598 /// to be expanded to some other code sequence, or the target has a custom
1599 /// expander for it.
1602 assert((unsigned)CC < std::size(CondCodeActions) &&
1603 ((unsigned)VT.SimpleTy >> 3) < std::size(CondCodeActions[0]) &&
1604 "Table isn't big enough!");
1605 // See setCondCodeAction for how this is encoded.
1606 uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
1607 uint32_t Value = CondCodeActions[CC][VT.SimpleTy >> 3];
1608 LegalizeAction Action = (LegalizeAction) ((Value >> Shift) & 0xF);
1609 assert(Action != Promote && "Can't promote condition code!");
1610 return Action;
1611 }
1612
1613 /// Return true if the specified condition code is legal on this target.
1615 return getCondCodeAction(CC, VT) == Legal;
1616 }
1617
1618 /// Return true if the specified condition code is legal or custom on this
1619 /// target.
1621 return getCondCodeAction(CC, VT) == Legal ||
1622 getCondCodeAction(CC, VT) == Custom;
1623 }
1624
1625 /// If the action for this operation is to promote, this method returns the
1626 /// ValueType to promote to.
1627 MVT getTypeToPromoteTo(unsigned Op, MVT VT) const {
1629 "This operation isn't promoted!");
1630
1631 // See if this has an explicit type specified.
1632 std::map<std::pair<unsigned, MVT::SimpleValueType>,
1634 PromoteToType.find(std::make_pair(Op, VT.SimpleTy));
1635 if (PTTI != PromoteToType.end()) return PTTI->second;
1636
1637 assert((VT.isInteger() || VT.isFloatingPoint()) &&
1638 "Cannot autopromote this type, add it with AddPromotedToType.");
1639
1640 uint64_t VTBits = VT.getScalarSizeInBits();
1641 MVT NVT = VT;
1642 do {
1643 NVT = (MVT::SimpleValueType)(NVT.SimpleTy+1);
1644 assert(NVT.isInteger() == VT.isInteger() && NVT != MVT::isVoid &&
1645 "Didn't find type to promote to!");
1646 } while (VTBits >= NVT.getScalarSizeInBits() || !isTypeLegal(NVT) ||
1647 getOperationAction(Op, NVT) == Promote);
1648 return NVT;
1649 }
1650
1652 bool AllowUnknown = false) const {
1653 return getValueType(DL, Ty, AllowUnknown);
1654 }
1655
1656 /// Return the EVT corresponding to this LLVM type. This is fixed by the LLVM
1657 /// operations except for the pointer size. If AllowUnknown is true, this
1658 /// will return MVT::Other for types with no EVT counterpart (e.g. structs),
1659 /// otherwise it will assert.
1661 bool AllowUnknown = false) const {
1662 // Lower scalar pointers to native pointer types.
1663 if (auto *PTy = dyn_cast<PointerType>(Ty))
1664 return getPointerTy(DL, PTy->getAddressSpace());
1665
1666 if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1667 Type *EltTy = VTy->getElementType();
1668 // Lower vectors of pointers to native pointer types.
1669 if (auto *PTy = dyn_cast<PointerType>(EltTy)) {
1670 EVT PointerTy(getPointerTy(DL, PTy->getAddressSpace()));
1671 EltTy = PointerTy.getTypeForEVT(Ty->getContext());
1672 }
1673 return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(EltTy, false),
1674 VTy->getElementCount());
1675 }
1676
1677 return EVT::getEVT(Ty, AllowUnknown);
1678 }
1679
1681 bool AllowUnknown = false) const {
1682 // Lower scalar pointers to native pointer types.
1683 if (auto *PTy = dyn_cast<PointerType>(Ty))
1684 return getPointerMemTy(DL, PTy->getAddressSpace());
1685
1686 if (auto *VTy = dyn_cast<VectorType>(Ty)) {
1687 Type *EltTy = VTy->getElementType();
1688 if (auto *PTy = dyn_cast<PointerType>(EltTy)) {
1689 EVT PointerTy(getPointerMemTy(DL, PTy->getAddressSpace()));
1690 EltTy = PointerTy.getTypeForEVT(Ty->getContext());
1691 }
1692 return EVT::getVectorVT(Ty->getContext(), EVT::getEVT(EltTy, false),
1693 VTy->getElementCount());
1694 }
1695
1696 return getValueType(DL, Ty, AllowUnknown);
1697 }
1698
1699
1700 /// Return the MVT corresponding to this LLVM type. See getValueType.
1702 bool AllowUnknown = false) const {
1703 return getValueType(DL, Ty, AllowUnknown).getSimpleVT();
1704 }
1705
1706 /// Return the desired alignment for ByVal or InAlloca aggregate function
1707 /// arguments in the caller parameter area. This is the actual alignment, not
1708 /// its logarithm.
1709 virtual uint64_t getByValTypeAlignment(Type *Ty, const DataLayout &DL) const;
1710
1711 /// Return the type of registers that this ValueType will eventually require.
1713 assert((unsigned)VT.SimpleTy < std::size(RegisterTypeForVT));
1714 return RegisterTypeForVT[VT.SimpleTy];
1715 }
1716
1717 /// Return the type of registers that this ValueType will eventually require.
1718 MVT getRegisterType(LLVMContext &Context, EVT VT) const {
1719 if (VT.isSimple())
1720 return getRegisterType(VT.getSimpleVT());
1721 if (VT.isVector()) {
1722 EVT VT1;
1723 MVT RegisterVT;
1724 unsigned NumIntermediates;
1725 (void)getVectorTypeBreakdown(Context, VT, VT1,
1726 NumIntermediates, RegisterVT);
1727 return RegisterVT;
1728 }
1729 if (VT.isInteger()) {
1731 }
1732 llvm_unreachable("Unsupported extended type!");
1733 }
1734
1735 /// Return the number of registers that this ValueType will eventually
1736 /// require.
1737 ///
1738 /// This is one for any types promoted to live in larger registers, but may be
1739 /// more than one for types (like i64) that are split into pieces. For types
1740 /// like i140, which are first promoted then expanded, it is the number of
1741 /// registers needed to hold all the bits of the original type. For an i140
1742 /// on a 32 bit machine this means 5 registers.
1743 ///
1744 /// RegisterVT may be passed as a way to override the default settings, for
1745 /// instance with i128 inline assembly operands on SystemZ.
1746 virtual unsigned
1748 std::optional<MVT> RegisterVT = std::nullopt) const {
1749 if (VT.isSimple()) {
1750 assert((unsigned)VT.getSimpleVT().SimpleTy <
1751 std::size(NumRegistersForVT));
1752 return NumRegistersForVT[VT.getSimpleVT().SimpleTy];
1753 }
1754 if (VT.isVector()) {
1755 EVT VT1;
1756 MVT VT2;
1757 unsigned NumIntermediates;
1758 return getVectorTypeBreakdown(Context, VT, VT1, NumIntermediates, VT2);
1759 }
1760 if (VT.isInteger()) {
1761 unsigned BitWidth = VT.getSizeInBits();
1762 unsigned RegWidth = getRegisterType(Context, VT).getSizeInBits();
1763 return (BitWidth + RegWidth - 1) / RegWidth;
1764 }
1765 llvm_unreachable("Unsupported extended type!");
1766 }
1767
1768 /// Certain combinations of ABIs, Targets and features require that types
1769 /// are legal for some operations and not for other operations.
1770 /// For MIPS all vector types must be passed through the integer register set.
1772 CallingConv::ID CC, EVT VT) const {
1773 return getRegisterType(Context, VT);
1774 }
1775
1776 /// Certain targets require unusual breakdowns of certain types. For MIPS,
1777 /// this occurs when a vector type is used, as vector are passed through the
1778 /// integer register set.
1781 EVT VT) const {
1782 return getNumRegisters(Context, VT);
1783 }
1784
1785 /// Certain targets have context sensitive alignment requirements, where one
1786 /// type has the alignment requirement of another type.
1788 const DataLayout &DL) const {
1789 return DL.getABITypeAlign(ArgTy);
1790 }
1791
1792 /// If true, then instruction selection should seek to shrink the FP constant
1793 /// of the specified type to a smaller type in order to save space and / or
1794 /// reduce runtime.
1795 virtual bool ShouldShrinkFPConstant(EVT) const { return true; }
1796
1797 /// Return true if it is profitable to reduce a load to a smaller type.
1798 /// Example: (i16 (trunc (i32 (load x))) -> i16 load x
1800 EVT NewVT) const {
1801 // By default, assume that it is cheaper to extract a subvector from a wide
1802 // vector load rather than creating multiple narrow vector loads.
1803 if (NewVT.isVector() && !Load->hasOneUse())
1804 return false;
1805
1806 return true;
1807 }
1808
1809 /// Return true (the default) if it is profitable to remove a sext_inreg(x)
1810 /// where the sext is redundant, and use x directly.
1811 virtual bool shouldRemoveRedundantExtend(SDValue Op) const { return true; }
1812
1813 /// Indicates if any padding is guaranteed to go at the most significant bits
1814 /// when storing the type to memory and the type size isn't equal to the store
1815 /// size.
1817 return VT.isScalarInteger() && !VT.isByteSized();
1818 }
1819
1820 /// When splitting a value of the specified type into parts, does the Lo
1821 /// or Hi part come first? This usually follows the endianness, except
1822 /// for ppcf128, where the Hi part always comes first.
1824 return DL.isBigEndian() || VT == MVT::ppcf128;
1825 }
1826
1827 /// If true, the target has custom DAG combine transformations that it can
1828 /// perform for the specified node.
1830 assert(unsigned(NT >> 3) < std::size(TargetDAGCombineArray));
1831 return TargetDAGCombineArray[NT >> 3] & (1 << (NT&7));
1832 }
1833
1836 }
1837
1838 /// Returns the size of the platform's va_list object.
1839 virtual unsigned getVaListSizeInBits(const DataLayout &DL) const {
1840 return getPointerTy(DL).getSizeInBits();
1841 }
1842
1843 /// Get maximum # of store operations permitted for llvm.memset
1844 ///
1845 /// This function returns the maximum number of store operations permitted
1846 /// to replace a call to llvm.memset. The value is set by the target at the
1847 /// performance threshold for such a replacement. If OptSize is true,
1848 /// return the limit for functions that have OptSize attribute.
1849 unsigned getMaxStoresPerMemset(bool OptSize) const {
1851 }
1852
1853 /// Get maximum # of store operations permitted for llvm.memcpy
1854 ///
1855 /// This function returns the maximum number of store operations permitted
1856 /// to replace a call to llvm.memcpy. The value is set by the target at the
1857 /// performance threshold for such a replacement. If OptSize is true,
1858 /// return the limit for functions that have OptSize attribute.
1859 unsigned getMaxStoresPerMemcpy(bool OptSize) const {
1861 }
1862
1863 /// \brief Get maximum # of store operations to be glued together
1864 ///
1865 /// This function returns the maximum number of store operations permitted
1866 /// to glue together during lowering of llvm.memcpy. The value is set by
1867 // the target at the performance threshold for such a replacement.
1868 virtual unsigned getMaxGluedStoresPerMemcpy() const {
1870 }
1871
1872 /// Get maximum # of load operations permitted for memcmp
1873 ///
1874 /// This function returns the maximum number of load operations permitted
1875 /// to replace a call to memcmp. The value is set by the target at the
1876 /// performance threshold for such a replacement. If OptSize is true,
1877 /// return the limit for functions that have OptSize attribute.
1878 unsigned getMaxExpandSizeMemcmp(bool OptSize) const {
1880 }
1881
1882 /// Get maximum # of store operations permitted for llvm.memmove
1883 ///
1884 /// This function returns the maximum number of store operations permitted
1885 /// to replace a call to llvm.memmove. The value is set by the target at the
1886 /// performance threshold for such a replacement. If OptSize is true,
1887 /// return the limit for functions that have OptSize attribute.
1888 unsigned getMaxStoresPerMemmove(bool OptSize) const {
1890 }
1891
1892 /// Determine if the target supports unaligned memory accesses.
1893 ///
1894 /// This function returns true if the target allows unaligned memory accesses
1895 /// of the specified type in the given address space. If true, it also returns
1896 /// a relative speed of the unaligned memory access in the last argument by
1897 /// reference. The higher the speed number the faster the operation comparing
1898 /// to a number returned by another such call. This is used, for example, in
1899 /// situations where an array copy/move/set is converted to a sequence of
1900 /// store operations. Its use helps to ensure that such replacements don't
1901 /// generate code that causes an alignment error (trap) on the target machine.
1903 EVT, unsigned AddrSpace = 0, Align Alignment = Align(1),
1905 unsigned * /*Fast*/ = nullptr) const {
1906 return false;
1907 }
1908
1909 /// LLT handling variant.
1911 LLT, unsigned AddrSpace = 0, Align Alignment = Align(1),
1913 unsigned * /*Fast*/ = nullptr) const {
1914 return false;
1915 }
1916
1917 /// This function returns true if the memory access is aligned or if the
1918 /// target allows this specific unaligned memory access. If the access is
1919 /// allowed, the optional final parameter returns a relative speed of the
1920 /// access (as defined by the target).
1922 LLVMContext &Context, const DataLayout &DL, EVT VT,
1923 unsigned AddrSpace = 0, Align Alignment = Align(1),
1925 unsigned *Fast = nullptr) const;
1926
1927 /// Return true if the memory access of this type is aligned or if the target
1928 /// allows this specific unaligned access for the given MachineMemOperand.
1929 /// If the access is allowed, the optional final parameter returns a relative
1930 /// speed of the access (as defined by the target).
1932 const DataLayout &DL, EVT VT,
1933 const MachineMemOperand &MMO,
1934 unsigned *Fast = nullptr) const;
1935
1936 /// Return true if the target supports a memory access of this type for the
1937 /// given address space and alignment. If the access is allowed, the optional
1938 /// final parameter returns the relative speed of the access (as defined by
1939 /// the target).
1940 virtual bool
1941 allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
1942 unsigned AddrSpace = 0, Align Alignment = Align(1),
1944 unsigned *Fast = nullptr) const;
1945
1946 /// Return true if the target supports a memory access of this type for the
1947 /// given MachineMemOperand. If the access is allowed, the optional
1948 /// final parameter returns the relative access speed (as defined by the
1949 /// target).
1950 bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT,
1951 const MachineMemOperand &MMO,
1952 unsigned *Fast = nullptr) const;
1953
1954 /// LLT handling variant.
1955 bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, LLT Ty,
1956 const MachineMemOperand &MMO,
1957 unsigned *Fast = nullptr) const;
1958
1959 /// Returns the target specific optimal type for load and store operations as
1960 /// a result of memset, memcpy, and memmove lowering.
1961 /// It returns EVT::Other if the type should be determined using generic
1962 /// target-independent logic.
1963 virtual EVT
1965 const AttributeList & /*FuncAttributes*/) const {
1966 return MVT::Other;
1967 }
1968
1969 /// LLT returning variant.
1970 virtual LLT
1972 const AttributeList & /*FuncAttributes*/) const {
1973 return LLT();
1974 }
1975
1976 /// Returns true if it's safe to use load / store of the specified type to
1977 /// expand memcpy / memset inline.
1978 ///
1979 /// This is mostly true for all types except for some special cases. For
1980 /// example, on X86 targets without SSE2 f64 load / store are done with fldl /
1981 /// fstpl which also does type conversion. Note the specified type doesn't
1982 /// have to be legal as the hook is used before type legalization.
1983 virtual bool isSafeMemOpType(MVT /*VT*/) const { return true; }
1984
1985 /// Return lower limit for number of blocks in a jump table.
1986 virtual unsigned getMinimumJumpTableEntries() const;
1987
1988 /// Return lower limit of the density in a jump table.
1989 unsigned getMinimumJumpTableDensity(bool OptForSize) const;
1990
1991 /// Return upper limit for number of entries in a jump table.
1992 /// Zero if no limit.
1993 unsigned getMaximumJumpTableSize() const;
1994
1995 virtual bool isJumpTableRelative() const;
1996
1997 /// If a physical register, this specifies the register that
1998 /// llvm.savestack/llvm.restorestack should save and restore.
2000 return StackPointerRegisterToSaveRestore;
2001 }
2002
2003 /// If a physical register, this returns the register that receives the
2004 /// exception address on entry to an EH pad.
2005 virtual Register
2006 getExceptionPointerRegister(const Constant *PersonalityFn) const {
2007 return Register();
2008 }
2009
2010 /// If a physical register, this returns the register that receives the
2011 /// exception typeid on entry to a landing pad.
2012 virtual Register
2013 getExceptionSelectorRegister(const Constant *PersonalityFn) const {
2014 return Register();
2015 }
2016
2017 virtual bool needsFixedCatchObjects() const {
2018 report_fatal_error("Funclet EH is not implemented for this target");
2019 }
2020
2021 /// Return the minimum stack alignment of an argument.
2023 return MinStackArgumentAlignment;
2024 }
2025
2026 /// Return the minimum function alignment.
2027 Align getMinFunctionAlignment() const { return MinFunctionAlignment; }
2028
2029 /// Return the preferred function alignment.
2030 Align getPrefFunctionAlignment() const { return PrefFunctionAlignment; }
2031
2032 /// Return the preferred loop alignment.
2033 virtual Align getPrefLoopAlignment(MachineLoop *ML = nullptr) const;
2034
2035 /// Return the maximum amount of bytes allowed to be emitted when padding for
2036 /// alignment
2037 virtual unsigned
2039
2040 /// Should loops be aligned even when the function is marked OptSize (but not
2041 /// MinSize).
2042 virtual bool alignLoopsWithOptSize() const { return false; }
2043
2044 /// If the target has a standard location for the stack protector guard,
2045 /// returns the address of that location. Otherwise, returns nullptr.
2046 /// DEPRECATED: please override useLoadStackGuardNode and customize
2047 /// LOAD_STACK_GUARD, or customize \@llvm.stackguard().
2048 virtual Value *getIRStackGuard(IRBuilderBase &IRB) const;
2049
2050 /// Inserts necessary declarations for SSP (stack protection) purpose.
2051 /// Should be used only when getIRStackGuard returns nullptr.
2052 virtual void insertSSPDeclarations(Module &M) const;
2053
2054 /// Return the variable that's previously inserted by insertSSPDeclarations,
2055 /// if any, otherwise return nullptr. Should be used only when
2056 /// getIRStackGuard returns nullptr.
2057 virtual Value *getSDagStackGuard(const Module &M) const;
2058
2059 /// If this function returns true, stack protection checks should XOR the
2060 /// frame pointer (or whichever pointer is used to address locals) into the
2061 /// stack guard value before checking it. getIRStackGuard must return nullptr
2062 /// if this returns true.
2063 virtual bool useStackGuardXorFP() const { return false; }
2064
2065 /// If the target has a standard stack protection check function that
2066 /// performs validation and error handling, returns the function. Otherwise,
2067 /// returns nullptr. Must be previously inserted by insertSSPDeclarations.
2068 /// Should be used only when getIRStackGuard returns nullptr.
2069 virtual Function *getSSPStackGuardCheck(const Module &M) const;
2070
2071protected:
2073 bool UseTLS) const;
2074
2075public:
2076 /// Returns the target-specific address of the unsafe stack pointer.
2077 virtual Value *getSafeStackPointerLocation(IRBuilderBase &IRB) const;
2078
2079 /// Returns the name of the symbol used to emit stack probes or the empty
2080 /// string if not applicable.
2081 virtual bool hasStackProbeSymbol(const MachineFunction &MF) const { return false; }
2082
2083 virtual bool hasInlineStackProbe(const MachineFunction &MF) const { return false; }
2084
2086 return "";
2087 }
2088
2089 /// Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g. we
2090 /// are happy to sink it into basic blocks. A cast may be free, but not
2091 /// necessarily a no-op. e.g. a free truncate from a 64-bit to 32-bit pointer.
2092 virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const;
2093
2094 /// Return true if the pointer arguments to CI should be aligned by aligning
2095 /// the object whose address is being passed. If so then MinSize is set to the
2096 /// minimum size the object must be to be aligned and PrefAlign is set to the
2097 /// preferred alignment.
2098 virtual bool shouldAlignPointerArgs(CallInst * /*CI*/, unsigned & /*MinSize*/,
2099 Align & /*PrefAlign*/) const {
2100 return false;
2101 }
2102
2103 //===--------------------------------------------------------------------===//
2104 /// \name Helpers for TargetTransformInfo implementations
2105 /// @{
2106
2107 /// Get the ISD node that corresponds to the Instruction class opcode.
2108 int InstructionOpcodeToISD(unsigned Opcode) const;
2109
2110 /// @}
2111
2112 //===--------------------------------------------------------------------===//
2113 /// \name Helpers for atomic expansion.
2114 /// @{
2115
2116 /// Returns the maximum atomic operation size (in bits) supported by
2117 /// the backend. Atomic operations greater than this size (as well
2118 /// as ones that are not naturally aligned), will be expanded by
2119 /// AtomicExpandPass into an __atomic_* library call.
2121 return MaxAtomicSizeInBitsSupported;
2122 }
2123
2124 /// Returns the size in bits of the maximum div/rem the backend supports.
2125 /// Larger operations will be expanded by ExpandLargeDivRem.
2127 return MaxDivRemBitWidthSupported;
2128 }
2129
2130 /// Returns the size in bits of the maximum larget fp convert the backend
2131 /// supports. Larger operations will be expanded by ExpandLargeFPConvert.
2133 return MaxLargeFPConvertBitWidthSupported;
2134 }
2135
2136 /// Returns the size of the smallest cmpxchg or ll/sc instruction
2137 /// the backend supports. Any smaller operations are widened in
2138 /// AtomicExpandPass.
2139 ///
2140 /// Note that *unlike* operations above the maximum size, atomic ops
2141 /// are still natively supported below the minimum; they just
2142 /// require a more complex expansion.
2143 unsigned getMinCmpXchgSizeInBits() const { return MinCmpXchgSizeInBits; }
2144
2145 /// Whether the target supports unaligned atomic operations.
2146 bool supportsUnalignedAtomics() const { return SupportsUnalignedAtomics; }
2147
2148 /// Whether AtomicExpandPass should automatically insert fences and reduce
2149 /// ordering for this atomic. This should be true for most architectures with
2150 /// weak memory ordering. Defaults to false.
2151 virtual bool shouldInsertFencesForAtomic(const Instruction *I) const {
2152 return false;
2153 }
2154
2155 /// Whether AtomicExpandPass should automatically insert a trailing fence
2156 /// without reducing the ordering for this atomic. Defaults to false.
2157 virtual bool
2159 return false;
2160 }
2161
2162 /// Perform a load-linked operation on Addr, returning a "Value *" with the
2163 /// corresponding pointee type. This may entail some non-trivial operations to
2164 /// truncate or reconstruct types that will be illegal in the backend. See
2165 /// ARMISelLowering for an example implementation.
2166 virtual Value *emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy,
2167 Value *Addr, AtomicOrdering Ord) const {
2168 llvm_unreachable("Load linked unimplemented on this target");
2169 }
2170
2171 /// Perform a store-conditional operation to Addr. Return the status of the
2172 /// store. This should be 0 if the store succeeded, non-zero otherwise.
2174 Value *Addr, AtomicOrdering Ord) const {
2175 llvm_unreachable("Store conditional unimplemented on this target");
2176 }
2177
2178 /// Perform a masked atomicrmw using a target-specific intrinsic. This
2179 /// represents the core LL/SC loop which will be lowered at a late stage by
2180 /// the backend. The target-specific intrinsic returns the loaded value and
2181 /// is not responsible for masking and shifting the result.
2183 AtomicRMWInst *AI,
2184 Value *AlignedAddr, Value *Incr,
2185 Value *Mask, Value *ShiftAmt,
2186 AtomicOrdering Ord) const {
2187 llvm_unreachable("Masked atomicrmw expansion unimplemented on this target");
2188 }
2189
2190 /// Perform a atomicrmw expansion using a target-specific way. This is
2191 /// expected to be called when masked atomicrmw and bit test atomicrmw don't
2192 /// work, and the target supports another way to lower atomicrmw.
2193 virtual void emitExpandAtomicRMW(AtomicRMWInst *AI) const {
2195 "Generic atomicrmw expansion unimplemented on this target");
2196 }
2197
2198 /// Perform a bit test atomicrmw using a target-specific intrinsic. This
2199 /// represents the combined bit test intrinsic which will be lowered at a late
2200 /// stage by the backend.
2203 "Bit test atomicrmw expansion unimplemented on this target");
2204 }
2205
2206 /// Perform a atomicrmw which the result is only used by comparison, using a
2207 /// target-specific intrinsic. This represents the combined atomic and compare
2208 /// intrinsic which will be lowered at a late stage by the backend.
2211 "Compare arith atomicrmw expansion unimplemented on this target");
2212 }
2213
2214 /// Perform a masked cmpxchg using a target-specific intrinsic. This
2215 /// represents the core LL/SC loop which will be lowered at a late stage by
2216 /// the backend. The target-specific intrinsic returns the loaded value and
2217 /// is not responsible for masking and shifting the result.
2219 IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr,
2220 Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const {
2221 llvm_unreachable("Masked cmpxchg expansion unimplemented on this target");
2222 }
2223
2224 //===--------------------------------------------------------------------===//
2225 /// \name KCFI check lowering.
2226 /// @{
2227
2230 const TargetInstrInfo *TII) const {
2231 llvm_unreachable("KCFI is not supported on this target");
2232 }
2233
2234 /// @}
2235
2236 /// Inserts in the IR a target-specific intrinsic specifying a fence.
2237 /// It is called by AtomicExpandPass before expanding an
2238 /// AtomicRMW/AtomicCmpXchg/AtomicStore/AtomicLoad
2239 /// if shouldInsertFencesForAtomic returns true.
2240 ///
2241 /// Inst is the original atomic instruction, prior to other expansions that
2242 /// may be performed.
2243 ///
2244 /// This function should either return a nullptr, or a pointer to an IR-level
2245 /// Instruction*. Even complex fence sequences can be represented by a
2246 /// single Instruction* through an intrinsic to be lowered later.
2247 ///
2248 /// The default implementation emits an IR fence before any release (or
2249 /// stronger) operation that stores, and after any acquire (or stronger)
2250 /// operation. This is generally a correct implementation, but backends may
2251 /// override if they wish to use alternative schemes (e.g. the PowerPC
2252 /// standard ABI uses a fence before a seq_cst load instead of after a
2253 /// seq_cst store).
2254 /// @{
2255 virtual Instruction *emitLeadingFence(IRBuilderBase &Builder,
2256 Instruction *Inst,
2257 AtomicOrdering Ord) const;
2258
2260 Instruction *Inst,
2261 AtomicOrdering Ord) const;
2262 /// @}
2263
2264 // Emits code that executes when the comparison result in the ll/sc
2265 // expansion of a cmpxchg instruction is such that the store-conditional will
2266 // not execute. This makes it possible to balance out the load-linked with
2267 // a dedicated instruction, if desired.
2268 // E.g., on ARM, if ldrex isn't followed by strex, the exclusive monitor would
2269 // be unnecessarily held, except if clrex, inserted by this hook, is executed.
2270 virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilderBase &Builder) const {}
2271
2272 /// Returns true if arguments should be sign-extended in lib calls.
2273 virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const {
2274 return IsSigned;
2275 }
2276
2277 /// Returns true if arguments should be extended in lib calls.
2278 virtual bool shouldExtendTypeInLibCall(EVT Type) const {
2279 return true;
2280 }
2281
2282 /// Returns how the given (atomic) load should be expanded by the
2283 /// IR-level AtomicExpand pass.
2286 }
2287
2288 /// Returns how the given (atomic) load should be cast by the IR-level
2289 /// AtomicExpand pass.
2291 if (LI->getType()->isFloatingPointTy())
2294 }
2295
2296 /// Returns how the given (atomic) store should be expanded by the IR-level
2297 /// AtomicExpand pass into. For instance AtomicExpansionKind::Expand will try
2298 /// to use an atomicrmw xchg.
2301 }
2302
2303 /// Returns how the given (atomic) store should be cast by the IR-level
2304 /// AtomicExpand pass into. For instance AtomicExpansionKind::CastToInteger
2305 /// will try to cast the operands to integer values.
2307 if (SI->getValueOperand()->getType()->isFloatingPointTy())
2310 }
2311
2312 /// Returns how the given atomic cmpxchg should be expanded by the IR-level
2313 /// AtomicExpand pass.
2314 virtual AtomicExpansionKind
2317 }
2318
2319 /// Returns how the IR-level AtomicExpand pass should expand the given
2320 /// AtomicRMW, if at all. Default is to never expand.
2322 return RMW->isFloatingPointOperation() ?
2324 }
2325
2326 /// Returns how the given atomic atomicrmw should be cast by the IR-level
2327 /// AtomicExpand pass.
2328 virtual AtomicExpansionKind
2330 if (RMWI->getOperation() == AtomicRMWInst::Xchg &&
2331 (RMWI->getValOperand()->getType()->isFloatingPointTy() ||
2332 RMWI->getValOperand()->getType()->isPointerTy()))
2334
2336 }
2337
2338 /// On some platforms, an AtomicRMW that never actually modifies the value
2339 /// (such as fetch_add of 0) can be turned into a fence followed by an
2340 /// atomic load. This may sound useless, but it makes it possible for the
2341 /// processor to keep the cacheline shared, dramatically improving
2342 /// performance. And such idempotent RMWs are useful for implementing some
2343 /// kinds of locks, see for example (justification + benchmarks):
2344 /// http://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
2345 /// This method tries doing that transformation, returning the atomic load if
2346 /// it succeeds, and nullptr otherwise.
2347 /// If shouldExpandAtomicLoadInIR returns true on that load, it will undergo
2348 /// another round of expansion.
2349 virtual LoadInst *
2351 return nullptr;
2352 }
2353
2354 /// Returns how the platform's atomic operations are extended (ZERO_EXTEND,
2355 /// SIGN_EXTEND, or ANY_EXTEND).
2357 return ISD::ZERO_EXTEND;
2358 }
2359
2360 /// Returns how the platform's atomic compare and swap expects its comparison
2361 /// value to be extended (ZERO_EXTEND, SIGN_EXTEND, or ANY_EXTEND). This is
2362 /// separate from getExtendForAtomicOps, which is concerned with the
2363 /// sign-extension of the instruction's output, whereas here we are concerned
2364 /// with the sign-extension of the input. For targets with compare-and-swap
2365 /// instructions (or sub-word comparisons in their LL/SC loop expansions),
2366 /// the input can be ANY_EXTEND, but the output will still have a specific
2367 /// extension.
2369 return ISD::ANY_EXTEND;
2370 }
2371
2372 /// @}
2373
2374 /// Returns true if we should normalize
2375 /// select(N0&N1, X, Y) => select(N0, select(N1, X, Y), Y) and
2376 /// select(N0|N1, X, Y) => select(N0, select(N1, X, Y, Y)) if it is likely
2377 /// that it saves us from materializing N0 and N1 in an integer register.
2378 /// Targets that are able to perform and/or on flags should return false here.
2380 EVT VT) const {
2381 // If a target has multiple condition registers, then it likely has logical
2382 // operations on those registers.
2384 return false;
2385 // Only do the transform if the value won't be split into multiple
2386 // registers.
2388 return Action != TypeExpandInteger && Action != TypeExpandFloat &&
2389 Action != TypeSplitVector;
2390 }
2391
2392 virtual bool isProfitableToCombineMinNumMaxNum(EVT VT) const { return true; }
2393
2394 /// Return true if a select of constants (select Cond, C1, C2) should be
2395 /// transformed into simple math ops with the condition value. For example:
2396 /// select Cond, C1, C1-1 --> add (zext Cond), C1-1
2397 virtual bool convertSelectOfConstantsToMath(EVT VT) const {
2398 return false;
2399 }
2400
2401 /// Return true if it is profitable to transform an integer
2402 /// multiplication-by-constant into simpler operations like shifts and adds.
2403 /// This may be true if the target does not directly support the
2404 /// multiplication operation for the specified type or the sequence of simpler
2405 /// ops is faster than the multiply.
2407 EVT VT, SDValue C) const {
2408 return false;
2409 }
2410
2411 /// Return true if it may be profitable to transform
2412 /// (mul (add x, c1), c2) -> (add (mul x, c2), c1*c2).
2413 /// This may not be true if c1 and c2 can be represented as immediates but
2414 /// c1*c2 cannot, for example.
2415 /// The target should check if c1, c2 and c1*c2 can be represented as
2416 /// immediates, or have to be materialized into registers. If it is not sure
2417 /// about some cases, a default true can be returned to let the DAGCombiner
2418 /// decide.
2419 /// AddNode is (add x, c1), and ConstNode is c2.
2421 SDValue ConstNode) const {
2422 return true;
2423 }
2424
2425 /// Return true if it is more correct/profitable to use strict FP_TO_INT
2426 /// conversion operations - canonicalizing the FP source value instead of
2427 /// converting all cases and then selecting based on value.
2428 /// This may be true if the target throws exceptions for out of bounds
2429 /// conversions or has fast FP CMOV.
2430 virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT,
2431 bool IsSigned) const {
2432 return false;
2433 }
2434
2435 /// Return true if it is beneficial to expand an @llvm.powi.* intrinsic.
2436 /// If not optimizing for size, expanding @llvm.powi.* intrinsics is always
2437 /// considered beneficial.
2438 /// If optimizing for size, expansion is only considered beneficial for upto
2439 /// 5 multiplies and a divide (if the exponent is negative).
2440 bool isBeneficialToExpandPowI(int64_t Exponent, bool OptForSize) const {
2441 if (Exponent < 0)
2442 Exponent = -Exponent;
2443 uint64_t E = static_cast<uint64_t>(Exponent);
2444 return !OptForSize || (llvm::popcount(E) + Log2_64(E) < 7);
2445 }
2446
2447 //===--------------------------------------------------------------------===//
2448 // TargetLowering Configuration Methods - These methods should be invoked by
2449 // the derived class constructor to configure this object for the target.
2450 //
2451protected:
2452 /// Specify how the target extends the result of integer and floating point
2453 /// boolean values from i1 to a wider type. See getBooleanContents.
2455 BooleanContents = Ty;
2456 BooleanFloatContents = Ty;
2457 }
2458
2459 /// Specify how the target extends the result of integer and floating point
2460 /// boolean values from i1 to a wider type. See getBooleanContents.
2462 BooleanContents = IntTy;
2463 BooleanFloatContents = FloatTy;
2464 }
2465
2466 /// Specify how the target extends the result of a vector boolean value from a
2467 /// vector of i1 to a wider type. See getBooleanContents.
2469 BooleanVectorContents = Ty;
2470 }
2471
2472 /// Specify the target scheduling preference.
2474 SchedPreferenceInfo = Pref;
2475 }
2476
2477 /// Indicate the minimum number of blocks to generate jump tables.
2478 void setMinimumJumpTableEntries(unsigned Val);
2479
2480 /// Indicate the maximum number of entries in jump tables.
2481 /// Set to zero to generate unlimited jump tables.
2482 void setMaximumJumpTableSize(unsigned);
2483
2484 /// If set to a physical register, this specifies the register that
2485 /// llvm.savestack/llvm.restorestack should save and restore.
2487 StackPointerRegisterToSaveRestore = R;
2488 }
2489
2490 /// Tells the code generator that the target has multiple (allocatable)
2491 /// condition registers that can be used to store the results of comparisons
2492 /// for use by selects and conditional branches. With multiple condition
2493 /// registers, the code generator will not aggressively sink comparisons into
2494 /// the blocks of their users.
2495 void setHasMultipleConditionRegisters(bool hasManyRegs = true) {
2496 HasMultipleConditionRegisters = hasManyRegs;
2497 }
2498
2499 /// Tells the code generator that the target has BitExtract instructions.
2500 /// The code generator will aggressively sink "shift"s into the blocks of
2501 /// their users if the users will generate "and" instructions which can be
2502 /// combined with "shift" to BitExtract instructions.
2503 void setHasExtractBitsInsn(bool hasExtractInsn = true) {
2504 HasExtractBitsInsn = hasExtractInsn;
2505 }
2506
2507 /// Tells the code generator not to expand logic operations on comparison
2508 /// predicates into separate sequences that increase the amount of flow
2509 /// control.
2510 void setJumpIsExpensive(bool isExpensive = true);
2511
2512 /// Tells the code generator which bitwidths to bypass.
2513 void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth) {
2514 BypassSlowDivWidths[SlowBitWidth] = FastBitWidth;
2515 }
2516
2517 /// Add the specified register class as an available regclass for the
2518 /// specified value type. This indicates the selector can handle values of
2519 /// that class natively.
2521 assert((unsigned)VT.SimpleTy < std::size(RegClassForVT));
2522 RegClassForVT[VT.SimpleTy] = RC;
2523 }
2524
2525 /// Return the largest legal super-reg register class of the register class
2526 /// for the specified type and its associated "cost".
2527 virtual std::pair<const TargetRegisterClass *, uint8_t>
2529
2530 /// Once all of the register classes are added, this allows us to compute
2531 /// derived properties we expose.
2533
2534 /// Indicate that the specified operation does not work with the specified
2535 /// type and indicate what to do about it. Note that VT may refer to either
2536 /// the type of a result or that of an operand of Op.
2537 void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action) {
2538 assert(Op < std::size(OpActions[0]) && "Table isn't big enough!");
2539 OpActions[(unsigned)VT.SimpleTy][Op] = Action;
2540 }
2542 LegalizeAction Action) {
2543 for (auto Op : Ops)
2544 setOperationAction(Op, VT, Action);
2545 }
2547 LegalizeAction Action) {
2548 for (auto VT : VTs)
2549 setOperationAction(Ops, VT, Action);
2550 }
2551
2552 /// Indicate that the specified load with extension does not work with the
2553 /// specified type and indicate what to do about it.
2554 void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
2555 LegalizeAction Action) {
2556 assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
2557 MemVT.isValid() && "Table isn't big enough!");
2558 assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2559 unsigned Shift = 4 * ExtType;
2560 LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] &= ~((uint16_t)0xF << Shift);
2561 LoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] |= (uint16_t)Action << Shift;
2562 }
2563 void setLoadExtAction(ArrayRef<unsigned> ExtTypes, MVT ValVT, MVT MemVT,
2564 LegalizeAction Action) {
2565 for (auto ExtType : ExtTypes)
2566 setLoadExtAction(ExtType, ValVT, MemVT, Action);
2567 }
2569 ArrayRef<MVT> MemVTs, LegalizeAction Action) {
2570 for (auto MemVT : MemVTs)
2571 setLoadExtAction(ExtTypes, ValVT, MemVT, Action);
2572 }
2573
2574 /// Let target indicate that an extending atomic load of the specified type
2575 /// is legal.
2576 void setAtomicLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT,
2577 LegalizeAction Action) {
2578 assert(ExtType < ISD::LAST_LOADEXT_TYPE && ValVT.isValid() &&
2579 MemVT.isValid() && "Table isn't big enough!");
2580 assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2581 unsigned Shift = 4 * ExtType;
2582 AtomicLoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] &=
2583 ~((uint16_t)0xF << Shift);
2584 AtomicLoadExtActions[ValVT.SimpleTy][MemVT.SimpleTy] |=
2585 ((uint16_t)Action << Shift);
2586 }
2588 LegalizeAction Action) {
2589 for (auto ExtType : ExtTypes)
2590 setAtomicLoadExtAction(ExtType, ValVT, MemVT, Action);
2591 }
2593 ArrayRef<MVT> MemVTs, LegalizeAction Action) {
2594 for (auto MemVT : MemVTs)
2595 setAtomicLoadExtAction(ExtTypes, ValVT, MemVT, Action);
2596 }
2597
2598 /// Indicate that the specified truncating store does not work with the
2599 /// specified type and indicate what to do about it.
2600 void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action) {
2601 assert(ValVT.isValid() && MemVT.isValid() && "Table isn't big enough!");
2602 TruncStoreActions[(unsigned)ValVT.SimpleTy][MemVT.SimpleTy] = Action;
2603 }
2604
2605 /// Indicate that the specified indexed load does or does not work with the
2606 /// specified type and indicate what to do abort it.
2607 ///
2608 /// NOTE: All indexed mode loads are initialized to Expand in
2609 /// TargetLowering.cpp
2611 LegalizeAction Action) {
2612 for (auto IdxMode : IdxModes)
2613 setIndexedModeAction(IdxMode, VT, IMAB_Load, Action);
2614 }
2615
2617 LegalizeAction Action) {
2618 for (auto VT : VTs)
2619 setIndexedLoadAction(IdxModes, VT, Action);
2620 }
2621
2622 /// Indicate that the specified indexed store does or does not work with the
2623 /// specified type and indicate what to do about it.
2624 ///
2625 /// NOTE: All indexed mode stores are initialized to Expand in
2626 /// TargetLowering.cpp
2628 LegalizeAction Action) {
2629 for (auto IdxMode : IdxModes)
2630 setIndexedModeAction(IdxMode, VT, IMAB_Store, Action);
2631 }
2632
2634 LegalizeAction Action) {
2635 for (auto VT : VTs)
2636 setIndexedStoreAction(IdxModes, VT, Action);
2637 }
2638
2639 /// Indicate that the specified indexed masked load does or does not work with
2640 /// the specified type and indicate what to do about it.
2641 ///
2642 /// NOTE: All indexed mode masked loads are initialized to Expand in
2643 /// TargetLowering.cpp
2644 void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT,
2645 LegalizeAction Action) {
2646 setIndexedModeAction(IdxMode, VT, IMAB_MaskedLoad, Action);
2647 }
2648
2649 /// Indicate that the specified indexed masked store does or does not work
2650 /// with the specified type and indicate what to do about it.
2651 ///
2652 /// NOTE: All indexed mode masked stores are initialized to Expand in
2653 /// TargetLowering.cpp
2654 void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT,
2655 LegalizeAction Action) {
2656 setIndexedModeAction(IdxMode, VT, IMAB_MaskedStore, Action);
2657 }
2658
2659 /// Indicate that the specified condition code is or isn't supported on the
2660 /// target and indicate what to do about it.
2662 LegalizeAction Action) {
2663 for (auto CC : CCs) {
2664 assert(VT.isValid() && (unsigned)CC < std::size(CondCodeActions) &&
2665 "Table isn't big enough!");
2666 assert((unsigned)Action < 0x10 && "too many bits for bitfield array");
2667 /// The lower 3 bits of the SimpleTy index into Nth 4bit set from the
2668 /// 32-bit value and the upper 29 bits index into the second dimension of
2669 /// the array to select what 32-bit value to use.
2670 uint32_t Shift = 4 * (VT.SimpleTy & 0x7);
2671 CondCodeActions[CC][VT.SimpleTy >> 3] &= ~((uint32_t)0xF << Shift);
2672 CondCodeActions[CC][VT.SimpleTy >> 3] |= (uint32_t)Action << Shift;
2673 }
2674 }
2676 LegalizeAction Action) {
2677 for (auto VT : VTs)
2678 setCondCodeAction(CCs, VT, Action);
2679 }
2680
2681 /// If Opc/OrigVT is specified as being promoted, the promotion code defaults
2682 /// to trying a larger integer/fp until it can find one that works. If that
2683 /// default is insufficient, this method can be used by the target to override
2684 /// the default.
2685 void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
2686 PromoteToType[std::make_pair(Opc, OrigVT.SimpleTy)] = DestVT.SimpleTy;
2687 }
2688
2689 /// Convenience method to set an operation to Promote and specify the type
2690 /// in a single call.
2691 void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT) {
2692 setOperationAction(Opc, OrigVT, Promote);
2693 AddPromotedToType(Opc, OrigVT, DestVT);
2694 }
2696 MVT DestVT) {
2697 for (auto Op : Ops) {
2698 setOperationAction(Op, OrigVT, Promote);
2699 AddPromotedToType(Op, OrigVT, DestVT);
2700 }
2701 }
2702
2703 /// Targets should invoke this method for each target independent node that
2704 /// they want to provide a custom DAG combiner for by implementing the
2705 /// PerformDAGCombine virtual method.
2707 for (auto NT : NTs) {
2708 assert(unsigned(NT >> 3) < std::size(TargetDAGCombineArray));
2709 TargetDAGCombineArray[NT >> 3] |= 1 << (NT & 7);
2710 }
2711 }
2712
2713 /// Set the target's minimum function alignment.
2715 MinFunctionAlignment = Alignment;
2716 }
2717
2718 /// Set the target's preferred function alignment. This should be set if
2719 /// there is a performance benefit to higher-than-minimum alignment
2721 PrefFunctionAlignment = Alignment;
2722 }
2723
2724 /// Set the target's preferred loop alignment. Default alignment is one, it
2725 /// means the target does not care about loop alignment. The target may also
2726 /// override getPrefLoopAlignment to provide per-loop values.
2727 void setPrefLoopAlignment(Align Alignment) { PrefLoopAlignment = Alignment; }
2728 void setMaxBytesForAlignment(unsigned MaxBytes) {
2729 MaxBytesForAlignment = MaxBytes;
2730 }
2731
2732 /// Set the minimum stack alignment of an argument.
2734 MinStackArgumentAlignment = Alignment;
2735 }
2736
2737 /// Set the maximum atomic operation size supported by the
2738 /// backend. Atomic operations greater than this size (as well as
2739 /// ones that are not naturally aligned), will be expanded by
2740 /// AtomicExpandPass into an __atomic_* library call.
2741 void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits) {
2742 MaxAtomicSizeInBitsSupported = SizeInBits;
2743 }
2744
2745 /// Set the size in bits of the maximum div/rem the backend supports.
2746 /// Larger operations will be expanded by ExpandLargeDivRem.
2747 void setMaxDivRemBitWidthSupported(unsigned SizeInBits) {
2748 MaxDivRemBitWidthSupported = SizeInBits;
2749 }
2750
2751 /// Set the size in bits of the maximum fp convert the backend supports.
2752 /// Larger operations will be expanded by ExpandLargeFPConvert.
2753 void setMaxLargeFPConvertBitWidthSupported(unsigned SizeInBits) {
2754 MaxLargeFPConvertBitWidthSupported = SizeInBits;
2755 }
2756
2757 /// Sets the minimum cmpxchg or ll/sc size supported by the backend.
2758 void setMinCmpXchgSizeInBits(unsigned SizeInBits) {
2759 MinCmpXchgSizeInBits = SizeInBits;
2760 }
2761
2762 /// Sets whether unaligned atomic operations are supported.
2763 void setSupportsUnalignedAtomics(bool UnalignedSupported) {
2764 SupportsUnalignedAtomics = UnalignedSupported;
2765 }
2766
2767public:
2768 //===--------------------------------------------------------------------===//
2769 // Addressing mode description hooks (used by LSR etc).
2770 //
2771
2772 /// CodeGenPrepare sinks address calculations into the same BB as Load/Store
2773 /// instructions reading the address. This allows as much computation as
2774 /// possible to be done in the address mode for that operand. This hook lets
2775 /// targets also pass back when this should be done on intrinsics which
2776 /// load/store.
2778 SmallVectorImpl<Value*> &/*Ops*/,
2779 Type *&/*AccessTy*/) const {
2780 return false;
2781 }
2782
2783 /// This represents an addressing mode of:
2784 /// BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*vscale
2785 /// If BaseGV is null, there is no BaseGV.
2786 /// If BaseOffs is zero, there is no base offset.
2787 /// If HasBaseReg is false, there is no base register.
2788 /// If Scale is zero, there is no ScaleReg. Scale of 1 indicates a reg with
2789 /// no scale.
2790 /// If ScalableOffset is zero, there is no scalable offset.
2791 struct AddrMode {
2793 int64_t BaseOffs = 0;
2794 bool HasBaseReg = false;
2795 int64_t Scale = 0;
2796 int64_t ScalableOffset = 0;
2797 AddrMode() = default;
2798 };
2799
2800 /// Return true if the addressing mode represented by AM is legal for this
2801 /// target, for a load/store of the specified type.
2802 ///
2803 /// The type may be VoidTy, in which case only return true if the addressing
2804 /// mode is legal for a load/store of any legal type. TODO: Handle
2805 /// pre/postinc as well.
2806 ///
2807 /// If the address space cannot be determined, it will be -1.
2808 ///
2809 /// TODO: Remove default argument
2810 virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM,
2811 Type *Ty, unsigned AddrSpace,
2812 Instruction *I = nullptr) const;
2813
2814 /// Returns true if the targets addressing mode can target thread local
2815 /// storage (TLS).
2816 virtual bool addressingModeSupportsTLS(const GlobalValue &) const {
2817 return false;
2818 }
2819
2820 /// Return the prefered common base offset.
2821 virtual int64_t getPreferredLargeGEPBaseOffset(int64_t MinOffset,
2822 int64_t MaxOffset) const {
2823 return 0;
2824 }
2825
2826 /// Return true if the specified immediate is legal icmp immediate, that is
2827 /// the target has icmp instructions which can compare a register against the
2828 /// immediate without having to materialize the immediate into a register.
2829 virtual bool isLegalICmpImmediate(int64_t) const {
2830 return true;
2831 }
2832
2833 /// Return true if the specified immediate is legal add immediate, that is the
2834 /// target has add instructions which can add a register with the immediate
2835 /// without having to materialize the immediate into a register.
2836 virtual bool isLegalAddImmediate(int64_t) const {
2837 return true;
2838 }
2839
2840 /// Return true if adding the specified scalable immediate is legal, that is
2841 /// the target has add instructions which can add a register with the
2842 /// immediate (multiplied by vscale) without having to materialize the
2843 /// immediate into a register.
2844 virtual bool isLegalAddScalableImmediate(int64_t) const { return false; }
2845
2846 /// Return true if the specified immediate is legal for the value input of a
2847 /// store instruction.
2848 virtual bool isLegalStoreImmediate(int64_t Value) const {
2849 // Default implementation assumes that at least 0 works since it is likely
2850 // that a zero register exists or a zero immediate is allowed.
2851 return Value == 0;
2852 }
2853
2854 /// Return true if it's significantly cheaper to shift a vector by a uniform
2855 /// scalar than by an amount which will vary across each lane. On x86 before
2856 /// AVX2 for example, there is a "psllw" instruction for the former case, but
2857 /// no simple instruction for a general "a << b" operation on vectors.
2858 /// This should also apply to lowering for vector funnel shifts (rotates).
2859 virtual bool isVectorShiftByScalarCheap(Type *Ty) const {
2860 return false;
2861 }
2862
2863 /// Given a shuffle vector SVI representing a vector splat, return a new
2864 /// scalar type of size equal to SVI's scalar type if the new type is more
2865 /// profitable. Returns nullptr otherwise. For example under MVE float splats
2866 /// are converted to integer to prevent the need to move from SPR to GPR
2867 /// registers.
2869 return nullptr;
2870 }
2871
2872 /// Given a set in interconnected phis of type 'From' that are loaded/stored
2873 /// or bitcast to type 'To', return true if the set should be converted to
2874 /// 'To'.
2875 virtual bool shouldConvertPhiType(Type *From, Type *To) const {
2876 return (From->isIntegerTy() || From->isFloatingPointTy()) &&
2877 (To->isIntegerTy() || To->isFloatingPointTy());
2878 }
2879
2880 /// Returns true if the opcode is a commutative binary operation.
2881 virtual bool isCommutativeBinOp(unsigned Opcode) const {
2882 // FIXME: This should get its info from the td file.
2883 switch (Opcode) {
2884 case ISD::ADD:
2885 case ISD::SMIN:
2886 case ISD::SMAX:
2887 case ISD::UMIN:
2888 case ISD::UMAX:
2889 case ISD::MUL:
2890 case ISD::MULHU:
2891 case ISD::MULHS:
2892 case ISD::SMUL_LOHI:
2893 case ISD::UMUL_LOHI:
2894 case ISD::FADD:
2895 case ISD::FMUL:
2896 case ISD::AND:
2897 case ISD::OR:
2898 case ISD::XOR:
2899 case ISD::SADDO:
2900 case ISD::UADDO:
2901 case ISD::ADDC:
2902 case ISD::ADDE:
2903 case ISD::SADDSAT:
2904 case ISD::UADDSAT:
2905 case ISD::FMINNUM:
2906 case ISD::FMAXNUM:
2907 case ISD::FMINNUM_IEEE:
2908 case ISD::FMAXNUM_IEEE:
2909 case ISD::FMINIMUM:
2910 case ISD::FMAXIMUM:
2911 case ISD::AVGFLOORS:
2912 case ISD::AVGFLOORU:
2913 case ISD::AVGCEILS:
2914 case ISD::AVGCEILU:
2915 case ISD::ABDS:
2916 case ISD::ABDU:
2917 return true;
2918 default: return false;
2919 }
2920 }
2921
2922 /// Return true if the node is a math/logic binary operator.
2923 virtual bool isBinOp(unsigned Opcode) const {
2924 // A commutative binop must be a binop.
2925 if (isCommutativeBinOp(Opcode))
2926 return true;
2927 // These are non-commutative binops.
2928 switch (Opcode) {
2929 case ISD::SUB:
2930 case ISD::SHL:
2931 case ISD::SRL:
2932 case ISD::SRA:
2933 case ISD::ROTL:
2934 case ISD::ROTR:
2935 case ISD::SDIV:
2936 case ISD::UDIV:
2937 case ISD::SREM:
2938 case ISD::UREM:
2939 case ISD::SSUBSAT:
2940 case ISD::USUBSAT:
2941 case ISD::FSUB:
2942 case ISD::FDIV:
2943 case ISD::FREM:
2944 return true;
2945 default:
2946 return false;
2947 }
2948 }
2949
2950 /// Return true if it's free to truncate a value of type FromTy to type
2951 /// ToTy. e.g. On x86 it's free to truncate a i32 value in register EAX to i16
2952 /// by referencing its sub-register AX.
2953 /// Targets must return false when FromTy <= ToTy.
2954 virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const {
2955 return false;
2956 }
2957
2958 /// Return true if a truncation from FromTy to ToTy is permitted when deciding
2959 /// whether a call is in tail position. Typically this means that both results
2960 /// would be assigned to the same register or stack slot, but it could mean
2961 /// the target performs adequate checks of its own before proceeding with the
2962 /// tail call. Targets must return false when FromTy <= ToTy.
2963 virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const {
2964 return false;
2965 }
2966
2967 virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const { return false; }
2968 virtual bool isTruncateFree(LLT FromTy, LLT ToTy, const DataLayout &DL,
2969 LLVMContext &Ctx) const {
2970 return isTruncateFree(getApproximateEVTForLLT(FromTy, DL, Ctx),
2971 getApproximateEVTForLLT(ToTy, DL, Ctx));
2972 }
2973
2974 /// Return true if truncating the specific node Val to type VT2 is free.
2975 virtual bool isTruncateFree(SDValue Val, EVT VT2) const {
2976 // Fallback to type matching.
2977 return isTruncateFree(Val.getValueType(), VT2);
2978 }
2979
2980 virtual bool isProfitableToHoist(Instruction *I) const { return true; }
2981
2982 /// Return true if the extension represented by \p I is free.
2983 /// Unlikely the is[Z|FP]ExtFree family which is based on types,
2984 /// this method can use the context provided by \p I to decide
2985 /// whether or not \p I is free.
2986 /// This method extends the behavior of the is[Z|FP]ExtFree family.
2987 /// In other words, if is[Z|FP]Free returns true, then this method
2988 /// returns true as well. The converse is not true.
2989 /// The target can perform the adequate checks by overriding isExtFreeImpl.
2990 /// \pre \p I must be a sign, zero, or fp extension.
2991 bool isExtFree(const Instruction *I) const {
2992 switch (I->getOpcode()) {
2993 case Instruction::FPExt:
2994 if (isFPExtFree(EVT::getEVT(I->getType()),
2995 EVT::getEVT(I->getOperand(0)->getType())))
2996 return true;
2997 break;
2998 case Instruction::ZExt:
2999 if (isZExtFree(I->getOperand(0)->getType(), I->getType()))
3000 return true;
3001 break;
3002 case Instruction::SExt:
3003 break;
3004 default:
3005 llvm_unreachable("Instruction is not an extension");
3006 }
3007 return isExtFreeImpl(I);
3008 }
3009
3010 /// Return true if \p Load and \p Ext can form an ExtLoad.
3011 /// For example, in AArch64
3012 /// %L = load i8, i8* %ptr
3013 /// %E = zext i8 %L to i32
3014 /// can be lowered into one load instruction
3015 /// ldrb w0, [x0]
3016 bool isExtLoad(const LoadInst *Load, const Instruction *Ext,
3017 const DataLayout &DL) const {
3018 EVT VT = getValueType(DL, Ext->getType());
3019 EVT LoadVT = getValueType(DL, Load->getType());
3020
3021 // If the load has other users and the truncate is not free, the ext
3022 // probably isn't free.
3023 if (!Load->hasOneUse() && (isTypeLegal(LoadVT) || !isTypeLegal(VT)) &&
3024 !isTruncateFree(Ext->getType(), Load->getType()))
3025 return false;
3026
3027 // Check whether the target supports casts folded into loads.
3028 unsigned LType;
3029 if (isa<ZExtInst>(Ext))
3030 LType = ISD::ZEXTLOAD;
3031 else {
3032 assert(isa<SExtInst>(Ext) && "Unexpected ext type!");
3033 LType = ISD::SEXTLOAD;
3034 }
3035
3036 return isLoadExtLegal(LType, VT, LoadVT);
3037 }
3038
3039 /// Return true if any actual instruction that defines a value of type FromTy
3040 /// implicitly zero-extends the value to ToTy in the result register.
3041 ///
3042 /// The function should return true when it is likely that the truncate can
3043 /// be freely folded with an instruction defining a value of FromTy. If
3044 /// the defining instruction is unknown (because you're looking at a
3045 /// function argument, PHI, etc.) then the target may require an
3046 /// explicit truncate, which is not necessarily free, but this function
3047 /// does not deal with those cases.
3048 /// Targets must return false when FromTy >= ToTy.
3049 virtual bool isZExtFree(Type *FromTy, Type *ToTy) const {
3050 return false;
3051 }
3052
3053 virtual bool isZExtFree(EVT FromTy, EVT ToTy) const { return false; }
3054 virtual bool isZExtFree(LLT FromTy, LLT ToTy, const DataLayout &DL,
3055 LLVMContext &Ctx) const {
3056 return isZExtFree(getApproximateEVTForLLT(FromTy, DL, Ctx),
3057 getApproximateEVTForLLT(ToTy, DL, Ctx));
3058 }
3059
3060 /// Return true if zero-extending the specific node Val to type VT2 is free
3061 /// (either because it's implicitly zero-extended such as ARM ldrb / ldrh or
3062 /// because it's folded such as X86 zero-extending loads).
3063 virtual bool isZExtFree(SDValue Val, EVT VT2) const {
3064 return isZExtFree(Val.getValueType(), VT2);
3065 }
3066
3067 /// Return true if sign-extension from FromTy to ToTy is cheaper than
3068 /// zero-extension.
3069 virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const {
3070 return false;
3071 }
3072
3073 /// Return true if this constant should be sign extended when promoting to
3074 /// a larger type.
3075 virtual bool signExtendConstant(const ConstantInt *C) const { return false; }
3076
3077 /// Return true if sinking I's operands to the same basic block as I is
3078 /// profitable, e.g. because the operands can be folded into a target
3079 /// instruction during instruction selection. After calling the function
3080 /// \p Ops contains the Uses to sink ordered by dominance (dominating users
3081 /// come first).
3083 SmallVectorImpl<Use *> &Ops) const {
3084 return false;
3085 }
3086
3087 /// Try to optimize extending or truncating conversion instructions (like
3088 /// zext, trunc, fptoui, uitofp) for the target.
3089 virtual bool
3091 const TargetTransformInfo &TTI) const {
3092 return false;
3093 }
3094
3095 /// Return true if the target supplies and combines to a paired load
3096 /// two loaded values of type LoadedType next to each other in memory.
3097 /// RequiredAlignment gives the minimal alignment constraints that must be met
3098 /// to be able to select this paired load.
3099 ///
3100 /// This information is *not* used to generate actual paired loads, but it is
3101 /// used to generate a sequence of loads that is easier to combine into a
3102 /// paired load.
3103 /// For instance, something like this:
3104 /// a = load i64* addr
3105 /// b = trunc i64 a to i32
3106 /// c = lshr i64 a, 32
3107 /// d = trunc i64 c to i32
3108 /// will be optimized into:
3109 /// b = load i32* addr1
3110 /// d = load i32* addr2
3111 /// Where addr1 = addr2 +/- sizeof(i32).
3112 ///
3113 /// In other words, unless the target performs a post-isel load combining,
3114 /// this information should not be provided because it will generate more
3115 /// loads.
3116 virtual bool hasPairedLoad(EVT /*LoadedType*/,
3117 Align & /*RequiredAlignment*/) const {
3118 return false;
3119 }
3120
3121 /// Return true if the target has a vector blend instruction.
3122 virtual bool hasVectorBlend() const { return false; }
3123
3124 /// Get the maximum supported factor for interleaved memory accesses.
3125 /// Default to be the minimum interleave factor: 2.
3126 virtual unsigned getMaxSupportedInterleaveFactor() const { return 2; }
3127
3128 /// Lower an interleaved load to target specific intrinsics. Return
3129 /// true on success.
3130 ///
3131 /// \p LI is the vector load instruction.
3132 /// \p Shuffles is the shufflevector list to DE-interleave the loaded vector.
3133 /// \p Indices is the corresponding indices for each shufflevector.
3134 /// \p Factor is the interleave factor.
3137 ArrayRef<unsigned> Indices,
3138 unsigned Factor) const {
3139 return false;
3140 }
3141
3142 /// Lower an interleaved store to target specific intrinsics. Return
3143 /// true on success.
3144 ///
3145 /// \p SI is the vector store instruction.
3146 /// \p SVI is the shufflevector to RE-interleave the stored vector.
3147 /// \p Factor is the interleave factor.
3149 unsigned Factor) const {
3150 return false;
3151 }
3152
3153 /// Lower a deinterleave intrinsic to a target specific load intrinsic.
3154 /// Return true on success. Currently only supports
3155 /// llvm.vector.deinterleave2
3156 ///
3157 /// \p DI is the deinterleave intrinsic.
3158 /// \p LI is the accompanying load instruction
3160 LoadInst *LI) const {
3161 return false;
3162 }
3163
3164 /// Lower an interleave intrinsic to a target specific store intrinsic.
3165 /// Return true on success. Currently only supports
3166 /// llvm.vector.interleave2
3167 ///
3168 /// \p II is the interleave intrinsic.
3169 /// \p SI is the accompanying store instruction
3171 StoreInst *SI) const {
3172 return false;
3173 }
3174
3175 /// Return true if an fpext operation is free (for instance, because
3176 /// single-precision floating-point numbers are implicitly extended to
3177 /// double-precision).
3178 virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const {
3179 assert(SrcVT.isFloatingPoint() && DestVT.isFloatingPoint() &&
3180 "invalid fpext types");
3181 return false;
3182 }
3183
3184 /// Return true if an fpext operation input to an \p Opcode operation is free
3185 /// (for instance, because half-precision floating-point numbers are
3186 /// implicitly extended to float-precision) for an FMA instruction.
3187 virtual bool isFPExtFoldable(const MachineInstr &MI, unsigned Opcode,
3188 LLT DestTy, LLT SrcTy) const {
3189 return false;
3190 }
3191
3192 /// Return true if an fpext operation input to an \p Opcode operation is free
3193 /// (for instance, because half-precision floating-point numbers are
3194 /// implicitly extended to float-precision) for an FMA instruction.
3195 virtual bool isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode,
3196 EVT DestVT, EVT SrcVT) const {
3197 assert(DestVT.isFloatingPoint() && SrcVT.isFloatingPoint() &&
3198 "invalid fpext types");
3199 return isFPExtFree(DestVT, SrcVT);
3200 }
3201
3202 /// Return true if folding a vector load into ExtVal (a sign, zero, or any
3203 /// extend node) is profitable.
3204 virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const { return false; }
3205
3206 /// Return true if an fneg operation is free to the point where it is never
3207 /// worthwhile to replace it with a bitwise operation.
3208 virtual bool isFNegFree(EVT VT) const {
3209 assert(VT.isFloatingPoint());
3210 return false;
3211 }
3212
3213 /// Return true if an fabs operation is free to the point where it is never
3214 /// worthwhile to replace it with a bitwise operation.
3215 virtual bool isFAbsFree(EVT VT) const {
3216 assert(VT.isFloatingPoint());
3217 return false;
3218 }
3219
3220 /// Return true if an FMA operation is faster than a pair of fmul and fadd
3221 /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
3222 /// returns true, otherwise fmuladd is expanded to fmul + fadd.
3223 ///
3224 /// NOTE: This may be called before legalization on types for which FMAs are
3225 /// not legal, but should return true if those types will eventually legalize
3226 /// to types that support FMAs. After legalization, it will only be called on
3227 /// types that support FMAs (via Legal or Custom actions)
3229 EVT) const {
3230 return false;
3231 }
3232
3233 /// Return true if an FMA operation is faster than a pair of fmul and fadd
3234 /// instructions. fmuladd intrinsics will be expanded to FMAs when this method
3235 /// returns true, otherwise fmuladd is expanded to fmul + fadd.
3236 ///
3237 /// NOTE: This may be called before legalization on types for which FMAs are
3238 /// not legal, but should return true if those types will eventually legalize
3239 /// to types that support FMAs. After legalization, it will only be called on
3240 /// types that support FMAs (via Legal or Custom actions)
3242 LLT) const {
3243 return false;
3244 }
3245
3246 /// IR version
3247 virtual bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *) const {
3248 return false;
3249 }
3250
3251 /// Returns true if \p MI can be combined with another instruction to
3252 /// form TargetOpcode::G_FMAD. \p N may be an TargetOpcode::G_FADD,
3253 /// TargetOpcode::G_FSUB, or an TargetOpcode::G_FMUL which will be
3254 /// distributed into an fadd/fsub.
3255 virtual bool isFMADLegal(const MachineInstr &MI, LLT Ty) const {
3256 assert((MI.getOpcode() == TargetOpcode::G_FADD ||
3257 MI.getOpcode() == TargetOpcode::G_FSUB ||
3258 MI.getOpcode() == TargetOpcode::G_FMUL) &&
3259 "unexpected node in FMAD forming combine");
3260 switch (Ty.getScalarSizeInBits()) {
3261 case 16:
3262 return isOperationLegal(TargetOpcode::G_FMAD, MVT::f16);
3263 case 32:
3264 return isOperationLegal(TargetOpcode::G_FMAD, MVT::f32);
3265 case 64:
3266 return isOperationLegal(TargetOpcode::G_FMAD, MVT::f64);
3267 default:
3268 break;
3269 }
3270
3271 return false;
3272 }
3273
3274 /// Returns true if be combined with to form an ISD::FMAD. \p N may be an
3275 /// ISD::FADD, ISD::FSUB, or an ISD::FMUL which will be distributed into an
3276 /// fadd/fsub.
3277 virtual bool isFMADLegal(const SelectionDAG &DAG, const SDNode *N) const {
3278 assert((N->getOpcode() == ISD::FADD || N->getOpcode() == ISD::FSUB ||
3279 N->getOpcode() == ISD::FMUL) &&
3280 "unexpected node in FMAD forming combine");
3281 return isOperationLegal(ISD::FMAD, N->getValueType(0));
3282 }
3283
3284 // Return true when the decision to generate FMA's (or FMS, FMLA etc) rather
3285 // than FMUL and ADD is delegated to the machine combiner.
3287 CodeGenOptLevel OptLevel) const {
3288 return false;
3289 }
3290
3291 /// Return true if it's profitable to narrow operations of type SrcVT to
3292 /// DestVT. e.g. on x86, it's profitable to narrow from i32 to i8 but not from
3293 /// i32 to i16.
3294 virtual bool isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
3295 return false;
3296 }
3297
3298 /// Return true if pulling a binary operation into a select with an identity
3299 /// constant is profitable. This is the inverse of an IR transform.
3300 /// Example: X + (Cond ? Y : 0) --> Cond ? (X + Y) : X
3301 virtual bool shouldFoldSelectWithIdentityConstant(unsigned BinOpcode,
3302 EVT VT) const {
3303 return false;
3304 }
3305
3306 /// Return true if it is beneficial to convert a load of a constant to
3307 /// just the constant itself.
3308 /// On some targets it might be more efficient to use a combination of
3309 /// arithmetic instructions to materialize the constant instead of loading it
3310 /// from a constant pool.
3312 Type *Ty) const {
3313 return false;
3314 }
3315
3316 /// Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type
3317 /// from this source type with this index. This is needed because
3318 /// EXTRACT_SUBVECTOR usually has custom lowering that depends on the index of
3319 /// the first element, and only the target knows which lowering is cheap.
3320 virtual bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT,
3321 unsigned Index) const {
3322 return false;
3323 }
3324
3325 /// Try to convert an extract element of a vector binary operation into an
3326 /// extract element followed by a scalar operation.
3327 virtual bool shouldScalarizeBinop(SDValue VecOp) const {
3328 return false;
3329 }
3330
3331 /// Return true if extraction of a scalar element from the given vector type
3332 /// at the given index is cheap. For example, if scalar operations occur on
3333 /// the same register file as vector operations, then an extract element may
3334 /// be a sub-register rename rather than an actual instruction.
3335 virtual bool isExtractVecEltCheap(EVT VT, unsigned Index) const {
3336 return false;
3337 }
3338
3339 /// Try to convert math with an overflow comparison into the corresponding DAG
3340 /// node operation. Targets may want to override this independently of whether
3341 /// the operation is legal/custom for the given type because it may obscure
3342 /// matching of other patterns.
3343 virtual bool shouldFormOverflowOp(unsigned Opcode, EVT VT,
3344 bool MathUsed) const {
3345 // TODO: The default logic is inherited from code in CodeGenPrepare.
3346 // The opcode should not make a difference by default?
3347 if (Opcode != ISD::UADDO)
3348 return false;
3349
3350 // Allow the transform as long as we have an integer type that is not
3351 // obviously illegal and unsupported and if the math result is used
3352 // besides the overflow check. On some targets (e.g. SPARC), it is
3353 // not profitable to form on overflow op if the math result has no
3354 // concrete users.
3355 if (VT.isVector())
3356 return false;
3357 return MathUsed && (VT.isSimple() || !isOperationExpand(Opcode, VT));
3358 }
3359
3360 // Return true if it is profitable to use a scalar input to a BUILD_VECTOR
3361 // even if the vector itself has multiple uses.
3362 virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const {
3363 return false;
3364 }
3365
3366 // Return true if CodeGenPrepare should consider splitting large offset of a
3367 // GEP to make the GEP fit into the addressing mode and can be sunk into the
3368 // same blocks of its users.
3369 virtual bool shouldConsiderGEPOffsetSplit() const { return false; }
3370
3371 /// Return true if creating a shift of the type by the given
3372 /// amount is not profitable.
3373 virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const {
3374 return false;
3375 }
3376
3377 // Should we fold (select_cc seteq (and x, y), 0, 0, A) -> (and (sra (shl x))
3378 // A) where y has a single bit set?
3380 const APInt &AndMask) const {
3381 unsigned ShCt = AndMask.getBitWidth() - 1;
3382 return !shouldAvoidTransformToShift(VT, ShCt);
3383 }
3384
3385 /// Does this target require the clearing of high-order bits in a register
3386 /// passed to the fp16 to fp conversion library function.
3387 virtual bool shouldKeepZExtForFP16Conv() const { return false; }
3388
3389 /// Should we generate fp_to_si_sat and fp_to_ui_sat from type FPVT to type VT
3390 /// from min(max(fptoi)) saturation patterns.
3391 virtual bool shouldConvertFpToSat(unsigned Op, EVT FPVT, EVT VT) const {
3392 return isOperationLegalOrCustom(Op, VT);
3393 }
3394
3395 /// Does this target support complex deinterleaving
3396 virtual bool isComplexDeinterleavingSupported() const { return false; }
3397
3398 /// Does this target support complex deinterleaving with the given operation
3399 /// and type
3402 return false;
3403 }
3404
3405 /// Create the IR node for the given complex deinterleaving operation.
3406 /// If one cannot be created using all the given inputs, nullptr should be
3407 /// returned.
3410 ComplexDeinterleavingRotation Rotation, Value *InputA, Value *InputB,
3411 Value *Accumulator = nullptr) const {
3412 return nullptr;
3413 }
3414
3415 //===--------------------------------------------------------------------===//
3416 // Runtime Library hooks
3417 //
3418
3419 /// Rename the default libcall routine name for the specified libcall.
3420 void setLibcallName(RTLIB::Libcall Call, const char *Name) {
3421 LibcallRoutineNames[Call] = Name;
3422 }
3424 for (auto Call : Calls)
3425 setLibcallName(Call, Name);
3426 }
3427
3428 /// Get the libcall routine name for the specified libcall.
3429 const char *getLibcallName(RTLIB::Libcall Call) const {
3430 return LibcallRoutineNames[Call];
3431 }
3432
3433 /// Override the default CondCode to be used to test the result of the
3434 /// comparison libcall against zero.
3436 CmpLibcallCCs[Call] = CC;
3437 }
3438
3439 /// Get the CondCode that's to be used to test the result of the comparison
3440 /// libcall against zero.
3442 return CmpLibcallCCs[Call];
3443 }
3444
3445 /// Set the CallingConv that should be used for the specified libcall.
3447 LibcallCallingConvs[Call] = CC;
3448 }
3449
3450 /// Get the CallingConv that should be used for the specified libcall.
3452 return LibcallCallingConvs[Call];
3453 }
3454
3455 /// Execute target specific actions to finalize target lowering.
3456 /// This is used to set extra flags in MachineFrameInformation and freezing
3457 /// the set of reserved registers.
3458 /// The default implementation just freezes the set of reserved registers.
3459 virtual void finalizeLowering(MachineFunction &MF) const;
3460
3461 //===----------------------------------------------------------------------===//
3462 // GlobalISel Hooks
3463 //===----------------------------------------------------------------------===//
3464 /// Check whether or not \p MI needs to be moved close to its uses.
3465 virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const;
3466
3467
3468private:
3469 const TargetMachine &TM;
3470
3471 /// Tells the code generator that the target has multiple (allocatable)
3472 /// condition registers that can be used to store the results of comparisons
3473 /// for use by selects and conditional branches. With multiple condition
3474 /// registers, the code generator will not aggressively sink comparisons into
3475 /// the blocks of their users.
3476 bool HasMultipleConditionRegisters;
3477
3478 /// Tells the code generator that the target has BitExtract instructions.
3479 /// The code generator will aggressively sink "shift"s into the blocks of
3480 /// their users if the users will generate "and" instructions which can be
3481 /// combined with "shift" to BitExtract instructions.
3482 bool HasExtractBitsInsn;
3483
3484 /// Tells the code generator to bypass slow divide or remainder
3485 /// instructions. For example, BypassSlowDivWidths[32,8] tells the code
3486 /// generator to bypass 32-bit integer div/rem with an 8-bit unsigned integer
3487 /// div/rem when the operands are positive and less than 256.
3488 DenseMap <unsigned int, unsigned int> BypassSlowDivWidths;
3489
3490 /// Tells the code generator that it shouldn't generate extra flow control
3491 /// instructions and should attempt to combine flow control instructions via
3492 /// predication.
3493 bool JumpIsExpensive;
3494
3495 /// Information about the contents of the high-bits in boolean values held in
3496 /// a type wider than i1. See getBooleanContents.
3497 BooleanContent BooleanContents;
3498
3499 /// Information about the contents of the high-bits in boolean values held in
3500 /// a type wider than i1. See getBooleanContents.
3501 BooleanContent BooleanFloatContents;
3502
3503 /// Information about the contents of the high-bits in boolean vector values
3504 /// when the element type is wider than i1. See getBooleanContents.
3505 BooleanContent BooleanVectorContents;
3506
3507 /// The target scheduling preference: shortest possible total cycles or lowest
3508 /// register usage.
3509 Sched::Preference SchedPreferenceInfo;
3510
3511 /// The minimum alignment that any argument on the stack needs to have.
3512 Align MinStackArgumentAlignment;
3513
3514 /// The minimum function alignment (used when optimizing for size, and to
3515 /// prevent explicitly provided alignment from leading to incorrect code).
3516 Align MinFunctionAlignment;
3517
3518 /// The preferred function alignment (used when alignment unspecified and
3519 /// optimizing for speed).
3520 Align PrefFunctionAlignment;
3521
3522 /// The preferred loop alignment (in log2 bot in bytes).
3523 Align PrefLoopAlignment;
3524 /// The maximum amount of bytes permitted to be emitted for alignment.
3525 unsigned MaxBytesForAlignment;
3526
3527 /// Size in bits of the maximum atomics size the backend supports.
3528 /// Accesses larger than this will be expanded by AtomicExpandPass.
3529 unsigned MaxAtomicSizeInBitsSupported;
3530
3531 /// Size in bits of the maximum div/rem size the backend supports.
3532 /// Larger operations will be expanded by ExpandLargeDivRem.
3533 unsigned MaxDivRemBitWidthSupported;
3534
3535 /// Size in bits of the maximum larget fp convert size the backend
3536 /// supports. Larger operations will be expanded by ExpandLargeFPConvert.
3537 unsigned MaxLargeFPConvertBitWidthSupported;
3538
3539 /// Size in bits of the minimum cmpxchg or ll/sc operation the
3540 /// backend supports.
3541 unsigned MinCmpXchgSizeInBits;
3542
3543 /// This indicates if the target supports unaligned atomic operations.
3544 bool SupportsUnalignedAtomics;
3545
3546 /// If set to a physical register, this specifies the register that
3547 /// llvm.savestack/llvm.restorestack should save and restore.
3548 Register StackPointerRegisterToSaveRestore;
3549
3550 /// This indicates the default register class to use for each ValueType the
3551 /// target supports natively.
3552 const TargetRegisterClass *RegClassForVT[MVT::VALUETYPE_SIZE];
3553 uint16_t NumRegistersForVT[MVT::VALUETYPE_SIZE];
3554 MVT RegisterTypeForVT[MVT::VALUETYPE_SIZE];
3555
3556 /// This indicates the "representative" register class to use for each
3557 /// ValueType the target supports natively. This information is used by the
3558 /// scheduler to track register pressure. By default, the representative
3559 /// register class is the largest legal super-reg register class of the
3560 /// register class of the specified type. e.g. On x86, i8, i16, and i32's
3561 /// representative class would be GR32.
3562 const TargetRegisterClass *RepRegClassForVT[MVT::VALUETYPE_SIZE] = {0};
3563
3564 /// This indicates the "cost" of the "representative" register class for each
3565 /// ValueType. The cost is used by the scheduler to approximate register
3566 /// pressure.
3567 uint8_t RepRegClassCostForVT[MVT::VALUETYPE_SIZE];
3568
3569 /// For any value types we are promoting or expanding, this contains the value
3570 /// type that we are changing to. For Expanded types, this contains one step
3571 /// of the expand (e.g. i64 -> i32), even if there are multiple steps required
3572 /// (e.g. i64 -> i16). For types natively supported by the system, this holds
3573 /// the same type (e.g. i32 -> i32).
3574 MVT TransformToType[MVT::VALUETYPE_SIZE];
3575
3576 /// For each operation and each value type, keep a LegalizeAction that
3577 /// indicates how instruction selection should deal with the operation. Most
3578 /// operations are Legal (aka, supported natively by the target), but
3579 /// operations that are not should be described. Note that operations on
3580 /// non-legal value types are not described here.
3582
3583 /// For each load extension type and each value type, keep a LegalizeAction
3584 /// that indicates how instruction selection should deal with a load of a
3585 /// specific value type and extension type. Uses 4-bits to store the action
3586 /// for each of the 4 load ext types.
3588
3589 /// Similar to LoadExtActions, but for atomic loads. Only Legal or Expand
3590 /// (default) values are supported.
3591 uint16_t AtomicLoadExtActions[MVT::VALUETYPE_SIZE][MVT::VALUETYPE_SIZE];
3592
3593 /// For each value type pair keep a LegalizeAction that indicates whether a
3594 /// truncating store of a specific value type and truncating type is legal.
3596
3597 /// For each indexed mode and each value type, keep a quad of LegalizeAction
3598 /// that indicates how instruction selection should deal with the load /
3599 /// store / maskedload / maskedstore.
3600 ///
3601 /// The first dimension is the value_type for the reference. The second
3602 /// dimension represents the various modes for load store.
3604
3605 /// For each condition code (ISD::CondCode) keep a LegalizeAction that
3606 /// indicates how instruction selection should deal with the condition code.
3607 ///
3608 /// Because each CC action takes up 4 bits, we need to have the array size be
3609 /// large enough to fit all of the value types. This can be done by rounding
3610 /// up the MVT::VALUETYPE_SIZE value to the next multiple of 8.
3611 uint32_t CondCodeActions[ISD::SETCC_INVALID][(MVT::VALUETYPE_SIZE + 7) / 8];
3612
3613 ValueTypeActionImpl ValueTypeActions;
3614
3615private:
3616 /// Targets can specify ISD nodes that they would like PerformDAGCombine
3617 /// callbacks for by calling setTargetDAGCombine(), which sets a bit in this
3618 /// array.
3619 unsigned char
3620 TargetDAGCombineArray[(ISD::BUILTIN_OP_END+CHAR_BIT-1)/CHAR_BIT];
3621
3622 /// For operations that must be promoted to a specific type, this holds the
3623 /// destination type. This map should be sparse, so don't hold it as an
3624 /// array.
3625 ///
3626 /// Targets add entries to this map with AddPromotedToType(..), clients access
3627 /// this with getTypeToPromoteTo(..).
3628 std::map<std::pair<unsigned, MVT::SimpleValueType>, MVT::SimpleValueType>
3629 PromoteToType;
3630
3631 /// Stores the name each libcall.
3632 const char *LibcallRoutineNames[RTLIB::UNKNOWN_LIBCALL + 1];
3633
3634 /// The ISD::CondCode that should be used to test the result of each of the
3635 /// comparison libcall against zero.
3636 ISD::CondCode CmpLibcallCCs[RTLIB::UNKNOWN_LIBCALL];
3637
3638 /// Stores the CallingConv that should be used for each libcall.
3639 CallingConv::ID LibcallCallingConvs[RTLIB::UNKNOWN_LIBCALL];
3640
3641 /// Set default libcall names and calling conventions.
3642 void InitLibcalls(const Triple &TT);
3643
3644 /// The bits of IndexedModeActions used to store the legalisation actions
3645 /// We store the data as | ML | MS | L | S | each taking 4 bits.
3646 enum IndexedModeActionsBits {
3647 IMAB_Store = 0,
3648 IMAB_Load = 4,
3649 IMAB_MaskedStore = 8,
3650 IMAB_MaskedLoad = 12
3651 };
3652
3653 void setIndexedModeAction(unsigned IdxMode, MVT VT, unsigned Shift,
3654 LegalizeAction Action) {
3655 assert(VT.isValid() && IdxMode < ISD::LAST_INDEXED_MODE &&
3656 (unsigned)Action < 0xf && "Table isn't big enough!");
3657 unsigned Ty = (unsigned)VT.SimpleTy;
3658 IndexedModeActions[Ty][IdxMode] &= ~(0xf << Shift);
3659 IndexedModeActions[Ty][IdxMode] |= ((uint16_t)Action) << Shift;
3660 }
3661
3662 LegalizeAction getIndexedModeAction(unsigned IdxMode, MVT VT,
3663 unsigned Shift) const {
3664 assert(IdxMode < ISD::LAST_INDEXED_MODE && VT.isValid() &&
3665 "Table isn't big enough!");
3666 unsigned Ty = (unsigned)VT.SimpleTy;
3667 return (LegalizeAction)((IndexedModeActions[Ty][IdxMode] >> Shift) & 0xf);
3668 }
3669
3670protected:
3671 /// Return true if the extension represented by \p I is free.
3672 /// \pre \p I is a sign, zero, or fp extension and
3673 /// is[Z|FP]ExtFree of the related types is not true.
3674 virtual bool isExtFreeImpl(const Instruction *I) const { return false; }
3675
3676 /// Depth that GatherAllAliases should continue looking for chain
3677 /// dependencies when trying to find a more preferable chain. As an
3678 /// approximation, this should be more than the number of consecutive stores
3679 /// expected to be merged.
3681
3682 /// \brief Specify maximum number of store instructions per memset call.
3683 ///
3684 /// When lowering \@llvm.memset this field specifies the maximum number of
3685 /// store operations that may be substituted for the call to memset. Targets
3686 /// must set this value based on the cost threshold for that target. Targets
3687 /// should assume that the memset will be done using as many of the largest
3688 /// store operations first, followed by smaller ones, if necessary, per
3689 /// alignment restrictions. For example, storing 9 bytes on a 32-bit machine
3690 /// with 16-bit alignment would result in four 2-byte stores and one 1-byte
3691 /// store. This only applies to setting a constant array of a constant size.
3693 /// Likewise for functions with the OptSize attribute.
3695
3696 /// \brief Specify maximum number of store instructions per memcpy call.
3697 ///
3698 /// When lowering \@llvm.memcpy this field specifies the maximum number of
3699 /// store operations that may be substituted for a call to memcpy. Targets
3700 /// must set this value based on the cost threshold for that target. Targets
3701 /// should assume that the memcpy will be done using as many of the largest
3702 /// store operations first, followed by smaller ones, if necessary, per
3703 /// alignment restrictions. For example, storing 7 bytes on a 32-bit machine
3704 /// with 32-bit alignment would result in one 4-byte store, a one 2-byte store
3705 /// and one 1-byte store. This only applies to copying a constant array of
3706 /// constant size.
3708 /// Likewise for functions with the OptSize attribute.
3710 /// \brief Specify max number of store instructions to glue in inlined memcpy.
3711 ///
3712 /// When memcpy is inlined based on MaxStoresPerMemcpy, specify maximum number
3713 /// of store instructions to keep together. This helps in pairing and
3714 // vectorization later on.
3716
3717 /// \brief Specify maximum number of load instructions per memcmp call.
3718 ///
3719 /// When lowering \@llvm.memcmp this field specifies the maximum number of
3720 /// pairs of load operations that may be substituted for a call to memcmp.
3721 /// Targets must set this value based on the cost threshold for that target.
3722 /// Targets should assume that the memcmp will be done using as many of the
3723 /// largest load operations first, followed by smaller ones, if necessary, per
3724 /// alignment restrictions. For example, loading 7 bytes on a 32-bit machine
3725 /// with 32-bit alignment would result in one 4-byte load, a one 2-byte load
3726 /// and one 1-byte load. This only applies to copying a constant array of
3727 /// constant size.
3729 /// Likewise for functions with the OptSize attribute.
3731
3732 /// \brief Specify maximum number of store instructions per memmove call.
3733 ///
3734 /// When lowering \@llvm.memmove this field specifies the maximum number of
3735 /// store instructions that may be substituted for a call to memmove. Targets
3736 /// must set this value based on the cost threshold for that target. Targets
3737 /// should assume that the memmove will be done using as many of the largest
3738 /// store operations first, followed by smaller ones, if necessary, per
3739 /// alignment restrictions. For example, moving 9 bytes on a 32-bit machine
3740 /// with 8-bit alignment would result in nine 1-byte stores. This only
3741 /// applies to copying a constant array of constant size.
3743 /// Likewise for functions with the OptSize attribute.
3745
3746 /// Tells the code generator that select is more expensive than a branch if
3747 /// the branch is usually predicted right.
3749
3750 /// \see enableExtLdPromotion.
3752
3753 /// Return true if the value types that can be represented by the specified
3754 /// register class are all legal.
3755 bool isLegalRC(const TargetRegisterInfo &TRI,
3756 const TargetRegisterClass &RC) const;
3757
3758 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
3759 /// sequence of memory operands that is recognized by PrologEpilogInserter.
3761 MachineBasicBlock *MBB) const;
3762
3764};
3765
3766/// This class defines information used to lower LLVM code to legal SelectionDAG
3767/// operators that the target instruction selector can accept natively.
3768///
3769/// This class also defines callbacks that targets must implement to lower
3770/// target-specific constructs to SelectionDAG operators.
3772public:
3773 struct DAGCombinerInfo;
3774 struct MakeLibCallOptions;
3775
3778
3779 explicit TargetLowering(const TargetMachine &TM);
3780
3781 bool isPositionIndependent() const;
3782
3785 UniformityInfo *UA) const {
3786 return false;
3787 }
3788
3789 // Lets target to control the following reassociation of operands: (op (op x,
3790 // c1), y) -> (op (op x, y), c1) where N0 is (op x, c1) and N1 is y. By
3791 // default consider profitable any case where N0 has single use. This
3792 // behavior reflects the condition replaced by this target hook call in the
3793 // DAGCombiner. Any particular target can implement its own heuristic to
3794 // restrict common combiner.
3796 SDValue N1) const {
3797 return N0.hasOneUse();
3798 }
3799
3800 // Lets target to control the following reassociation of operands: (op (op x,
3801 // c1), y) -> (op (op x, y), c1) where N0 is (op x, c1) and N1 is y. By
3802 // default consider profitable any case where N0 has single use. This
3803 // behavior reflects the condition replaced by this target hook call in the
3804 // combiner. Any particular target can implement its own heuristic to
3805 // restrict common combiner.
3807 Register N1) const {
3808 return MRI.hasOneNonDBGUse(N0);
3809 }
3810
3811 virtual bool isSDNodeAlwaysUniform(const SDNode * N) const {
3812 return false;
3813 }
3814
3815 /// Returns true by value, base pointer and offset pointer and addressing mode
3816 /// by reference if the node's address can be legally represented as
3817 /// pre-indexed load / store address.
3818 virtual bool getPreIndexedAddressParts(SDNode * /*N*/, SDValue &/*Base*/,
3819 SDValue &/*Offset*/,
3820 ISD::MemIndexedMode &/*AM*/,
3821 SelectionDAG &/*DAG*/) const {
3822 return false;
3823 }
3824
3825 /// Returns true by value, base pointer and offset pointer and addressing mode
3826 /// by reference if this node can be combined with a load / store to form a
3827 /// post-indexed load / store.
3828 virtual bool getPostIndexedAddressParts(SDNode * /*N*/, SDNode * /*Op*/,
3829 SDValue &/*Base*/,
3830 SDValue &/*Offset*/,
3831 ISD::MemIndexedMode &/*AM*/,
3832 SelectionDAG &/*DAG*/) const {
3833 return false;
3834 }
3835
3836 /// Returns true if the specified base+offset is a legal indexed addressing
3837 /// mode for this target. \p MI is the load or store instruction that is being
3838 /// considered for transformation.
3840 bool IsPre, MachineRegisterInfo &MRI) const {
3841 return false;
3842 }
3843
3844 /// Return the entry encoding for a jump table in the current function. The
3845 /// returned value is a member of the MachineJumpTableInfo::JTEntryKind enum.
3846 virtual unsigned getJumpTableEncoding() const;
3847
3848 virtual const MCExpr *
3850 const MachineBasicBlock * /*MBB*/, unsigned /*uid*/,
3851 MCContext &/*Ctx*/) const {
3852 llvm_unreachable("Need to implement this hook if target has custom JTIs");
3853 }
3854
3855 /// Returns relocation base for the given PIC jumptable.
3857 SelectionDAG &DAG) const;
3858
3859 /// This returns the relocation base for the given PIC jumptable, the same as
3860 /// getPICJumpTableRelocBase, but as an MCExpr.
3861 virtual const MCExpr *
3863 unsigned JTI, MCContext &Ctx) const;
3864
3865 /// Return true if folding a constant offset with the given GlobalAddress is
3866 /// legal. It is frequently not legal in PIC relocation models.
3867 virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const;
3868
3869 /// On x86, return true if the operand with index OpNo is a CALL or JUMP
3870 /// instruction, which can use either a memory constraint or an address
3871 /// constraint. -fasm-blocks "__asm call foo" lowers to
3872 /// call void asm sideeffect inteldialect "call ${0:P}", "*m..."
3873 ///
3874 /// This function is used by a hack to choose the address constraint,
3875 /// lowering to a direct call.
3876 virtual bool
3878 unsigned OpNo) const {
3879 return false;
3880 }
3881
3883 SDValue &Chain) const;
3884
3885 void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
3886 SDValue &NewRHS, ISD::CondCode &CCCode,
3887 const SDLoc &DL, const SDValue OldLHS,
3888 const SDValue OldRHS) const;
3889
3890 void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS,
3891 SDValue &NewRHS, ISD::CondCode &CCCode,
3892 const SDLoc &DL, const SDValue OldLHS,
3893 const SDValue OldRHS, SDValue &Chain,
3894 bool IsSignaling = false) const;
3895
3896 /// Returns a pair of (return value, chain).
3897 /// It is an error to pass RTLIB::UNKNOWN_LIBCALL as \p LC.
3898 std::pair<SDValue, SDValue> makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC,
3899 EVT RetVT, ArrayRef<SDValue> Ops,
3900 MakeLibCallOptions CallOptions,
3901 const SDLoc &dl,
3902 SDValue Chain = SDValue()) const;
3903
3904 /// Check whether parameters to a call that are passed in callee saved
3905 /// registers are the same as from the calling function. This needs to be
3906 /// checked for tail call eligibility.
3908 const uint32_t *CallerPreservedMask,
3909 const SmallVectorImpl<CCValAssign> &ArgLocs,
3910 const SmallVectorImpl<SDValue> &OutVals) const;
3911
3912 //===--------------------------------------------------------------------===//
3913 // TargetLowering Optimization Methods
3914 //
3915
3916 /// A convenience struct that encapsulates a DAG, and two SDValues for
3917 /// returning information from TargetLowering to its clients that want to
3918 /// combine.
3925
3927 bool LT, bool LO) :
3928 DAG(InDAG), LegalTys(LT), LegalOps(LO) {}
3929
3930 bool LegalTypes() const { return LegalTys; }
3931 bool LegalOperations() const { return LegalOps; }
3932
3934 Old = O;
3935 New = N;
3936 return true;
3937 }
3938 };
3939
3940 /// Determines the optimal series of memory ops to replace the memset / memcpy.
3941 /// Return true if the number of memory ops is below the threshold (Limit).
3942 /// Note that this is always the case when Limit is ~0.
3943 /// It returns the types of the sequence of memory ops to perform
3944 /// memset / memcpy by reference.
3945 virtual bool
3946 findOptimalMemOpLowering(std::vector<EVT> &MemOps, unsigned Limit,
3947 const MemOp &Op, unsigned DstAS, unsigned SrcAS,
3948 const AttributeList &FuncAttributes) const;
3949
3950 /// Check to see if the specified operand of the specified instruction is a
3951 /// constant integer. If so, check to see if there are any bits set in the
3952 /// constant that are not demanded. If so, shrink the constant and return
3953 /// true.
3955 const APInt &DemandedElts,
3956 TargetLoweringOpt &TLO) const;
3957
3958 /// Helper wrapper around ShrinkDemandedConstant, demanding all elements.
3960 TargetLoweringOpt &TLO) const;
3961
3962 // Target hook to do target-specific const optimization, which is called by
3963 // ShrinkDemandedConstant. This function should return true if the target
3964 // doesn't want ShrinkDemandedConstant to further optimize the constant.
3966 const APInt &DemandedBits,
3967 const APInt &DemandedElts,
3968 TargetLoweringOpt &TLO) const {
3969 return false;
3970 }
3971
3972 /// Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
3973 /// This uses isTruncateFree/isZExtFree and ANY_EXTEND for the widening cast,
3974 /// but it could be generalized for targets with other types of implicit
3975 /// widening casts.
3976 bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth,
3977 const APInt &DemandedBits,
3978 TargetLoweringOpt &TLO) const;
3979
3980 /// Look at Op. At this point, we know that only the DemandedBits bits of the
3981 /// result of Op are ever used downstream. If we can use this information to
3982 /// simplify Op, create a new simplified DAG node and return true, returning
3983 /// the original and new nodes in Old and New. Otherwise, analyze the
3984 /// expression and return a mask of KnownOne and KnownZero bits for the
3985 /// expression (used to simplify the caller). The KnownZero/One bits may only
3986 /// be accurate for those bits in the Demanded masks.
3987 /// \p AssumeSingleUse When this parameter is true, this function will
3988 /// attempt to simplify \p Op even if there are multiple uses.
3989 /// Callers are responsible for correctly updating the DAG based on the
3990 /// results of this function, because simply replacing TLO.Old
3991 /// with TLO.New will be incorrect when this parameter is true and TLO.Old
3992 /// has multiple uses.
3994 const APInt &DemandedElts, KnownBits &Known,
3995 TargetLoweringOpt &TLO, unsigned Depth = 0,
3996 bool AssumeSingleUse = false) const;
3997
3998 /// Helper wrapper around SimplifyDemandedBits, demanding all elements.
3999 /// Adds Op back to the worklist upon success.
4001 KnownBits &Known, TargetLoweringOpt &TLO,
4002 unsigned Depth = 0,
4003 bool AssumeSingleUse = false) const;
4004
4005 /// Helper wrapper around SimplifyDemandedBits.
4006 /// Adds Op back to the worklist upon success.
4008 DAGCombinerInfo &DCI) const;
4009
4010 /// Helper wrapper around SimplifyDemandedBits.
4011 /// Adds Op back to the worklist upon success.
4013 const APInt &DemandedElts,
4014 DAGCombinerInfo &DCI) const;
4015
4016 /// More limited version of SimplifyDemandedBits that can be used to "look
4017 /// through" ops that don't contribute to the DemandedBits/DemandedElts -
4018 /// bitwise ops etc.
4020 const APInt &DemandedElts,
4021 SelectionDAG &DAG,
4022 unsigned Depth = 0) const;
4023
4024 /// Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all
4025 /// elements.
4027 SelectionDAG &DAG,
4028 unsigned Depth = 0) const;
4029
4030 /// Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all
4031 /// bits from only some vector elements.
4033 const APInt &DemandedElts,
4034 SelectionDAG &DAG,
4035 unsigned Depth = 0) const;
4036
4037 /// Look at Vector Op. At this point, we know that only the DemandedElts
4038 /// elements of the result of Op are ever used downstream. If we can use
4039 /// this information to simplify Op, create a new simplified DAG node and
4040 /// return true, storing the original and new nodes in TLO.
4041 /// Otherwise, analyze the expression and return a mask of KnownUndef and
4042 /// KnownZero elements for the expression (used to simplify the caller).
4043 /// The KnownUndef/Zero elements may only be accurate for those bits
4044 /// in the DemandedMask.
4045 /// \p AssumeSingleUse When this parameter is true, this function will
4046 /// attempt to simplify \p Op even if there are multiple uses.
4047 /// Callers are responsible for correctly updating the DAG based on the
4048 /// results of this function, because simply replacing TLO.Old
4049 /// with TLO.New will be incorrect when this parameter is true and TLO.Old
4050 /// has multiple uses.
4051 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask,
4052 APInt &KnownUndef, APInt &KnownZero,
4053 TargetLoweringOpt &TLO, unsigned Depth = 0,
4054 bool AssumeSingleUse = false) const;
4055
4056 /// Helper wrapper around SimplifyDemandedVectorElts.
4057 /// Adds Op back to the worklist upon success.
4058 bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedElts,
4059 DAGCombinerInfo &DCI) const;
4060
4061 /// Return true if the target supports simplifying demanded vector elements by
4062 /// converting them to undefs.
4063 virtual bool
4065 const TargetLoweringOpt &TLO) const {
4066 return true;
4067 }
4068
4069 /// Determine which of the bits specified in Mask are known to be either zero
4070 /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
4071 /// argument allows us to only collect the known bits that are shared by the
4072 /// requested vector elements.
4073 virtual void computeKnownBitsForTargetNode(const SDValue Op,
4074 KnownBits &Known,
4075 const APInt &DemandedElts,
4076 const SelectionDAG &DAG,
4077 unsigned Depth = 0) const;
4078
4079 /// Determine which of the bits specified in Mask are known to be either zero
4080 /// or one and return them in the KnownZero/KnownOne bitsets. The DemandedElts
4081 /// argument allows us to only collect the known bits that are shared by the
4082 /// requested vector elements. This is for GISel.
4084 Register R, KnownBits &Known,
4085 const APInt &DemandedElts,
4086 const MachineRegisterInfo &MRI,
4087 unsigned Depth = 0) const;
4088
4089 /// Determine the known alignment for the pointer value \p R. This is can
4090 /// typically be inferred from the number of low known 0 bits. However, for a
4091 /// pointer with a non-integral address space, the alignment value may be
4092 /// independent from the known low bits.
4094 Register R,
4095 const MachineRegisterInfo &MRI,
4096 unsigned Depth = 0) const;
4097
4098 /// Determine which of the bits of FrameIndex \p FIOp are known to be 0.
4099 /// Default implementation computes low bits based on alignment
4100 /// information. This should preserve known bits passed into it.
4101 virtual void computeKnownBitsForFrameIndex(int FIOp,
4102 KnownBits &Known,
4103 const MachineFunction &MF) const;
4104
4105 /// This method can be implemented by targets that want to expose additional
4106 /// information about sign bits to the DAG Combiner. The DemandedElts
4107 /// argument allows us to only collect the minimum sign bits that are shared
4108 /// by the requested vector elements.
4110 const APInt &DemandedElts,
4111 const SelectionDAG &DAG,
4112 unsigned Depth = 0) const;
4113
4114 /// This method can be implemented by targets that want to expose additional
4115 /// information about sign bits to GlobalISel combiners. The DemandedElts
4116 /// argument allows us to only collect the minimum sign bits that are shared
4117 /// by the requested vector elements.
4119 Register R,
4120 const APInt &DemandedElts,
4121 const MachineRegisterInfo &MRI,
4122 unsigned Depth = 0) const;
4123
4124 /// Attempt to simplify any target nodes based on the demanded vector
4125 /// elements, returning true on success. Otherwise, analyze the expression and
4126 /// return a mask of KnownUndef and KnownZero elements for the expression
4127 /// (used to simplify the caller). The KnownUndef/Zero elements may only be
4128 /// accurate for those bits in the DemandedMask.
4130 SDValue Op, const APInt &DemandedElts, APInt &KnownUndef,
4131 APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth = 0) const;
4132
4133 /// Attempt to simplify any target nodes based on the demanded bits/elts,
4134 /// returning true on success. Otherwise, analyze the
4135 /// expression and return a mask of KnownOne and KnownZero bits for the
4136 /// expression (used to simplify the caller). The KnownZero/One bits may only
4137 /// be accurate for those bits in the Demanded masks.
4139 const APInt &DemandedBits,
4140 const APInt &DemandedElts,
4141 KnownBits &Known,
4142 TargetLoweringOpt &TLO,
4143 unsigned Depth = 0) const;
4144
4145 /// More limited version of SimplifyDemandedBits that can be used to "look
4146 /// through" ops that don't contribute to the DemandedBits/DemandedElts -
4147 /// bitwise ops etc.
4149 SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts,
4150 SelectionDAG &DAG, unsigned Depth) const;
4151
4152 /// Return true if this function can prove that \p Op is never poison
4153 /// and, if \p PoisonOnly is false, does not have undef bits. The DemandedElts
4154 /// argument limits the check to the requested vector elements.
4156 SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG,
4157 bool PoisonOnly, unsigned Depth) const;
4158
4159 /// Return true if Op can create undef or poison from non-undef & non-poison
4160 /// operands. The DemandedElts argument limits the check to the requested
4161 /// vector elements.
4162 virtual bool
4164 const SelectionDAG &DAG, bool PoisonOnly,
4165 bool ConsiderFlags, unsigned Depth) const;
4166
4167 /// Tries to build a legal vector shuffle using the provided parameters
4168 /// or equivalent variations. The Mask argument maybe be modified as the
4169 /// function tries different variations.
4170 /// Returns an empty SDValue if the operation fails.
4173 SelectionDAG &DAG) const;
4174
4175 /// This method returns the constant pool value that will be loaded by LD.
4176 /// NOTE: You must check for implicit extensions of the constant by LD.
4177 virtual const Constant *getTargetConstantFromLoad(LoadSDNode *LD) const;
4178
4179 /// If \p SNaN is false, \returns true if \p Op is known to never be any
4180 /// NaN. If \p sNaN is true, returns if \p Op is known to never be a signaling
4181 /// NaN.
4183 const SelectionDAG &DAG,
4184 bool SNaN = false,
4185 unsigned Depth = 0) const;
4186
4187 /// Return true if vector \p Op has the same value across all \p DemandedElts,
4188 /// indicating any elements which may be undef in the output \p UndefElts.
4189 virtual bool isSplatValueForTargetNode(SDValue Op, const APInt &DemandedElts,
4190 APInt &UndefElts,
4191 const SelectionDAG &DAG,
4192 unsigned Depth = 0) const;
4193
4194 /// Returns true if the given Opc is considered a canonical constant for the
4195 /// target, which should not be transformed back into a BUILD_VECTOR.
4197 return Op.getOpcode() == ISD::SPLAT_VECTOR ||
4198 Op.getOpcode() == ISD::SPLAT_VECTOR_PARTS;
4199 }
4200
4202 void *DC; // The DAG Combiner object.
4205
4206 public:
4208
4209 DAGCombinerInfo(SelectionDAG &dag, CombineLevel level, bool cl, void *dc)
4210 : DC(dc), Level(level), CalledByLegalizer(cl), DAG(dag) {}
4211
4212 bool isBeforeLegalize() const { return Level == BeforeLegalizeTypes; }
4213 bool isBeforeLegalizeOps() const { return Level < AfterLegalizeVectorOps; }
4214 bool isAfterLegalizeDAG() const { return Level >= AfterLegalizeDAG; }
4217
4218 void AddToWorklist(SDNode *N);
4219 SDValue CombineTo(SDNode *N, ArrayRef<SDValue> To, bool AddTo = true);
4220 SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true);
4221 SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1, bool AddTo = true);
4222
4224
4226 };
4227
4228 /// Return if the N is a constant or constant vector equal to the true value
4229 /// from getBooleanContents().
4230 bool isConstTrueVal(SDValue N) const;
4231
4232 /// Return if the N is a constant or constant vector equal to the false value
4233 /// from getBooleanContents().
4234 bool isConstFalseVal(SDValue N) const;
4235
4236 /// Return if \p N is a True value when extended to \p VT.
4237 bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const;
4238
4239 /// Try to simplify a setcc built with the specified operands and cc. If it is
4240 /// unable to simplify it, return a null SDValue.
4242 bool foldBooleans, DAGCombinerInfo &DCI,
4243 const SDLoc &dl) const;
4244
4245 // For targets which wrap address, unwrap for analysis.
4246 virtual SDValue unwrapAddress(SDValue N) const { return N; }
4247
4248 /// Returns true (and the GlobalValue and the offset) if the node is a
4249 /// GlobalAddress + offset.
4250 virtual bool
4251 isGAPlusOffset(SDNode *N, const GlobalValue* &GA, int64_t &Offset) const;
4252
4253 /// This method will be invoked for all target nodes and for any
4254 /// target-independent nodes that the target has registered with invoke it
4255 /// for.
4256 ///
4257 /// The semantics are as follows:
4258 /// Return Value:
4259 /// SDValue.Val == 0 - No change was made
4260 /// SDValue.Val == N - N was replaced, is dead, and is already handled.
4261 /// otherwise - N should be replaced by the returned Operand.
4262 ///
4263 /// In addition, methods provided by DAGCombinerInfo may be used to perform
4264 /// more complex transformations.
4265 ///
4266 virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const;
4267
4268 /// Return true if it is profitable to move this shift by a constant amount
4269 /// through its operand, adjusting any immediate operands as necessary to
4270 /// preserve semantics. This transformation may not be desirable if it
4271 /// disrupts a particularly auspicious target-specific tree (e.g. bitfield
4272 /// extraction in AArch64). By default, it returns true.
4273 ///
4274 /// @param N the shift node
4275 /// @param Level the current DAGCombine legalization level.
4277 CombineLevel Level) const {
4278 return true;
4279 }
4280
4281 /// GlobalISel - return true if it is profitable to move this shift by a
4282 /// constant amount through its operand, adjusting any immediate operands as
4283 /// necessary to preserve semantics. This transformation may not be desirable
4284 /// if it disrupts a particularly auspicious target-specific tree (e.g.
4285 /// bitfield extraction in AArch64). By default, it returns true.
4286 ///
4287 /// @param MI the shift instruction
4288 /// @param IsAfterLegal true if running after legalization.
4290 bool IsAfterLegal) const {
4291 return true;
4292 }
4293
4294 /// GlobalISel - return true if it's profitable to perform the combine:
4295 /// shl ([sza]ext x), y => zext (shl x, y)
4296 virtual bool isDesirableToPullExtFromShl(const MachineInstr &MI) const {
4297 return true;
4298 }
4299
4300 // Return AndOrSETCCFoldKind::{AddAnd, ABS} if its desirable to try and
4301 // optimize LogicOp(SETCC0, SETCC1). An example (what is implemented as of
4302 // writing this) is:
4303 // With C as a power of 2 and C != 0 and C != INT_MIN:
4304 // AddAnd:
4305 // (icmp eq A, C) | (icmp eq A, -C)
4306 // -> (icmp eq and(add(A, C), ~(C + C)), 0)
4307 // (icmp ne A, C) & (icmp ne A, -C)w
4308 // -> (icmp ne and(add(A, C), ~(C + C)), 0)
4309 // ABS:
4310 // (icmp eq A, C) | (icmp eq A, -C)
4311 // -> (icmp eq Abs(A), C)
4312 // (icmp ne A, C) & (icmp ne A, -C)w
4313 // -> (icmp ne Abs(A), C)
4314 //
4315 // @param LogicOp the logic op
4316 // @param SETCC0 the first of the SETCC nodes
4317 // @param SETCC0 the second of the SETCC nodes
4319 const SDNode *LogicOp, const SDNode *SETCC0, const SDNode *SETCC1) const {
4321 }
4322
4323 /// Return true if it is profitable to combine an XOR of a logical shift
4324 /// to create a logical shift of NOT. This transformation may not be desirable
4325 /// if it disrupts a particularly auspicious target-specific tree (e.g.
4326 /// BIC on ARM/AArch64). By default, it returns true.
4327 virtual bool isDesirableToCommuteXorWithShift(const SDNode *N) const {
4328 return true;
4329 }
4330
4331 /// Return true if the target has native support for the specified value type
4332 /// and it is 'desirable' to use the type for the given node type. e.g. On x86
4333 /// i16 is legal, but undesirable since i16 instruction encodings are longer
4334 /// and some i16 instructions are slow.
4335 virtual bool isTypeDesirableForOp(unsigned /*Opc*/, EVT VT) const {
4336 // By default, assume all legal types are desirable.
4337 return isTypeLegal(VT);
4338 }
4339
4340 /// Return true if it is profitable for dag combiner to transform a floating
4341 /// point op of specified opcode to a equivalent op of an integer
4342 /// type. e.g. f32 load -> i32 load can be profitable on ARM.
4343 virtual bool isDesirableToTransformToIntegerOp(unsigned /*Opc*/,
4344 EVT /*VT*/) const {
4345 return false;
4346 }
4347
4348 /// This method query the target whether it is beneficial for dag combiner to
4349 /// promote the specified node. If true, it should return the desired
4350 /// promotion type by reference.
4351 virtual bool IsDesirableToPromoteOp(SDValue /*Op*/, EVT &/*PVT*/) const {
4352 return false;
4353 }
4354
4355 /// Return true if the target supports swifterror attribute. It optimizes
4356 /// loads and stores to reading and writing a specific register.
4357 virtual bool supportSwiftError() const {
4358 return false;
4359 }
4360
4361 /// Return true if the target supports that a subset of CSRs for the given
4362 /// machine function is handled explicitly via copies.
4363 virtual bool supportSplitCSR(MachineFunction *MF) const {
4364 return false;
4365 }
4366
4367 /// Return true if the target supports kcfi operand bundles.
4368 virtual bool supportKCFIBundles() const { return false; }
4369
4370 /// Perform necessary initialization to handle a subset of CSRs explicitly
4371 /// via copies. This function is called at the beginning of instruction
4372 /// selection.
4373 virtual void initializeSplitCSR(MachineBasicBlock *Entry) const {
4374 llvm_unreachable("Not Implemented");
4375 }
4376
4377 /// Insert explicit copies in entry and exit blocks. We copy a subset of
4378 /// CSRs to virtual registers in the entry block, and copy them back to
4379 /// physical registers in the exit blocks. This function is called at the end
4380 /// of instruction selection.
4382 MachineBasicBlock *Entry,
4383 const SmallVectorImpl<MachineBasicBlock *> &Exits) const {
4384 llvm_unreachable("Not Implemented");
4385 }
4386
4387 /// Return the newly negated expression if the cost is not expensive and
4388 /// set the cost in \p Cost to indicate that if it is cheaper or neutral to
4389 /// do the negation.
4391 bool LegalOps, bool OptForSize,
4393 unsigned Depth = 0) const;
4394
4396 SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize,
4398 unsigned Depth = 0) const {
4400 SDValue Neg =
4401 getNegatedExpression(Op, DAG, LegalOps, OptForSize, Cost, Depth);
4402 if (!Neg)
4403 return SDValue();
4404
4405 if (Cost <= CostThreshold)
4406 return Neg;
4407
4408 // Remove the new created node to avoid the side effect to the DAG.
4409 if (Neg->use_empty())
4410 DAG.RemoveDeadNode(Neg.getNode());
4411 return SDValue();
4412 }
4413
4414 /// This is the helper function to return the newly negated expression only
4415 /// when the cost is cheaper.
4417 bool LegalOps, bool OptForSize,
4418 unsigned Depth = 0) const {
4419 return getCheaperOrNeutralNegatedExpression(Op, DAG, LegalOps, OptForSize,
4421 }
4422
4423 /// This is the helper function to return the newly negated expression if
4424 /// the cost is not expensive.
4426 bool OptForSize, unsigned Depth = 0) const {
4428 return getNegatedExpression(Op, DAG, LegalOps, OptForSize, Cost, Depth);
4429 }
4430
4431 //===--------------------------------------------------------------------===//
4432 // Lowering methods - These methods must be implemented by targets so that
4433 // the SelectionDAGBuilder code knows how to lower these.
4434 //
4435
4436 /// Target-specific splitting of values into parts that fit a register
4437 /// storing a legal type
4439 SelectionDAG & DAG, const SDLoc &DL, SDValue Val, SDValue *Parts,
4440 unsigned NumParts, MVT PartVT, std::optional<CallingConv::ID> CC) const {
4441 return false;
4442 }
4443
4444 /// Allows the target to handle physreg-carried dependency
4445 /// in target-specific way. Used from the ScheduleDAGSDNodes to decide whether
4446 /// to add the edge to the dependency graph.
4447 /// Def - input: Selection DAG node defininfg physical register
4448 /// User - input: Selection DAG node using physical register
4449 /// Op - input: Number of User operand
4450 /// PhysReg - inout: set to the physical register if the edge is
4451 /// necessary, unchanged otherwise
4452 /// Cost - inout: physical register copy cost.
4453 /// Returns 'true' is the edge is necessary, 'false' otherwise
4454 virtual bool checkForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op,
4455 const TargetRegisterInfo *TRI,
4456 const TargetInstrInfo *TII,
4457 unsigned &PhysReg, int &Cost) const {
4458 return false;
4459 }
4460
4461 /// Target-specific combining of register parts into its original value
4462 virtual SDValue
4464 const SDValue *Parts, unsigned NumParts,
4465 MVT PartVT, EVT ValueVT,
4466 std::optional<CallingConv::ID> CC) const {
4467 return SDValue();
4468 }
4469
4470 /// This hook must be implemented to lower the incoming (formal) arguments,
4471 /// described by the Ins array, into the specified DAG. The implementation
4472 /// should fill in the InVals array with legal-type argument values, and
4473 /// return the resulting token chain value.
4475 SDValue /*Chain*/, CallingConv::ID /*CallConv*/, bool /*isVarArg*/,
4476 const SmallVectorImpl<ISD::InputArg> & /*Ins*/, const SDLoc & /*dl*/,
4477 SelectionDAG & /*DAG*/, SmallVectorImpl<SDValue> & /*InVals*/) const {
4478 llvm_unreachable("Not Implemented");
4479 }
4480
4481 /// This structure contains all information that is necessary for lowering
4482 /// calls. It is passed to TLI::LowerCallTo when the SelectionDAG builder
4483 /// needs to lower a call, and targets will see this struct in their LowerCall
4484 /// implementation.
4487 Type *RetTy = nullptr;
4488 bool RetSExt : 1;
4489 bool RetZExt : 1;
4490 bool IsVarArg : 1;
4491 bool IsInReg : 1;
4497 bool NoMerge : 1;
4498
4499 // IsTailCall should be modified by implementations of
4500 // TargetLowering::LowerCall that perform tail call conversions.
4501 bool IsTailCall = false;
4502
4503 // Is Call lowering done post SelectionDAG type legalization.
4505
4506 unsigned NumFixedArgs = -1;
4512 const CallBase *CB = nullptr;
4517 const ConstantInt *CFIType = nullptr;
4519
4524 DAG(DAG) {}
4525
4527 DL = dl;
4528 return *this;
4529 }
4530
4532 Chain = InChain;
4533 return *this;
4534 }
4535
4536 // setCallee with target/module-specific attributes
4538 SDValue Target, ArgListTy &&ArgsList) {
4539 RetTy = ResultType;
4540 Callee = Target;
4541 CallConv = CC;
4542 NumFixedArgs = ArgsList.size();
4543 Args = std::move(ArgsList);
4544
4546 &(DAG.getMachineFunction()), CC, Args);
4547 return *this;
4548 }
4549
4551 SDValue Target, ArgListTy &&ArgsList,
4552 AttributeSet ResultAttrs = {}) {
4553 RetTy = ResultType;
4554 IsInReg = ResultAttrs.hasAttribute(Attribute::InReg);
4555 RetSExt = ResultAttrs.hasAttribute(Attribute::SExt);
4556 RetZExt = ResultAttrs.hasAttribute(Attribute::ZExt);
4557 NoMerge = ResultAttrs.hasAttribute(Attribute::NoMerge);
4558
4559 Callee = Target;
4560 CallConv = CC;
4561 NumFixedArgs = ArgsList.size();
4562 Args = std::move(ArgsList);
4563 return *this;
4564 }
4565
4567 SDValue Target, ArgListTy &&ArgsList,
4568 const CallBase &Call) {
4569 RetTy = ResultType;
4570
4571 IsInReg = Call.hasRetAttr(Attribute::InReg);
4573 Call.doesNotReturn() ||
4574 (!isa<InvokeInst>(Call) && isa<UnreachableInst>(Call.getNextNode()));
4575 IsVarArg = FTy->isVarArg();
4576 IsReturnValueUsed = !Call.use_empty();
4577 RetSExt = Call.hasRetAttr(Attribute::SExt);
4578 RetZExt = Call.hasRetAttr(Attribute::ZExt);
4579 NoMerge = Call.hasFnAttr(Attribute::NoMerge);
4580
4581 Callee = Target;
4582
4583 CallConv = Call.getCallingConv();
4584 NumFixedArgs = FTy->getNumParams();
4585 Args = std::move(ArgsList);
4586
4587 CB = &Call;
4588
4589 return *this;
4590 }
4591
4593 IsInReg = Value;
4594 return *this;
4595 }
4596
4599 return *this;
4600 }
4601
4603 IsVarArg = Value;
4604 return *this;
4605 }
4606
4608 IsTailCall = Value;
4609 return *this;
4610 }
4611
4614 return *this;
4615 }
4616
4619 return *this;
4620 }
4621
4623 RetSExt = Value;
4624 return *this;
4625 }
4626
4628 RetZExt = Value;
4629 return *this;
4630 }
4631
4634 return *this;
4635 }
4636
4639 return *this;
4640 }
4641
4644 return *this;
4645 }
4646
4648 CFIType = Type;
4649 return *this;
4650 }
4651
4654 return *this;
4655 }
4656
4658 return Args;
4659 }
4660 };
4661
4662 /// This structure is used to pass arguments to makeLibCall function.
4664 // By passing type list before soften to makeLibCall, the target hook
4665 // shouldExtendTypeInLibCall can get the original type before soften.
4668 bool IsSExt : 1;
4672 bool IsSoften : 1;
4673
4677
4679 IsSExt = Value;
4680 return *this;
4681 }
4682
4685 return *this;
4686 }
4687
4690 return *this;
4691 }
4692
4695 return *this;
4696 }
4697
4699 bool Value = true) {
4700 OpsVTBeforeSoften = OpsVT;
4701 RetVTBeforeSoften = RetVT;
4702 IsSoften = Value;
4703 return *this;
4704 }
4705 };
4706
4707 /// This function lowers an abstract call to a function into an actual call.
4708 /// This returns a pair of operands. The first element is the return value
4709 /// for the function (if RetTy is not VoidTy). The second element is the
4710 /// outgoing token chain. It calls LowerCall to do the actual lowering.
4711 std::pair<SDValue, SDValue> LowerCallTo(CallLoweringInfo &CLI) const;
4712
4713 /// This hook must be implemented to lower calls into the specified
4714 /// DAG. The outgoing arguments to the call are described by the Outs array,
4715 /// and the values to be returned by the call are described by the Ins
4716 /// array. The implementation should fill in the InVals array with legal-type
4717 /// return values from the call, and return the resulting token chain value.
4718 virtual SDValue
4720 SmallVectorImpl<SDValue> &/*InVals*/) const {
4721 llvm_unreachable("Not Implemented");
4722 }
4723
4724 /// Target-specific cleanup for formal ByVal parameters.
4725 virtual void HandleByVal(CCState *, unsigned &, Align) const {}
4726
4727 /// This hook should be implemented to check whether the return values
4728 /// described by the Outs array can fit into the return registers. If false
4729 /// is returned, an sret-demotion is performed.
4730 virtual bool CanLowerReturn(CallingConv::ID /*CallConv*/,
4731 MachineFunction &/*MF*/, bool /*isVarArg*/,
4732 const SmallVectorImpl<ISD::OutputArg> &/*Outs*/,
4733 LLVMContext &/*Context*/) const
4734 {
4735 // Return true by default to get preexisting behavior.
4736 return true;
4737 }
4738
4739 /// This hook must be implemented to lower outgoing return values, described
4740 /// by the Outs array, into the specified DAG. The implementation should
4741 /// return the resulting token chain value.
4742 virtual SDValue LowerReturn(SDValue /*Chain*/, CallingConv::ID /*CallConv*/,
4743 bool /*isVarArg*/,
4744 const SmallVectorImpl<ISD::OutputArg> & /*Outs*/,
4745 const SmallVectorImpl<SDValue> & /*OutVals*/,
4746 const SDLoc & /*dl*/,
4747 SelectionDAG & /*DAG*/) const {
4748 llvm_unreachable("Not Implemented");
4749 }
4750
4751 /// Return true if result of the specified node is used by a return node
4752 /// only. It also compute and return the input chain for the tail call.
4753 ///
4754 /// This is used to determine whether it is possible to codegen a libcall as
4755 /// tail call at legalization time.
4756 virtual bool isUsedByReturnOnly(SDNode *, SDValue &/*Chain*/) const {
4757 return false;
4758 }
4759
4760 /// Return true if the target may be able emit the call instruction as a tail
4761 /// call. This is used by optimization passes to determine if it's profitable
4762 /// to duplicate return instructions to enable tailcall optimization.
4763 virtual bool mayBeEmittedAsTailCall(const CallInst *) const {
4764 return false;
4765 }
4766
4767 /// Return the builtin name for the __builtin___clear_cache intrinsic
4768 /// Default is to invoke the clear cache library call
4769 virtual const char * getClearCacheBuiltinName() const {
4770 return "__clear_cache";
4771 }
4772
4773 /// Return the register ID of the name passed in. Used by named register
4774 /// global variables extension. There is no target-independent behaviour
4775 /// so the default action is to bail.
4776 virtual Register getRegisterByName(const char* RegName, LLT Ty,
4777 const MachineFunction &MF) const {
4778 report_fatal_error("Named registers not implemented for this target");
4779 }
4780
4781 /// Return the type that should be used to zero or sign extend a
4782 /// zeroext/signext integer return value. FIXME: Some C calling conventions
4783 /// require the return type to be promoted, but this is not true all the time,
4784 /// e.g. i1/i8/i16 on x86/x86_64. It is also not necessary for non-C calling
4785 /// conventions. The frontend should handle this and include all of the
4786 /// necessary information.
4788 ISD::NodeType /*ExtendKind*/) const {
4789 EVT MinVT = getRegisterType(MVT::i32);
4790 return VT.bitsLT(MinVT) ? MinVT : VT;
4791 }
4792
4793 /// For some targets, an LLVM struct type must be broken down into multiple
4794 /// simple types, but the calling convention specifies that the entire struct
4795 /// must be passed in a block of consecutive registers.
4796 virtual bool
4798 bool isVarArg,
4799 const DataLayout &DL) const {
4800 return false;
4801 }
4802
4803 /// For most targets, an LLVM type must be broken down into multiple
4804 /// smaller types. Usually the halves are ordered according to the endianness
4805 /// but for some platform that would break. So this method will default to
4806 /// matching the endianness but can be overridden.
4807 virtual bool
4809 return DL.isLittleEndian();
4810 }
4811
4812 /// Returns a 0 terminated array of registers that can be safely used as
4813 /// scratch registers.
4815 return nullptr;
4816 }
4817
4818 /// Returns a 0 terminated array of rounding control registers that can be
4819 /// attached into strict FP call.
4821 return ArrayRef<MCPhysReg>();
4822 }
4823
4824 /// This callback is used to prepare for a volatile or atomic load.
4825 /// It takes a chain node as input and returns the chain for the load itself.
4826 ///
4827 /// Having a callback like this is necessary for targets like SystemZ,
4828 /// which allows a CPU to reuse the result of a previous load indefinitely,
4829 /// even if a cache-coherent store is performed by another CPU. The default
4830 /// implementation does nothing.
4832 SelectionDAG &DAG) const {
4833 return Chain;
4834 }
4835
4836 /// This callback is invoked by the type legalizer to legalize nodes with an
4837 /// illegal operand type but legal result types. It replaces the
4838 /// LowerOperation callback in the type Legalizer. The reason we can not do
4839 /// away with LowerOperation entirely is that LegalizeDAG isn't yet ready to
4840 /// use this callback.
4841 ///
4842 /// TODO: Consider merging with ReplaceNodeResults.
4843 ///
4844 /// The target places new result values for the node in Results (their number
4845 /// and types must exactly match those of the original return values of
4846 /// the node), or leaves Results empty, which indicates that the node is not
4847 /// to be custom lowered after all.
4848 /// The default implementation calls LowerOperation.
4849 virtual void LowerOperationWrapper(SDNode *N,
4851 SelectionDAG &DAG) const;
4852
4853 /// This callback is invoked for operations that are unsupported by the
4854 /// target, which are registered to use 'custom' lowering, and whose defined
4855 /// values are all legal. If the target has no operations that require custom
4856 /// lowering, it need not implement this. The default implementation of this
4857 /// aborts.
4858 virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const;
4859
4860 /// This callback is invoked when a node result type is illegal for the
4861 /// target, and the operation was registered to use 'custom' lowering for that
4862 /// result type. The target places new result values for the node in Results
4863 /// (their number and types must exactly match those of the original return
4864 /// values of the node), or leaves Results empty, which indicates that the
4865 /// node is not to be custom lowered after all.
4866 ///
4867 /// If the target has no operations that require custom lowering, it need not
4868 /// implement this. The default implementation aborts.
4869 virtual void ReplaceNodeResults(SDNode * /*N*/,
4870 SmallVectorImpl<SDValue> &/*Results*/,
4871 SelectionDAG &/*DAG*/) const {
4872 llvm_unreachable("ReplaceNodeResults not implemented for this target!");
4873 }
4874
4875 /// This method returns the name of a target specific DAG node.
4876 virtual const char *getTargetNodeName(unsigned Opcode) const;
4877
4878 /// This method returns a target specific FastISel object, or null if the
4879 /// target does not support "fast" ISel.
4881 const TargetLibraryInfo *) const {
4882 return nullptr;
4883 }
4884
4886 SelectionDAG &DAG) const;
4887
4888#ifndef NDEBUG
4889 /// Check the given SDNode. Aborts if it is invalid.
4890 virtual void verifyTargetSDNode(const SDNode *N) const {};
4891#endif
4892
4893 //===--------------------------------------------------------------------===//
4894 // Inline Asm Support hooks
4895 //
4896
4897 /// This hook allows the target to expand an inline asm call to be explicit
4898 /// llvm code if it wants to. This is useful for turning simple inline asms
4899 /// into LLVM intrinsics, which gives the compiler more information about the
4900 /// behavior of the code.
4901 virtual bool ExpandInlineAsm(CallInst *) const {
4902 return false;
4903 }
4904
4906 C_Register, // Constraint represents specific register(s).
4907 C_RegisterClass, // Constraint represents any of register(s) in class.
4908 C_Memory, // Memory constraint.
4909 C_Address, // Address constraint.
4910 C_Immediate, // Requires an immediate.
4911 C_Other, // Something else.
4912 C_Unknown // Unsupported constraint.
4914
4916 // Generic weights.
4917 CW_Invalid = -1, // No match.
4918 CW_Okay = 0, // Acceptable.
4919 CW_Good = 1, // Good weight.
4920 CW_Better = 2, // Better weight.
4921 CW_Best = 3, // Best weight.
4922
4923 // Well-known weights.
4924 CW_SpecificReg = CW_Okay, // Specific register operands.
4925 CW_Register = CW_Good, // Register operands.
4926 CW_Memory = CW_Better, // Memory operands.
4927 CW_Constant = CW_Best, // Constant operand.
4928 CW_Default = CW_Okay // Default or don't know type.
4930
4931 /// This contains information for each constraint that we are lowering.
4933 /// This contains the actual string for the code, like "m". TargetLowering
4934 /// picks the 'best' code from ConstraintInfo::Codes that most closely
4935 /// matches the operand.
4936 std::string ConstraintCode;
4937
4938 /// Information about the constraint code, e.g. Register, RegisterClass,
4939 /// Memory, Other, Unknown.
4941
4942 /// If this is the result output operand or a clobber, this is null,
4943 /// otherwise it is the incoming operand to the CallInst. This gets
4944 /// modified as the asm is processed.
4946
4947 /// The ValueType for the operand value.
4948 MVT ConstraintVT = MVT::Other;
4949
4950 /// Copy constructor for copying from a ConstraintInfo.
4953
4954 /// Return true of this is an input operand that is a matching constraint
4955 /// like "4".
4956 bool isMatchingInputConstraint() const;
4957
4958 /// If this is an input matching constraint, this method returns the output
4959 /// operand it matches.
4960 unsigned getMatchedOperand() const;
4961 };
4962
4963 using AsmOperandInfoVector = std::vector<AsmOperandInfo>;
4964
4965 /// Split up the constraint string from the inline assembly value into the
4966 /// specific constraints and their prefixes, and also tie in the associated
4967 /// operand values. If this returns an empty vector, and if the constraint
4968 /// string itself isn't empty, there was an error parsing.
4970 const TargetRegisterInfo *TRI,
4971 const CallBase &Call) const;
4972
4973 /// Examine constraint type and operand type and determine a weight value.
4974 /// The operand object must already have been set up with the operand type.
4976 AsmOperandInfo &info, int maIndex) const;
4977
4978 /// Examine constraint string and operand type and determine a weight value.
4979 /// The operand object must already have been set up with the operand type.
4981 AsmOperandInfo &info, const char *constraint) const;
4982
4983 /// Determines the constraint code and constraint type to use for the specific
4984 /// AsmOperandInfo, setting OpInfo.ConstraintCode and OpInfo.ConstraintType.
4985 /// If the actual operand being passed in is available, it can be passed in as
4986 /// Op, otherwise an empty SDValue can be passed.
4987 virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo,
4988 SDValue Op,
4989 SelectionDAG *DAG = nullptr) const;
4990
4991 /// Given a constraint, return the type of constraint it is for this target.
4992 virtual ConstraintType getConstraintType(StringRef Constraint) const;
4993
4994 using ConstraintPair = std::pair<StringRef, TargetLowering::ConstraintType>;
4996 /// Given an OpInfo with list of constraints codes as strings, return a
4997 /// sorted Vector of pairs of constraint codes and their types in priority of
4998 /// what we'd prefer to lower them as. This may contain immediates that
4999 /// cannot be lowered, but it is meant to be a machine agnostic order of
5000 /// preferences.
5002
5003 /// Given a physical register constraint (e.g. {edx}), return the register
5004 /// number and the register class for the register.
5005 ///
5006 /// Given a register class constraint, like 'r', if this corresponds directly
5007 /// to an LLVM register class, return a register of 0 and the register class
5008 /// pointer.
5009 ///
5010 /// This should only be used for C_Register constraints. On error, this
5011 /// returns a register number of 0 and a null register class pointer.
5012 virtual std::pair<unsigned, const TargetRegisterClass *>
5014 StringRef Constraint, MVT VT) const;
5015
5017 getInlineAsmMemConstraint(StringRef ConstraintCode) const {
5018 if (ConstraintCode == "m")
5020 if (ConstraintCode == "o")
5022 if (ConstraintCode == "X")
5024 if (ConstraintCode == "p")
5027 }
5028
5029 /// Try to replace an X constraint, which matches anything, with another that
5030 /// has more specific requirements based on the type of the corresponding
5031 /// operand. This returns null if there is no replacement to make.
5032 virtual const char *LowerXConstraint(EVT ConstraintVT) const;
5033
5034 /// Lower the specified operand into the Ops vector. If it is invalid, don't
5035 /// add anything to Ops.
5036 virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint,
5037 std::vector<SDValue> &Ops,
5038 SelectionDAG &DAG) const;
5039
5040 // Lower custom output constraints. If invalid, return SDValue().
5041 virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Glue,
5042 const SDLoc &DL,
5043 const AsmOperandInfo &OpInfo,
5044 SelectionDAG &DAG) const;
5045
5046 // Targets may override this function to collect operands from the CallInst
5047 // and for example, lower them into the SelectionDAG operands.
5048 virtual void CollectTargetIntrinsicOperands(const CallInst &I,
5050 SelectionDAG &DAG) const;
5051
5052 //===--------------------------------------------------------------------===//
5053 // Div utility functions
5054 //
5055
5056 SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
5057 SmallVectorImpl<SDNode *> &Created) const;
5058 SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization,
5059 SmallVectorImpl<SDNode *> &Created) const;
5060 // Build sdiv by power-of-2 with conditional move instructions
5061 SDValue buildSDIVPow2WithCMov(SDNode *N, const APInt &Divisor,
5062 SelectionDAG &DAG,
5063 SmallVectorImpl<SDNode *> &Created) const;
5064
5065 /// Targets may override this function to provide custom SDIV lowering for
5066 /// power-of-2 denominators. If the target returns an empty SDValue, LLVM
5067 /// assumes SDIV is expensive and replaces it with a series of other integer
5068 /// operations.
5069 virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor,
5070 SelectionDAG &DAG,
5071 SmallVectorImpl<SDNode *> &Created) const;
5072
5073 /// Targets may override this function to provide custom SREM lowering for
5074 /// power-of-2 denominators. If the target returns an empty SDValue, LLVM
5075 /// assumes SREM is expensive and replaces it with a series of other integer
5076 /// operations.
5077 virtual SDValue BuildSREMPow2(SDNode *N, const APInt &Divisor,
5078 SelectionDAG &DAG,
5079 SmallVectorImpl<SDNode *> &Created) const;
5080
5081 /// Indicate whether this target prefers to combine FDIVs with the same
5082 /// divisor. If the transform should never be done, return zero. If the
5083 /// transform should be done, return the minimum number of divisor uses
5084 /// that must exist.
5085 virtual unsigned combineRepeatedFPDivisors() const {
5086 return 0;
5087 }
5088
5089 /// Hooks for building estimates in place of slower divisions and square
5090 /// roots.
5091
5092 /// Return either a square root or its reciprocal estimate value for the input
5093 /// operand.
5094 /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
5095 /// 'Enabled' as set by a potential default override attribute.
5096 /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
5097 /// refinement iterations required to generate a sufficient (though not
5098 /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
5099 /// The boolean UseOneConstNR output is used to select a Newton-Raphson
5100 /// algorithm implementation that uses either one or two constants.
5101 /// The boolean Reciprocal is used to select whether the estimate is for the
5102 /// square root of the input operand or the reciprocal of its square root.
5103 /// A target may choose to implement its own refinement within this function.
5104 /// If that's true, then return '0' as the number of RefinementSteps to avoid
5105 /// any further refinement of the estimate.
5106 /// An empty SDValue return means no estimate sequence can be created.
5108 int Enabled, int &RefinementSteps,
5109 bool &UseOneConstNR, bool Reciprocal) const {
5110 return SDValue();
5111 }
5112
5113 /// Try to convert the fminnum/fmaxnum to a compare/select sequence. This is
5114 /// required for correctness since InstCombine might have canonicalized a
5115 /// fcmp+select sequence to a FMINNUM/FMAXNUM intrinsic. If we were to fall
5116 /// through to the default expansion/soften to libcall, we might introduce a
5117 /// link-time dependency on libm into a file that originally did not have one.
5119
5120 /// Return a reciprocal estimate value for the input operand.
5121 /// \p Enabled is a ReciprocalEstimate enum with value either 'Unspecified' or
5122 /// 'Enabled' as set by a potential default override attribute.
5123 /// If \p RefinementSteps is 'Unspecified', the number of Newton-Raphson
5124 /// refinement iterations required to generate a sufficient (though not
5125 /// necessarily IEEE-754 compliant) estimate is returned in that parameter.
5126 /// A target may choose to implement its own refinement within this function.
5127 /// If that's true, then return '0' as the number of RefinementSteps to avoid
5128 /// any further refinement of the estimate.
5129 /// An empty SDValue return means no estimate sequence can be created.
5131 int Enabled, int &RefinementSteps) const {
5132 return SDValue();
5133 }
5134
5135 /// Return a target-dependent comparison result if the input operand is
5136 /// suitable for use with a square root estimate calculation. For example, the
5137 /// comparison may check if the operand is NAN, INF, zero, normal, etc. The
5138 /// result should be used as the condition operand for a select or branch.
5139 virtual SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG,
5140 const DenormalMode &Mode) const;
5141
5142 /// Return a target-dependent result if the input operand is not suitable for
5143 /// use with a square root estimate calculation.
5145 SelectionDAG &DAG) const {
5146 return DAG.getConstantFP(0.0, SDLoc(Operand), Operand.getValueType());
5147 }
5148
5149 //===--------------------------------------------------------------------===//
5150 // Legalization utility functions
5151 //
5152
5153 /// Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes,
5154 /// respectively, each computing an n/2-bit part of the result.
5155 /// \param Result A vector that will be filled with the parts of the result
5156 /// in little-endian order.
5157 /// \param LL Low bits of the LHS of the MUL. You can use this parameter
5158 /// if you want to control how low bits are extracted from the LHS.
5159 /// \param LH High bits of the LHS of the MUL. See LL for meaning.
5160 /// \param RL Low bits of the RHS of the MUL. See LL for meaning
5161 /// \param RH High bits of the RHS of the MUL. See LL for meaning.
5162 /// \returns true if the node has been expanded, false if it has not
5163 bool expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, SDValue LHS,
5164 SDValue RHS, SmallVectorImpl<SDValue> &Result, EVT HiLoVT,
5165 SelectionDAG &DAG, MulExpansionKind Kind,
5166 SDValue LL = SDValue(), SDValue LH = SDValue(),
5167 SDValue RL = SDValue(), SDValue RH = SDValue()) const;
5168
5169 /// Expand a MUL into two nodes. One that computes the high bits of
5170 /// the result and one that computes the low bits.
5171 /// \param HiLoVT The value type to use for the Lo and Hi nodes.
5172 /// \param LL Low bits of the LHS of the MUL. You can use this parameter
5173 /// if you want to control how low bits are extracted from the LHS.
5174 /// \param LH High bits of the LHS of the MUL. See LL for meaning.
5175 /// \param RL Low bits of the RHS of the MUL. See LL for meaning
5176 /// \param RH High bits of the RHS of the MUL. See LL for meaning.
5177 /// \returns true if the node has been expanded. false if it has not
5178 bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT,
5179 SelectionDAG &DAG, MulExpansionKind Kind,
5180 SDValue LL = SDValue(), SDValue LH = SDValue(),
5181 SDValue RL = SDValue(), SDValue RH = SDValue()) const;
5182
5183 /// Attempt to expand an n-bit div/rem/divrem by constant using a n/2-bit
5184 /// urem by constant and other arithmetic ops. The n/2-bit urem by constant
5185 /// will be expanded by DAGCombiner. This is not possible for all constant
5186 /// divisors.
5187 /// \param N Node to expand
5188 /// \param Result A vector that will be filled with the lo and high parts of
5189 /// the results. For *DIVREM, this will be the quotient parts followed
5190 /// by the remainder parts.
5191 /// \param HiLoVT The value type to use for the Lo and Hi parts. Should be
5192 /// half of VT.
5193 /// \param LL Low bits of the LHS of the operation. You can use this
5194 /// parameter if you want to control how low bits are extracted from
5195 /// the LHS.
5196 /// \param LH High bits of the LHS of the operation. See LL for meaning.
5197 /// \returns true if the node has been expanded, false if it has not.
5199 EVT HiLoVT, SelectionDAG &DAG,
5200 SDValue LL = SDValue(),
5201 SDValue LH = SDValue()) const;
5202
5203 /// Expand funnel shift.
5204 /// \param N Node to expand
5205 /// \returns The expansion if successful, SDValue() otherwise
5207
5208 /// Expand rotations.
5209 /// \param N Node to expand
5210 /// \param AllowVectorOps expand vector rotate, this should only be performed
5211 /// if the legalization is happening outside of LegalizeVectorOps
5212 /// \returns The expansion if successful, SDValue() otherwise
5213 SDValue expandROT(SDNode *N, bool AllowVectorOps, SelectionDAG &DAG) const;
5214
5215 /// Expand shift-by-parts.
5216 /// \param N Node to expand
5217 /// \param Lo lower-output-part after conversion
5218 /// \param Hi upper-output-part after conversion
5220 SelectionDAG &DAG) const;
5221
5222 /// Expand float(f32) to SINT(i64) conversion
5223 /// \param N Node to expand
5224 /// \param Result output after conversion
5225 /// \returns True, if the expansion was successful, false otherwise
5226 bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const;
5227
5228 /// Expand float to UINT conversion
5229 /// \param N Node to expand
5230 /// \param Result output after conversion
5231 /// \param Chain output chain after conversion
5232 /// \returns True, if the expansion was successful, false otherwise
5233 bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain,
5234 SelectionDAG &DAG) const;
5235
5236 /// Expand UINT(i64) to double(f64) conversion
5237 /// \param N Node to expand
5238 /// \param Result output after conversion
5239 /// \param Chain output chain after conversion
5240 /// \returns True, if the expansion was successful, false otherwise
5241 bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SDValue &Chain,
5242 SelectionDAG &DAG) const;
5243
5244 /// Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
5246
5247 /// Expand fminimum/fmaximum into multiple comparison with selects.
5249
5250 /// Expand FP_TO_[US]INT_SAT into FP_TO_[US]INT and selects or min/max.
5251 /// \param N Node to expand
5252 /// \returns The expansion result
5254
5255 /// Truncate Op to ResultVT. If the result is exact, leave it alone. If it is
5256 /// not exact, force the result to be odd.
5257 /// \param ResultVT The type of result.
5258 /// \param Op The value to round.
5259 /// \returns The expansion result
5261 SelectionDAG &DAG) const;
5262
5263 /// Expand round(fp) to fp conversion
5264 /// \param N Node to expand
5265 /// \returns The expansion result
5267
5268 /// Expand check for floating point class.
5269 /// \param ResultVT The type of intrinsic call result.
5270 /// \param Op The tested value.
5271 /// \param Test The test to perform.
5272 /// \param Flags The optimization flags.
5273 /// \returns The expansion result or SDValue() if it fails.
5275 SDNodeFlags Flags, const SDLoc &DL,
5276 SelectionDAG &DAG) const;
5277
5278 /// Expand CTPOP nodes. Expands vector/scalar CTPOP nodes,
5279 /// vector nodes can only succeed if all operations are legal/custom.
5280 /// \param N Node to expand
5281 /// \returns The expansion result or SDValue() if it fails.
5282 SDValue expandCTPOP(SDNode *N, SelectionDAG &DAG) const;
5283
5284 /// Expand VP_CTPOP nodes.
5285 /// \returns The expansion result or SDValue() if it fails.
5287
5288 /// Expand CTLZ/CTLZ_ZERO_UNDEF nodes. Expands vector/scalar CTLZ nodes,
5289 /// vector nodes can only succeed if all operations are legal/custom.
5290 /// \param N Node to expand
5291 /// \returns The expansion result or SDValue() if it fails.
5292 SDValue expandCTLZ(SDNode *N, SelectionDAG &DAG) const;
5293
5294 /// Expand VP_CTLZ/VP_CTLZ_ZERO_UNDEF nodes.
5295 /// \param N Node to expand
5296 /// \returns The expansion result or SDValue() if it fails.
5298
5299 /// Expand CTTZ via Table Lookup.
5300 /// \param N Node to expand
5301 /// \returns The expansion result or SDValue() if it fails.
5303 SDValue Op, unsigned NumBitsPerElt) const;
5304
5305 /// Expand CTTZ/CTTZ_ZERO_UNDEF nodes. Expands vector/scalar CTTZ nodes,
5306 /// vector nodes can only succeed if all operations are legal/custom.
5307 /// \param N Node to expand
5308 /// \returns The expansion result or SDValue() if it fails.
5309 SDValue expandCTTZ(SDNode *N, SelectionDAG &DAG) const;
5310
5311 /// Expand VP_CTTZ/VP_CTTZ_ZERO_UNDEF nodes.
5312 /// \param N Node to expand
5313 /// \returns The expansion result or SDValue() if it fails.
5315
5316 /// Expand VP_CTTZ_ELTS/VP_CTTZ_ELTS_ZERO_UNDEF nodes.
5317 /// \param N Node to expand
5318 /// \returns The expansion result or SDValue() if it fails.
5320
5321 /// Expand ABS nodes. Expands vector/scalar ABS nodes,
5322 /// vector nodes can only succeed if all operations are legal/custom.
5323 /// (ABS x) -> (XOR (ADD x, (SRA x, type_size)), (SRA x, type_size))
5324 /// \param N Node to expand
5325 /// \param IsNegative indicate negated abs
5326 /// \returns The expansion result or SDValue() if it fails.
5328 bool IsNegative = false) const;
5329
5330 /// Expand ABDS/ABDU nodes. Expands vector/scalar ABDS/ABDU nodes.
5331 /// \param N Node to expand
5332 /// \returns The expansion result or SDValue() if it fails.
5333 SDValue expandABD(SDNode *N, SelectionDAG &DAG) const;
5334
5335 /// Expand BSWAP nodes. Expands scalar/vector BSWAP nodes with i16/i32/i64
5336 /// scalar types. Returns SDValue() if expand fails.
5337 /// \param N Node to expand
5338 /// \returns The expansion result or SDValue() if it fails.
5339 SDValue expandBSWAP(SDNode *N, SelectionDAG &DAG) const;
5340
5341 /// Expand VP_BSWAP nodes. Expands VP_BSWAP nodes with
5342 /// i16/i32/i64 scalar types. Returns SDValue() if expand fails. \param N Node
5343 /// to expand \returns The expansion result or SDValue() if it fails.
5345
5346 /// Expand BITREVERSE nodes. Expands scalar/vector BITREVERSE nodes.
5347 /// Returns SDValue() if expand fails.
5348 /// \param N Node to expand
5349 /// \returns The expansion result or SDValue() if it fails.
5351
5352 /// Expand VP_BITREVERSE nodes. Expands VP_BITREVERSE nodes with
5353 /// i8/i16/i32/i64 scalar types. \param N Node to expand \returns The
5354 /// expansion result or SDValue() if it fails.
5356
5357 /// Turn load of vector type into a load of the individual elements.
5358 /// \param LD load to expand
5359 /// \returns BUILD_VECTOR and TokenFactor nodes.
5360 std::pair<SDValue, SDValue> scalarizeVectorLoad(LoadSDNode *LD,
5361 SelectionDAG &DAG) const;
5362
5363 // Turn a store of a vector type into stores of the individual elements.
5364 /// \param ST Store with a vector value type
5365 /// \returns TokenFactor of the individual store chains.
5367
5368 /// Expands an unaligned load to 2 half-size loads for an integer, and
5369 /// possibly more for vectors.
5370 std::pair<SDValue, SDValue> expandUnalignedLoad(LoadSDNode *LD,
5371 SelectionDAG &DAG) const;
5372
5373 /// Expands an unaligned store to 2 half-size stores for integer values, and
5374 /// possibly more for vectors.
5376
5377 /// Increments memory address \p Addr according to the type of the value
5378 /// \p DataVT that should be stored. If the data is stored in compressed
5379 /// form, the memory address should be incremented according to the number of
5380 /// the stored elements. This number is equal to the number of '1's bits
5381 /// in the \p Mask.
5382 /// \p DataVT is a vector type. \p Mask is a vector value.
5383 /// \p DataVT and \p Mask have the same number of vector elements.
5385 EVT DataVT, SelectionDAG &DAG,
5386 bool IsCompressedMemory) const;
5387
5388 /// Get a pointer to vector element \p Idx located in memory for a vector of
5389 /// type \p VecVT starting at a base address of \p VecPtr. If \p Idx is out of
5390 /// bounds the returned pointer is unspecified, but will be within the vector
5391 /// bounds.
5393 SDValue Index) const;
5394
5395 /// Get a pointer to a sub-vector of type \p SubVecVT at index \p Idx located
5396 /// in memory for a vector of type \p VecVT starting at a base address of
5397 /// \p VecPtr. If \p Idx plus the size of \p SubVecVT is out of bounds the
5398 /// returned pointer is unspecified, but the value returned will be such that
5399 /// the entire subvector would be within the vector bounds.
5401 EVT SubVecVT, SDValue Index) const;
5402
5403 /// Method for building the DAG expansion of ISD::[US][MIN|MAX]. This
5404 /// method accepts integers as its arguments.
5406
5407 /// Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT. This
5408 /// method accepts integers as its arguments.
5410
5411 /// Method for building the DAG expansion of ISD::[US]SHLSAT. This
5412 /// method accepts integers as its arguments.
5414
5415 /// Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT]. This
5416 /// method accepts integers as its arguments.
5418
5419 /// Method for building the DAG expansion of ISD::[US]DIVFIX[SAT]. This
5420 /// method accepts integers as its arguments.
5421 /// Note: This method may fail if the division could not be performed
5422 /// within the type. Clients must retry with a wider type if this happens.
5423 SDValue expandFixedPointDiv(unsigned Opcode, const SDLoc &dl,
5425 unsigned Scale, SelectionDAG &DAG) const;
5426
5427 /// Method for building the DAG expansion of ISD::U(ADD|SUB)O. Expansion
5428 /// always suceeds and populates the Result and Overflow arguments.
5429 void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
5430 SelectionDAG &DAG) const;
5431
5432 /// Method for building the DAG expansion of ISD::S(ADD|SUB)O. Expansion
5433 /// always suceeds and populates the Result and Overflow arguments.
5434 void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow,
5435 SelectionDAG &DAG) const;
5436
5437 /// Method for building the DAG expansion of ISD::[US]MULO. Returns whether
5438 /// expansion was successful and populates the Result and Overflow arguments.
5439 bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow,
5440 SelectionDAG &DAG) const;
5441
5442 /// forceExpandWideMUL - Unconditionally expand a MUL into either a libcall or
5443 /// brute force via a wide multiplication. The expansion works by
5444 /// attempting to do a multiplication on a wider type twice the size of the
5445 /// original operands. LL and LH represent the lower and upper halves of the
5446 /// first operand. RL and RH represent the lower and upper halves of the
5447 /// second operand. The upper and lower halves of the result are stored in Lo
5448 /// and Hi.
5449 void forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, bool Signed,
5450 EVT WideVT, const SDValue LL, const SDValue LH,
5451 const SDValue RL, const SDValue RH, SDValue &Lo,
5452 SDValue &Hi) const;
5453
5454 /// Same as above, but creates the upper halves of each operand by
5455 /// sign/zero-extending the operands.
5456 void forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, bool Signed,
5457 const SDValue LHS, const SDValue RHS, SDValue &Lo,
5458 SDValue &Hi) const;
5459
5460 /// Expand a VECREDUCE_* into an explicit calculation. If Count is specified,
5461 /// only the first Count elements of the vector are used.
5463
5464 /// Expand a VECREDUCE_SEQ_* into an explicit ordered calculation.
5466
5467 /// Expand an SREM or UREM using SDIV/UDIV or SDIVREM/UDIVREM, if legal.
5468 /// Returns true if the expansion was successful.
5469 bool expandREM(SDNode *Node, SDValue &Result, SelectionDAG &DAG) const;
5470
5471 /// Method for building the DAG expansion of ISD::VECTOR_SPLICE. This
5472 /// method accepts vectors as its arguments.
5474
5475 /// Legalize a SETCC or VP_SETCC with given LHS and RHS and condition code CC
5476 /// on the current target. A VP_SETCC will additionally be given a Mask
5477 /// and/or EVL not equal to SDValue().
5478 ///
5479 /// If the SETCC has been legalized using AND / OR, then the legalized node
5480 /// will be stored in LHS. RHS and CC will be set to SDValue(). NeedInvert
5481 /// will be set to false. This will also hold if the VP_SETCC has been
5482 /// legalized using VP_AND / VP_OR.
5483 ///
5484 /// If the SETCC / VP_SETCC has been legalized by using
5485 /// getSetCCSwappedOperands(), then the values of LHS and RHS will be
5486 /// swapped, CC will be set to the new condition, and NeedInvert will be set
5487 /// to false.
5488 ///
5489 /// If the SETCC / VP_SETCC has been legalized using the inverse condcode,
5490 /// then LHS and RHS will be unchanged, CC will set to the inverted condcode,
5491 /// and NeedInvert will be set to true. The caller must invert the result of
5492 /// the SETCC with SelectionDAG::getLogicalNOT() or take equivalent action to
5493 /// swap the effect of a true/false result.
5494 ///
5495 /// \returns true if the SETCC / VP_SETCC has been legalized, false if it
5496 /// hasn't.
5498 SDValue &RHS, SDValue &CC, SDValue Mask,
5499 SDValue EVL, bool &NeedInvert, const SDLoc &dl,
5500 SDValue &Chain, bool IsSignaling = false) const;
5501
5502 //===--------------------------------------------------------------------===//
5503 // Instruction Emitting Hooks
5504 //
5505
5506 /// This method should be implemented by targets that mark instructions with
5507 /// the 'usesCustomInserter' flag. These instructions are special in various
5508 /// ways, which require special support to insert. The specified MachineInstr
5509 /// is created but not inserted into any basic blocks, and this method is
5510 /// called to expand it into a sequence of instructions, potentially also
5511 /// creating new basic blocks and control flow.
5512 /// As long as the returned basic block is different (i.e., we created a new
5513 /// one), the custom inserter is free to modify the rest of \p MBB.
5514 virtual MachineBasicBlock *
5516
5517 /// This method should be implemented by targets that mark instructions with
5518 /// the 'hasPostISelHook' flag. These instructions must be adjusted after
5519 /// instruction selection by target hooks. e.g. To fill in optional defs for
5520 /// ARM 's' setting instructions.
5522 SDNode *Node) const;
5523
5524 /// If this function returns true, SelectionDAGBuilder emits a
5525 /// LOAD_STACK_GUARD node when it is lowering Intrinsic::stackprotector.
5526 virtual bool useLoadStackGuardNode() const {
5527 return false;
5528 }
5529
5531 const SDLoc &DL) const {
5532 llvm_unreachable("not implemented for this target");
5533 }
5534
5535 /// Lower TLS global address SDNode for target independent emulated TLS model.
5537 SelectionDAG &DAG) const;
5538
5539 /// Expands target specific indirect branch for the case of JumpTable
5540 /// expansion.
5542 SDValue Addr, int JTI,
5543 SelectionDAG &DAG) const;
5544
5545 // seteq(x, 0) -> truncate(srl(ctlz(zext(x)), log2(#bits)))
5546 // If we're comparing for equality to zero and isCtlzFast is true, expose the
5547 // fact that this can be implemented as a ctlz/srl pair, so that the dag
5548 // combiner can fold the new nodes.
5550
5551 // Return true if `X & Y eq/ne 0` is preferable to `X & Y ne/eq Y`
5553 return true;
5554 }
5555
5556private:
5557 SDValue foldSetCCWithAnd(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
5558 const SDLoc &DL, DAGCombinerInfo &DCI) const;
5559 SDValue foldSetCCWithBinOp(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond,
5560 const SDLoc &DL, DAGCombinerInfo &DCI) const;
5561
5562 SDValue optimizeSetCCOfSignedTruncationCheck(EVT SCCVT, SDValue N0,
5564 DAGCombinerInfo &DCI,
5565 const SDLoc &DL) const;
5566
5567 // (X & (C l>>/<< Y)) ==/!= 0 --> ((X <</l>> Y) & C) ==/!= 0
5568 SDValue optimizeSetCCByHoistingAndByConstFromLogicalShift(
5569 EVT SCCVT, SDValue N0, SDValue N1C, ISD::CondCode Cond,
5570 DAGCombinerInfo &DCI, const SDLoc &DL) const;
5571
5572 SDValue prepareUREMEqFold(EVT SETCCVT, SDValue REMNode,
5573 SDValue CompTargetNode, ISD::CondCode Cond,
5574 DAGCombinerInfo &DCI, const SDLoc &DL,
5575 SmallVectorImpl<SDNode *> &Created) const;
5576 SDValue buildUREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
5577 ISD::CondCode Cond, DAGCombinerInfo &DCI,
5578 const SDLoc &DL) const;
5579
5580 SDValue prepareSREMEqFold(EVT SETCCVT, SDValue REMNode,
5581 SDValue CompTargetNode, ISD::CondCode Cond,
5582 DAGCombinerInfo &DCI, const SDLoc &DL,
5583 SmallVectorImpl<SDNode *> &Created) const;
5584 SDValue buildSREMEqFold(EVT SETCCVT, SDValue REMNode, SDValue CompTargetNode,
5585 ISD::CondCode Cond, DAGCombinerInfo &DCI,
5586 const SDLoc &DL) const;
5587};
5588
5589/// Given an LLVM IR type and return type attributes, compute the return value
5590/// EVTs and flags, and optionally also the offsets, if the return value is
5591/// being lowered to memory.
5592void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr,
5593 SmallVectorImpl<ISD::OutputArg> &Outs,
5594 const TargetLowering &TLI, const DataLayout &DL);
5595
5596} // end namespace llvm
5597
5598#endif // LLVM_CODEGEN_TARGETLOWERING_H
unsigned const MachineRegisterInfo * MRI
MachineBasicBlock & MBB
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
MachineBasicBlock MachineBasicBlock::iterator MBBI
This file implements a class to represent arbitrary precision integral constant values and operations...
Function Alias Analysis Results
Atomic ordering constants.
This file contains the simple types necessary to represent the attributes associated with functions a...
basic Basic Alias true
block Block Frequency Analysis
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
Analysis containing CSE Info
Definition: CSEInfo.cpp:27
#define LLVM_READONLY
Definition: Compiler.h:227
static cl::opt< unsigned > CostThreshold("dfa-cost-threshold", cl::desc("Maximum cost accepted for the transformation"), cl::Hidden, cl::init(50))
return RetTy
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
This file defines the DenseMap class.
T Content
uint64_t Addr
std::string Name
static GCMetadataPrinterRegistry::Add< ErlangGCPrinter > X("erlang", "erlang-compatible garbage collector")
const HexagonInstrInfo * TII
IRTranslator LLVM IR MI
#define RegName(no)
lazy value info
Implement a low-level type suitable for MachineInstr level instruction selection.
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
Machine Check Debug Module
unsigned const TargetRegisterInfo * TRI
uint64_t High
LLVMContext & Context
static GCMetadataPrinterRegistry::Add< OcamlGCMetadataPrinter > Y("ocaml", "ocaml 3.10-compatible collector")
PowerPC Reduce CR logical Operation
const char LLVMTargetMachineRef TM
const SmallVectorImpl< MachineOperand > & Cond
static cl::opt< RegAllocEvictionAdvisorAnalysis::AdvisorMode > Mode("regalloc-enable-advisor", cl::Hidden, cl::init(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Default), cl::desc("Enable regalloc advisor mode"), cl::values(clEnumValN(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Default, "default", "Default"), clEnumValN(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Release, "release", "precompiled"), clEnumValN(RegAllocEvictionAdvisorAnalysis::AdvisorMode::Development, "development", "for training")))
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
This file defines the SmallVector class.
Value * RHS
Value * LHS
Class for arbitrary precision integers.
Definition: APInt.h:76
unsigned getBitWidth() const
Return the number of bits in the APInt.
Definition: APInt.h:1439
ArrayRef - Represent a constant reference to an array (0 or more elements consecutively in memory),...
Definition: ArrayRef.h:41
A cache of @llvm.assume calls within a function.
An instruction that atomically checks whether a specified value is in a memory location,...
Definition: Instructions.h:539
an instruction that atomically reads a memory location, combines it with another value,...
Definition: Instructions.h:748
bool isFloatingPointOperation() const
Definition: Instructions.h:922
BinOp getOperation() const
Definition: Instructions.h:845
Value * getValOperand()
Definition: Instructions.h:914
bool getValueAsBool() const
Return the attribute's value as a boolean.
Definition: Attributes.cpp:335
BlockFrequencyInfo pass uses BlockFrequencyInfoImpl implementation to estimate IR basic block frequen...
CCState - This class holds information needed while lowering arguments and return values.
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1494
This class represents a function call, abstracting a target machine's calling convention.
This is the shared class of boolean and integer constants.
Definition: Constants.h:80
This class represents a range of values.
Definition: ConstantRange.h:47
This is an important base class in LLVM.
Definition: Constant.h:41
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
bool empty() const
Definition: DenseMap.h:98
constexpr bool isScalar() const
Exactly one element.
Definition: TypeSize.h:319
This is a fast-path instruction selection class that generates poor code and doesn't support illegal ...
Definition: FastISel.h:66
FunctionLoweringInfo - This contains information that is global to a function that is used when lower...
Class to represent function types.
Definition: DerivedTypes.h:103
unsigned getNumParams() const
Return the number of fixed parameters this function type requires.
Definition: DerivedTypes.h:142
bool isVarArg() const
Definition: DerivedTypes.h:123
Attribute getFnAttribute(Attribute::AttrKind Kind) const
Return the attribute for the given attribute kind.
Definition: Function.cpp:703
Common base class shared among various IRBuilders.
Definition: IRBuilder.h:94
A wrapper class for inspecting calls to intrinsic functions.
Definition: IntrinsicInst.h:47
constexpr unsigned getScalarSizeInBits() const
Definition: LowLevelType.h:267
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
An instruction for reading from memory.
Definition: Instructions.h:184
This class is used to represent ISD::LOAD nodes.
Represents a single loop in the control flow graph.
Definition: LoopInfo.h:44
Context object for machine code objects.
Definition: MCContext.h:81
Base class for the full range of assembler expressions which are needed for parsing.
Definition: MCExpr.h:35
Machine Value Type.
SimpleValueType SimpleTy
uint64_t getScalarSizeInBits() const
@ INVALID_SIMPLE_VALUE_TYPE
bool isInteger() const
Return true if this is an integer or a vector integer type.
TypeSize getSizeInBits() const
Returns the size of the specified MVT in bits.
bool isPow2VectorType() const
Returns true if the given vector is a power of 2.
ElementCount getVectorElementCount() const
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
bool isValid() const
Return true if this is a valid simple valuetype.
static MVT getIntegerVT(unsigned BitWidth)
Instructions::iterator instr_iterator
Representation of each machine instruction.
Definition: MachineInstr.h:69
A description of a memory reference used in the backend.
Flags
Flags values. These may be or'd together.
MachineRegisterInfo - Keep track of information for virtual and physical registers,...
This is an abstract virtual class for memory operations.
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
MutableArrayRef - Represent a mutable reference to an array (0 or more elements consecutively in memo...
Definition: ArrayRef.h:307
A discriminated union of two or more pointer types, with the discriminator in the low bit of the poin...
Definition: PointerUnion.h:118
Analysis providing profile information.
Wrapper class representing virtual and physical registers.
Definition: Register.h:19
Wrapper class for IR location info (IR ordering and DebugLoc) to be passed into SDNode creation funct...
Represents one node in the SelectionDAG.
bool use_empty() const
Return true if there are no uses of this node.
Unlike LLVM values, Selection DAG nodes may return multiple values as the result of a computation.
SDNode * getNode() const
get the SDNode which holds the desired result
bool hasOneUse() const
Return true if there is exactly one node using value ResNo of Node.
EVT getValueType() const
Return the ValueType of the referenced return value.
This is used to represent a portion of an LLVM function in a low-level Data Dependence DAG representa...
Definition: SelectionDAG.h:225
SDValue getConstantFP(double Val, const SDLoc &DL, EVT VT, bool isTarget=false)
Create a ConstantFPSDNode wrapping a constant value.
const TargetLowering & getTargetLoweringInfo() const
Definition: SelectionDAG.h:478
const DataLayout & getDataLayout() const
Definition: SelectionDAG.h:472
void RemoveDeadNode(SDNode *N)
Remove the specified node from the system.
SDValue getNode(unsigned Opcode, const SDLoc &DL, EVT VT, ArrayRef< SDUse > Ops)
Gets or creates the specified node.
MachineFunction & getMachineFunction() const
Definition: SelectionDAG.h:469
LLVMContext * getContext() const
Definition: SelectionDAG.h:485
This instruction constructs a fixed permutation of two input vectors.
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
An instruction for storing to memory.
Definition: Instructions.h:317
This class is used to represent ISD::STORE nodes.
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
Multiway switch.
TargetInstrInfo - Interface to description of machine instruction set.
Provides information about what library functions are available for the current target.
void setAttributes(const CallBase *Call, unsigned ArgIdx)
Set CallLoweringInfo attribute flags based on a call instruction and called function attributes.
LegalizeTypeAction getTypeAction(MVT VT) const
void setTypeAction(MVT VT, LegalizeTypeAction Action)
This base class for TargetLowering contains the SelectionDAG-independent parts that can be used from ...
virtual Value * emitStoreConditional(IRBuilderBase &Builder, Value *Val, Value *Addr, AtomicOrdering Ord) const
Perform a store-conditional operation to Addr.
virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, EVT) const
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
bool isOperationExpand(unsigned Op, EVT VT) const
Return true if the specified operation is illegal on this target or unlikely to be made legal with cu...
int InstructionOpcodeToISD(unsigned Opcode) const
Get the ISD node that corresponds to the Instruction class opcode.
EVT getMemValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
virtual bool enableAggressiveFMAFusion(LLT Ty) const
Return true if target always benefits from combining into FMA for a given value type.
virtual void emitBitTestAtomicRMWIntrinsic(AtomicRMWInst *AI) const
Perform a bit test atomicrmw using a target-specific intrinsic.
void setOperationAction(ArrayRef< unsigned > Ops, ArrayRef< MVT > VTs, LegalizeAction Action)
virtual bool requiresUniformRegister(MachineFunction &MF, const Value *) const
Allows target to decide about the register class of the specific value that is live outside the defin...
void setBooleanVectorContents(BooleanContent Ty)
Specify how the target extends the result of a vector boolean value from a vector of i1 to a wider ty...
virtual unsigned getVaListSizeInBits(const DataLayout &DL) const
Returns the size of the platform's va_list object.
virtual bool isVectorShiftByScalarCheap(Type *Ty) const
Return true if it's significantly cheaper to shift a vector by a uniform scalar than by an amount whi...
void setOperationAction(unsigned Op, MVT VT, LegalizeAction Action)
Indicate that the specified operation does not work with the specified type and indicate what to do a...
virtual void finalizeLowering(MachineFunction &MF) const
Execute target specific actions to finalize target lowering.
virtual bool preferSextInRegOfTruncate(EVT TruncVT, EVT VT, EVT ExtVT) const
virtual bool decomposeMulByConstant(LLVMContext &Context, EVT VT, SDValue C) const
Return true if it is profitable to transform an integer multiplication-by-constant into simpler opera...
void setMaxDivRemBitWidthSupported(unsigned SizeInBits)
Set the size in bits of the maximum div/rem the backend supports.
virtual bool hasAndNot(SDValue X) const
Return true if the target has a bitwise and-not operation: X = ~A & B This can be used to simplify se...
virtual bool shouldSignExtendTypeInLibCall(EVT Type, bool IsSigned) const
Returns true if arguments should be sign-extended in lib calls.
void initActions()
Initialize all of the actions to default values.
ReciprocalEstimate
Reciprocal estimate status values used by the functions below.
bool PredictableSelectIsExpensive
Tells the code generator that select is more expensive than a branch if the branch is usually predict...
virtual bool isShuffleMaskLegal(ArrayRef< int >, EVT) const
Targets can use this to indicate that they only support some VECTOR_SHUFFLE operations,...
virtual bool enableAggressiveFMAFusion(EVT VT) const
Return true if target always benefits from combining into FMA for a given value type.
virtual bool isComplexDeinterleavingOperationSupported(ComplexDeinterleavingOperation Operation, Type *Ty) const
Does this target support complex deinterleaving with the given operation and type.
virtual bool shouldRemoveRedundantExtend(SDValue Op) const
Return true (the default) if it is profitable to remove a sext_inreg(x) where the sext is redundant,...
bool isIndexedStoreLegal(unsigned IdxMode, EVT VT) const
Return true if the specified indexed load is legal on this target.
SDValue promoteTargetBoolean(SelectionDAG &DAG, SDValue Bool, EVT ValVT) const
Promote the given target boolean to a target boolean of the given type.
virtual bool isFMADLegal(const SelectionDAG &DAG, const SDNode *N) const
Returns true if be combined with to form an ISD::FMAD.
virtual bool hasStandaloneRem(EVT VT) const
Return true if the target can handle a standalone remainder operation.
virtual bool isExtFreeImpl(const Instruction *I) const
Return true if the extension represented by I is free.
void setCmpLibcallCC(RTLIB::Libcall Call, ISD::CondCode CC)
Override the default CondCode to be used to test the result of the comparison libcall against zero.
EVT getValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the EVT corresponding to this LLVM type.
LegalizeAction
This enum indicates whether operations are valid for a target, and if not, what action should be used...
virtual bool shouldExpandBuildVectorWithShuffles(EVT, unsigned DefinedValues) const
LegalizeAction getIndexedMaskedStoreAction(unsigned IdxMode, MVT VT) const
Return how the indexed store should be treated: either it is legal, needs to be promoted to a larger ...
virtual bool canCombineTruncStore(EVT ValVT, EVT MemVT, bool LegalOnly) const
virtual bool isSelectSupported(SelectSupportKind) const
CallingConv::ID getLibcallCallingConv(RTLIB::Libcall Call) const
Get the CallingConv that should be used for the specified libcall.
unsigned MaxStoresPerMemcpyOptSize
Likewise for functions with the OptSize attribute.
MachineBasicBlock * emitPatchPoint(MachineInstr &MI, MachineBasicBlock *MBB) const
Replace/modify any TargetFrameIndex operands with a targte-dependent sequence of memory operands that...
virtual bool isEqualityCmpFoldedWithSignedCmp() const
Return true if instruction generated for equality comparison is folded with instruction generated for...
virtual bool useStackGuardXorFP() const
If this function returns true, stack protection checks should XOR the frame pointer (or whichever poi...
virtual bool isLegalICmpImmediate(int64_t) const
Return true if the specified immediate is legal icmp immediate, that is the target has icmp instructi...
virtual bool convertSetCCLogicToBitwiseLogic(EVT VT) const
Use bitwise logic to make pairs of compares more efficient.
void setAtomicLoadExtAction(ArrayRef< unsigned > ExtTypes, MVT ValVT, ArrayRef< MVT > MemVTs, LegalizeAction Action)
virtual const TargetRegisterClass * getRegClassFor(MVT VT, bool isDivergent=false) const
Return the register class that should be used for the specified value type.
virtual Value * getSafeStackPointerLocation(IRBuilderBase &IRB) const
Returns the target-specific address of the unsafe stack pointer.
virtual bool shouldFormOverflowOp(unsigned Opcode, EVT VT, bool MathUsed) const
Try to convert math with an overflow comparison into the corresponding DAG node operation.
ShiftLegalizationStrategy
Return the preferred strategy to legalize tihs SHIFT instruction, with ExpansionFactor being the recu...
virtual bool isVectorLoadExtDesirable(SDValue ExtVal) const
Return true if folding a vector load into ExtVal (a sign, zero, or any extend node) is profitable.
virtual bool isMaskAndCmp0FoldingBeneficial(const Instruction &AndI) const
Return if the target supports combining a chain like:
virtual Value * createComplexDeinterleavingIR(IRBuilderBase &B, ComplexDeinterleavingOperation OperationType, ComplexDeinterleavingRotation Rotation, Value *InputA, Value *InputB, Value *Accumulator=nullptr) const
Create the IR node for the given complex deinterleaving operation.
virtual bool shouldConvertConstantLoadToIntImm(const APInt &Imm, Type *Ty) const
Return true if it is beneficial to convert a load of a constant to just the constant itself.
virtual bool isSupportedFixedPointOperation(unsigned Op, EVT VT, unsigned Scale) const
Custom method defined by each target to indicate if an operation which may require a scale is support...
void setLoadExtAction(ArrayRef< unsigned > ExtTypes, MVT ValVT, MVT MemVT, LegalizeAction Action)
virtual Sched::Preference getSchedulingPreference(SDNode *) const
Some scheduler, e.g.
virtual MachineInstr * EmitKCFICheck(MachineBasicBlock &MBB, MachineBasicBlock::instr_iterator &MBBI, const TargetInstrInfo *TII) const
void setMinStackArgumentAlignment(Align Alignment)
Set the minimum stack alignment of an argument.
bool isExtLoad(const LoadInst *Load, const Instruction *Ext, const DataLayout &DL) const
Return true if Load and Ext can form an ExtLoad.
int getRecipEstimateSqrtEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a square root of the given type based on the function's at...
virtual bool canOpTrap(unsigned Op, EVT VT) const
Returns true if the operation can trap for the value type.
LegalizeTypeAction getTypeAction(MVT VT) const
virtual bool lowerInterleavedLoad(LoadInst *LI, ArrayRef< ShuffleVectorInst * > Shuffles, ArrayRef< unsigned > Indices, unsigned Factor) const
Lower an interleaved load to target specific intrinsics.
virtual bool isLegalScaleForGatherScatter(uint64_t Scale, uint64_t ElemSize) const
EVT getTypeToExpandTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
virtual bool isSExtCheaperThanZExt(EVT FromTy, EVT ToTy) const
Return true if sign-extension from FromTy to ToTy is cheaper than zero-extension.
virtual bool shouldInsertFencesForAtomic(const Instruction *I) const
Whether AtomicExpandPass should automatically insert fences and reduce ordering for this atomic.
virtual bool shouldLocalize(const MachineInstr &MI, const TargetTransformInfo *TTI) const
Check whether or not MI needs to be moved close to its uses.
virtual unsigned getMaxPermittedBytesForAlignment(MachineBasicBlock *MBB) const
Return the maximum amount of bytes allowed to be emitted when padding for alignment.
virtual bool allowsMisalignedMemoryAccesses(LLT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
LLT handling variant.
void setMaximumJumpTableSize(unsigned)
Indicate the maximum number of entries in jump tables.
virtual MVT getVectorIdxTy(const DataLayout &DL) const
Returns the type to be used for the index operand of: ISD::INSERT_VECTOR_ELT, ISD::EXTRACT_VECTOR_ELT...
virtual bool isSafeMemOpType(MVT) const
Returns true if it's safe to use load / store of the specified type to expand memcpy / memset inline.
virtual CondMergingParams getJumpConditionMergingParams(Instruction::BinaryOps, const Value *, const Value *) const
virtual unsigned getMinimumJumpTableEntries() const
Return lower limit for number of blocks in a jump table.
const TargetMachine & getTargetMachine() const
unsigned MaxLoadsPerMemcmp
Specify maximum number of load instructions per memcmp call.
virtual unsigned getNumRegistersForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain targets require unusual breakdowns of certain types.
bool rangeFitsInWord(const APInt &Low, const APInt &High, const DataLayout &DL) const
Check whether the range [Low,High] fits in a machine word.
virtual bool isCtpopFast(EVT VT) const
Return true if ctpop instruction is fast.
virtual MachineMemOperand::Flags getTargetMMOFlags(const Instruction &I) const
This callback is used to inspect load/store instructions and add target-specific MachineMemOperand fl...
virtual bool isZExtFree(LLT FromTy, LLT ToTy, const DataLayout &DL, LLVMContext &Ctx) const
unsigned MaxGluedStoresPerMemcpy
Specify max number of store instructions to glue in inlined memcpy.
virtual bool isZExtFree(Type *FromTy, Type *ToTy) const
Return true if any actual instruction that defines a value of type FromTy implicitly zero-extends the...
bool isPaddedAtMostSignificantBitsWhenStored(EVT VT) const
Indicates if any padding is guaranteed to go at the most significant bits when storing the type to me...
virtual MVT getRegisterTypeForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT) const
Certain combinations of ABIs, Targets and features require that types are legal for some operations a...
void setOperationPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
Convenience method to set an operation to Promote and specify the type in a single call.
LegalizeTypeAction
This enum indicates whether a types are legal for a target, and if not, what action should be used to...
virtual bool isSuitableForJumpTable(const SwitchInst *SI, uint64_t NumCases, uint64_t Range, ProfileSummaryInfo *PSI, BlockFrequencyInfo *BFI) const
Return true if lowering to a jump table is suitable for a set of case clusters which may contain NumC...
unsigned getMinCmpXchgSizeInBits() const
Returns the size of the smallest cmpxchg or ll/sc instruction the backend supports.
virtual Value * emitMaskedAtomicRMWIntrinsic(IRBuilderBase &Builder, AtomicRMWInst *AI, Value *AlignedAddr, Value *Incr, Value *Mask, Value *ShiftAmt, AtomicOrdering Ord) const
Perform a masked atomicrmw using a target-specific intrinsic.
virtual bool areJTsAllowed(const Function *Fn) const
Return true if lowering to a jump table is allowed.
bool enableExtLdPromotion() const
Return true if the target wants to use the optimization that turns ext(promotableInst1(....
virtual bool isFPExtFoldable(const MachineInstr &MI, unsigned Opcode, LLT DestTy, LLT SrcTy) const
Return true if an fpext operation input to an Opcode operation is free (for instance,...
void setLibcallCallingConv(RTLIB::Libcall Call, CallingConv::ID CC)
Set the CallingConv that should be used for the specified libcall.
void setIndexedMaskedLoadAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked load does or does not work with the specified type and ind...
void setMaxBytesForAlignment(unsigned MaxBytes)
bool isOperationLegalOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal using promotion.
void setHasExtractBitsInsn(bool hasExtractInsn=true)
Tells the code generator that the target has BitExtract instructions.
void addBypassSlowDiv(unsigned int SlowBitWidth, unsigned int FastBitWidth)
Tells the code generator which bitwidths to bypass.
virtual bool hasBitTest(SDValue X, SDValue Y) const
Return true if the target has a bit-test instruction: (X & (1 << Y)) ==/!= 0 This knowledge can be us...
MVT getRegisterType(LLVMContext &Context, EVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual bool lowerInterleavedStore(StoreInst *SI, ShuffleVectorInst *SVI, unsigned Factor) const
Lower an interleaved store to target specific intrinsics.
virtual bool needsFixedCatchObjects() const
virtual Value * getSDagStackGuard(const Module &M) const
Return the variable that's previously inserted by insertSSPDeclarations, if any, otherwise return nul...
virtual Value * emitLoadLinked(IRBuilderBase &Builder, Type *ValueTy, Value *Addr, AtomicOrdering Ord) const
Perform a load-linked operation on Addr, returning a "Value *" with the corresponding pointee type.
void setMaxLargeFPConvertBitWidthSupported(unsigned SizeInBits)
Set the size in bits of the maximum fp convert the backend supports.
virtual EVT getOptimalMemOpType(const MemOp &Op, const AttributeList &) const
Returns the target specific optimal type for load and store operations as a result of memset,...
virtual unsigned getNumRegisters(LLVMContext &Context, EVT VT, std::optional< MVT > RegisterVT=std::nullopt) const
Return the number of registers that this ValueType will eventually require.
virtual bool isCheapToSpeculateCttz(Type *Ty) const
Return true if it is cheap to speculate a call to intrinsic cttz.
bool isJumpExpensive() const
Return true if Flow Control is an expensive operation that should be avoided.
virtual bool useFPRegsForHalfType() const
LegalizeAction getCondCodeAction(ISD::CondCode CC, MVT VT) const
Return how the condition code should be treated: either it is legal, needs to be expanded to some oth...
bool hasExtractBitsInsn() const
Return true if the target has BitExtract instructions.
bool isTruncStoreLegal(EVT ValVT, EVT MemVT) const
Return true if the specified store with truncation is legal on this target.
virtual bool isLoadBitCastBeneficial(EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: fold (conv (load x)) -> (load (conv*)x) On arch...
LegalizeAction getIndexedStoreAction(unsigned IdxMode, MVT VT) const
Return how the indexed store should be treated: either it is legal, needs to be promoted to a larger ...
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed load does or does not work with the specified type and indicate w...
unsigned getMaxStoresPerMemcpy(bool OptSize) const
Get maximum # of store operations permitted for llvm.memcpy.
void setPrefLoopAlignment(Align Alignment)
Set the target's preferred loop alignment.
virtual bool softPromoteHalfType() const
virtual bool areTwoSDNodeTargetMMOFlagsMergeable(const MemSDNode &NodeX, const MemSDNode &NodeY) const
Return true if it is valid to merge the TargetMMOFlags in two SDNodes.
unsigned getMaximumJumpTableSize() const
Return upper limit for number of entries in a jump table.
virtual bool isCommutativeBinOp(unsigned Opcode) const
Returns true if the opcode is a commutative binary operation.
void setMaxAtomicSizeInBitsSupported(unsigned SizeInBits)
Set the maximum atomic operation size supported by the backend.
virtual bool isFPImmLegal(const APFloat &, EVT, bool ForCodeSize=false) const
Returns true if the target can instruction select the specified FP immediate natively.
virtual bool isExtractVecEltCheap(EVT VT, unsigned Index) const
Return true if extraction of a scalar element from the given vector type at the given index is cheap.
virtual MVT::SimpleValueType getCmpLibcallReturnType() const
Return the ValueType for comparison libcalls.
void setOperationAction(ArrayRef< unsigned > Ops, MVT VT, LegalizeAction Action)
virtual bool optimizeFMulOrFDivAsShiftAddBitcast(SDNode *N, SDValue FPConst, SDValue IntPow2) const
unsigned getBitWidthForCttzElements(Type *RetTy, ElementCount EC, bool ZeroIsPoison, const ConstantRange *VScaleRange) const
Return the minimum number of bits required to hold the maximum possible number of trailing zero vecto...
SelectSupportKind
Enum that describes what type of support for selects the target has.
LegalizeAction getIndexedLoadAction(unsigned IdxMode, MVT VT) const
Return how the indexed load should be treated: either it is legal, needs to be promoted to a larger s...
virtual bool shouldTransformSignedTruncationCheck(EVT XVT, unsigned KeptBits) const
Should we tranform the IR-optimal check for whether given truncation down into KeptBits would be trun...
virtual bool isFPExtFoldable(const SelectionDAG &DAG, unsigned Opcode, EVT DestVT, EVT SrcVT) const
Return true if an fpext operation input to an Opcode operation is free (for instance,...
bool isLegalRC(const TargetRegisterInfo &TRI, const TargetRegisterClass &RC) const
Return true if the value types that can be represented by the specified register class are all legal.
virtual TargetLoweringBase::LegalizeTypeAction getPreferredVectorAction(MVT VT) const
Return the preferred vector type legalization action.
virtual bool allowTruncateForTailCall(Type *FromTy, Type *ToTy) const
Return true if a truncation from FromTy to ToTy is permitted when deciding whether a call is in tail ...
void setAtomicLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Let target indicate that an extending atomic load of the specified type is legal.
virtual bool shouldExtendGSIndex(EVT VT, EVT &EltTy) const
Returns true if the index type for a masked gather/scatter requires extending.
Value * getDefaultSafeStackPointerLocation(IRBuilderBase &IRB, bool UseTLS) const
virtual unsigned getVectorTypeBreakdownForCallingConv(LLVMContext &Context, CallingConv::ID CC, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Certain targets such as MIPS require that some types such as vectors are always broken down into scal...
virtual bool shouldNormalizeToSelectSequence(LLVMContext &Context, EVT VT) const
Returns true if we should normalize select(N0&N1, X, Y) => select(N0, select(N1, X,...
virtual Function * getSSPStackGuardCheck(const Module &M) const
If the target has a standard stack protection check function that performs validation and error handl...
Register getStackPointerRegisterToSaveRestore() const
If a physical register, this specifies the register that llvm.savestack/llvm.restorestack should save...
virtual bool lowerDeinterleaveIntrinsicToLoad(IntrinsicInst *DI, LoadInst *LI) const
Lower a deinterleave intrinsic to a target specific load intrinsic.
virtual StringRef getStackProbeSymbolName(const MachineFunction &MF) const
LegalizeAction getFixedPointOperationAction(unsigned Op, EVT VT, unsigned Scale) const
Some fixed point operations may be natively supported by the target but only for specific scales.
virtual bool preferScalarizeSplat(SDNode *N) const
MachineMemOperand::Flags getAtomicMemOperandFlags(const Instruction &AI, const DataLayout &DL) const
bool isIndexedMaskedLoadLegal(unsigned IdxMode, EVT VT) const
Return true if the specified indexed load is legal on this target.
virtual ISD::NodeType getExtendForAtomicOps() const
Returns how the platform's atomic operations are extended (ZERO_EXTEND, SIGN_EXTEND,...
Sched::Preference getSchedulingPreference() const
Return target scheduling preference.
virtual bool getTgtMemIntrinsic(IntrinsicInfo &, const CallInst &, MachineFunction &, unsigned) const
Given an intrinsic, checks if on the target the intrinsic will need to map to a MemIntrinsicNode (tou...
virtual bool allowsMisalignedMemoryAccesses(EVT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *=nullptr) const
Determine if the target supports unaligned memory accesses.
virtual LLT getOptimalMemOpLLT(const MemOp &Op, const AttributeList &) const
LLT returning variant.
void setMinFunctionAlignment(Align Alignment)
Set the target's minimum function alignment.
bool isOperationCustom(unsigned Op, EVT VT) const
Return true if the operation uses custom lowering, regardless of whether the type is legal or not.
virtual void emitExpandAtomicRMW(AtomicRMWInst *AI) const
Perform a atomicrmw expansion using a target-specific way.
unsigned MaxStoresPerMemsetOptSize
Likewise for functions with the OptSize attribute.
virtual bool reduceSelectOfFPConstantLoads(EVT CmpOpVT) const
Return true if it is profitable to convert a select of FP constants into a constant pool load whose a...
bool hasBigEndianPartOrdering(EVT VT, const DataLayout &DL) const
When splitting a value of the specified type into parts, does the Lo or Hi part come first?...
virtual bool hasStackProbeSymbol(const MachineFunction &MF) const
Returns the name of the symbol used to emit stack probes or the empty string if not applicable.
bool isSlowDivBypassed() const
Returns true if target has indicated at least one type should be bypassed.
virtual Align getABIAlignmentForCallingConv(Type *ArgTy, const DataLayout &DL) const
Certain targets have context sensitive alignment requirements, where one type has the alignment requi...
virtual bool isExtractSubvectorCheap(EVT ResVT, EVT SrcVT, unsigned Index) const
Return true if EXTRACT_SUBVECTOR is cheap for extracting this result type from this source type with ...
virtual bool isMulAddWithConstProfitable(SDValue AddNode, SDValue ConstNode) const
Return true if it may be profitable to transform (mul (add x, c1), c2) -> (add (mul x,...
virtual bool shouldExtendTypeInLibCall(EVT Type) const
Returns true if arguments should be extended in lib calls.
void setBooleanContents(BooleanContent Ty)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
virtual void markLibCallAttributes(MachineFunction *MF, unsigned CC, ArgListTy &Args) const
virtual bool isFsqrtCheap(SDValue X, SelectionDAG &DAG) const
Return true if SQRT(X) shouldn't be replaced with X*RSQRT(X).
unsigned MaxStoresPerMemmove
Specify maximum number of store instructions per memmove call.
virtual Align getPrefLoopAlignment(MachineLoop *ML=nullptr) const
Return the preferred loop alignment.
void computeRegisterProperties(const TargetRegisterInfo *TRI)
Once all of the register classes are added, this allows us to compute derived properties we expose.
int getDivRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a division of the given type based on the function's attributes.
virtual bool shouldFoldConstantShiftPairToMask(const SDNode *N, CombineLevel Level) const
Return true if it is profitable to fold a pair of shifts into a mask.
virtual bool shouldExpandGetActiveLaneMask(EVT VT, EVT OpVT) const
Return true if the @llvm.get.active.lane.mask intrinsic should be expanded using generic code in Sele...
virtual bool shallExtractConstSplatVectorElementToStore(Type *VectorTy, unsigned ElemSizeInBits, unsigned &Index) const
Return true if the target shall perform extract vector element and store given that the vector is kno...
virtual bool isTruncateFree(Type *FromTy, Type *ToTy) const
Return true if it's free to truncate a value of type FromTy to type ToTy.
unsigned getMaxExpandSizeMemcmp(bool OptSize) const
Get maximum # of load operations permitted for memcmp.
bool isStrictFPEnabled() const
Return true if the target support strict float operation.
virtual bool shouldAvoidTransformToShift(EVT VT, unsigned Amount) const
Return true if creating a shift of the type by the given amount is not profitable.
virtual bool isFPExtFree(EVT DestVT, EVT SrcVT) const
Return true if an fpext operation is free (for instance, because single-precision floating-point numb...
virtual bool lowerInterleaveIntrinsicToStore(IntrinsicInst *II, StoreInst *SI) const
Lower an interleave intrinsic to a target specific store intrinsic.
virtual EVT getSetCCResultType(const DataLayout &DL, LLVMContext &Context, EVT VT) const
Return the ValueType of the result of SETCC operations.
EVT getShiftAmountTy(EVT LHSTy, const DataLayout &DL, bool LegalTypes=true) const
Returns the type for the shift amount of a shift opcode.
MachineMemOperand::Flags getLoadMemOperandFlags(const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC=nullptr, const TargetLibraryInfo *LibInfo=nullptr) const
virtual EVT getTypeToTransformTo(LLVMContext &Context, EVT VT) const
For types supported by the target, this is an identity function.
unsigned MaxStoresPerMemmoveOptSize
Likewise for functions with the OptSize attribute.
virtual bool shouldFoldSelectWithSingleBitTest(EVT VT, const APInt &AndMask) const
virtual Value * getIRStackGuard(IRBuilderBase &IRB) const
If the target has a standard location for the stack protector guard, returns the address of that loca...
MVT getSimpleValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
Return the MVT corresponding to this LLVM type. See getValueType.
BooleanContent getBooleanContents(bool isVec, bool isFloat) const
For targets without i1 registers, this gives the nature of the high-bits of boolean values held in ty...
virtual MVT getPreferredSwitchConditionType(LLVMContext &Context, EVT ConditionVT) const
Returns preferred type for switch condition.
virtual bool shouldFoldSelectWithIdentityConstant(unsigned BinOpcode, EVT VT) const
Return true if pulling a binary operation into a select with an identity constant is profitable.
virtual bool shouldReassociateReduction(unsigned RedOpc, EVT VT) const
void addRegisterClass(MVT VT, const TargetRegisterClass *RC)
Add the specified register class as an available regclass for the specified value type.
bool isCondCodeLegal(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal on this target.
virtual bool canCombineStoreAndExtract(Type *VectorTy, Value *Idx, unsigned &Cost) const
Return true if the target can combine store(extractelement VectorTy, Idx).
bool isTypeLegal(EVT VT) const
Return true if the target has native support for the specified value type.
LegalizeAction getAtomicLoadExtAction(unsigned ExtType, EVT ValVT, EVT MemVT) const
Same as getLoadExtAction, but for atomic loads.
int getRecipEstimateDivEnabled(EVT VT, MachineFunction &MF) const
Return a ReciprocalEstimate enum value for a division of the given type based on the function's attri...
MVT getProgramPointerTy(const DataLayout &DL) const
Return the type for code pointers, which is determined by the program address space specified through...
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, MVT VT, LegalizeAction Action)
Indicate that the specified indexed store does or does not work with the specified type and indicate ...
virtual void emitAtomicCmpXchgNoStoreLLBalance(IRBuilderBase &Builder) const
virtual bool isTruncateFree(LLT FromTy, LLT ToTy, const DataLayout &DL, LLVMContext &Ctx) const
void setSupportsUnalignedAtomics(bool UnalignedSupported)
Sets whether unaligned atomic operations are supported.
void setLoadExtAction(ArrayRef< unsigned > ExtTypes, MVT ValVT, ArrayRef< MVT > MemVTs, LegalizeAction Action)
virtual bool isJumpTableRelative() const
bool isSuitableForBitTests(unsigned NumDests, unsigned NumCmps, const APInt &Low, const APInt &High, const DataLayout &DL) const
Return true if lowering to a bit test is suitable for a set of case clusters which contains NumDests ...
virtual MVT getScalarShiftAmountTy(const DataLayout &, EVT) const
Return the type to use for a scalar shift opcode, given the shifted amount type.
virtual bool preferIncOfAddToSubOfNot(EVT VT) const
These two forms are equivalent: sub y, (xor x, -1) add (add x, 1), y The variant with two add's is IR...
virtual bool ShouldShrinkFPConstant(EVT) const
If true, then instruction selection should seek to shrink the FP constant of the specified type to a ...
virtual bool isNarrowingProfitable(EVT SrcVT, EVT DestVT) const
Return true if it's profitable to narrow operations of type SrcVT to DestVT.
virtual MVT getPointerTy(const DataLayout &DL, uint32_t AS=0) const
Return the pointer type for the given address space, defaults to the pointer type from the data layou...
void setLibcallName(RTLIB::Libcall Call, const char *Name)
Rename the default libcall routine name for the specified libcall.
void setPrefFunctionAlignment(Align Alignment)
Set the target's preferred function alignment.
unsigned getMaxDivRemBitWidthSupported() const
Returns the size in bits of the maximum div/rem the backend supports.
virtual bool isLegalAddImmediate(int64_t) const
Return true if the specified immediate is legal add immediate, that is the target has add instruction...
virtual bool isFreeAddrSpaceCast(unsigned SrcAS, unsigned DestAS) const
Returns true if a cast from SrcAS to DestAS is "cheap", such that e.g.
virtual unsigned getMaxSupportedInterleaveFactor() const
Get the maximum supported factor for interleaved memory accesses.
bool isOperationLegal(unsigned Op, EVT VT) const
Return true if the specified operation is legal on this target.
LegalizeAction getTruncStoreAction(EVT ValVT, EVT MemVT) const
Return how this store with truncation should be treated: either it is legal, needs to be promoted to ...
virtual bool shouldKeepZExtForFP16Conv() const
Does this target require the clearing of high-order bits in a register passed to the fp16 to fp conve...
virtual AtomicExpansionKind shouldCastAtomicRMWIInIR(AtomicRMWInst *RMWI) const
Returns how the given atomic atomicrmw should be cast by the IR-level AtomicExpand pass.
void setIndexedMaskedStoreAction(unsigned IdxMode, MVT VT, LegalizeAction Action)
Indicate that the specified indexed masked store does or does not work with the specified type and in...
virtual bool shouldConsiderGEPOffsetSplit() const
const ValueTypeActionImpl & getValueTypeActions() const
virtual AtomicExpansionKind shouldExpandAtomicCmpXchgInIR(AtomicCmpXchgInst *AI) const
Returns how the given atomic cmpxchg should be expanded by the IR-level AtomicExpand pass.
unsigned MaxStoresPerMemset
Specify maximum number of store instructions per memset call.
virtual bool isTruncateFree(SDValue Val, EVT VT2) const
Return true if truncating the specific node Val to type VT2 is free.
virtual bool shouldReduceLoadWidth(SDNode *Load, ISD::LoadExtType ExtTy, EVT NewVT) const
Return true if it is profitable to reduce a load to a smaller type.
virtual bool isProfitableToCombineMinNumMaxNum(EVT VT) const
virtual unsigned getCustomCtpopCost(EVT VT, ISD::CondCode Cond) const
Return the maximum number of "x & (x - 1)" operations that can be done instead of deferring to a cust...
virtual bool shouldProduceAndByConstByHoistingConstFromShiftsLHSOfAnd(SDValue X, ConstantSDNode *XC, ConstantSDNode *CC, SDValue Y, unsigned OldShiftOpcode, unsigned NewShiftOpcode, SelectionDAG &DAG) const
Given the pattern (X & (C l>>/<< Y)) ==/!= 0 return true if it should be transformed into: ((X <</l>>...
void setMinimumJumpTableEntries(unsigned Val)
Indicate the minimum number of blocks to generate jump tables.
virtual ~TargetLoweringBase()=default
virtual bool isFNegFree(EVT VT) const
Return true if an fneg operation is free to the point where it is never worthwhile to replace it with...
void setLibcallName(ArrayRef< RTLIB::Libcall > Calls, const char *Name)
LegalizeAction getLoadExtAction(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return how this load with extension should be treated: either it is legal, needs to be promoted to a ...
bool hasMultipleConditionRegisters() const
Return true if multiple condition registers are available.
virtual bool shouldInsertTrailingFenceForAtomicStore(const Instruction *I) const
Whether AtomicExpandPass should automatically insert a trailing fence without reducing the ordering f...
virtual AtomicExpansionKind shouldExpandAtomicLoadInIR(LoadInst *LI) const
Returns how the given (atomic) load should be expanded by the IR-level AtomicExpand pass.
void setTruncStoreAction(MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified truncating store does not work with the specified type and indicate what ...
bool isExtFree(const Instruction *I) const
Return true if the extension represented by I is free.
virtual MVT getFenceOperandTy(const DataLayout &DL) const
Return the type for operands of fence.
virtual bool getAddrModeArguments(IntrinsicInst *, SmallVectorImpl< Value * > &, Type *&) const
CodeGenPrepare sinks address calculations into the same BB as Load/Store instructions reading the add...
virtual Value * emitMaskedAtomicCmpXchgIntrinsic(IRBuilderBase &Builder, AtomicCmpXchgInst *CI, Value *AlignedAddr, Value *CmpVal, Value *NewVal, Value *Mask, AtomicOrdering Ord) const
Perform a masked cmpxchg using a target-specific intrinsic.
virtual bool isZExtFree(EVT FromTy, EVT ToTy) const
virtual ISD::NodeType getExtendForAtomicCmpSwapArg() const
Returns how the platform's atomic compare and swap expects its comparison value to be extended (ZERO_...
BooleanContent
Enum that describes how the target represents true/false values.
virtual bool shouldExpandGetVectorLength(EVT CountVT, unsigned VF, bool IsScalable) const
virtual bool isIntDivCheap(EVT VT, AttributeList Attr) const
Return true if integer divide is usually cheaper than a sequence of several shifts,...
virtual ShiftLegalizationStrategy preferredShiftLegalizationStrategy(SelectionDAG &DAG, SDNode *N, unsigned ExpansionFactor) const
virtual uint8_t getRepRegClassCostFor(MVT VT) const
Return the cost of the 'representative' register class for the specified value type.
bool isOperationLegalOrCustom(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
bool isPredictableSelectExpensive() const
Return true if selects are only cheaper than branches if the branch is unlikely to be predicted right...
virtual bool mergeStoresAfterLegalization(EVT MemVT) const
Allow store merging for the specified type after legalization in addition to before legalization.
virtual uint64_t getByValTypeAlignment(Type *Ty, const DataLayout &DL) const
Return the desired alignment for ByVal or InAlloca aggregate function arguments in the caller paramet...
virtual bool allowsMemoryAccess(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
Return true if the target supports a memory access of this type for the given address space and align...
unsigned getMaxStoresPerMemmove(bool OptSize) const
Get maximum # of store operations permitted for llvm.memmove.
virtual bool isProfitableToHoist(Instruction *I) const
unsigned getGatherAllAliasesMaxDepth() const
virtual LegalizeAction getCustomOperationAction(SDNode &Op) const
How to legalize this custom operation?
virtual bool isFMAFasterThanFMulAndFAdd(const Function &F, Type *) const
IR version.
virtual bool hasAndNotCompare(SDValue Y) const
Return true if the target should transform: (X & Y) == Y —> (~X & Y) == 0 (X & Y) !...
virtual bool storeOfVectorConstantIsCheap(bool IsZero, EVT MemVT, unsigned NumElem, unsigned AddrSpace) const
Return true if it is expected to be cheaper to do a store of vector constant with the given size and ...
unsigned MaxLoadsPerMemcmpOptSize
Likewise for functions with the OptSize attribute.
virtual MVT hasFastEqualityCompare(unsigned NumBits) const
Return the preferred operand type if the target has a quick way to compare integer values of the give...
virtual const TargetRegisterClass * getRepRegClassFor(MVT VT) const
Return the 'representative' register class for the specified value type.
MachineMemOperand::Flags getStoreMemOperandFlags(const StoreInst &SI, const DataLayout &DL) const
virtual bool isMultiStoresCheaperThanBitsMerge(EVT LTy, EVT HTy) const
Return true if it is cheaper to split the store of a merged int val from a pair of smaller values int...
bool isLoadExtLegalOrCustom(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified load with extension is legal or custom on this target.
TargetLoweringBase(const TargetLoweringBase &)=delete
virtual unsigned getMaxGluedStoresPerMemcpy() const
Get maximum # of store operations to be glued together.
bool isAtomicLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified atomic load with extension is legal on this target.
virtual bool isBinOp(unsigned Opcode) const
Return true if the node is a math/logic binary operator.
virtual bool shouldFoldMaskToVariableShiftPair(SDValue X) const
There are two ways to clear extreme bits (either low or high): Mask: x & (-1 << y) (the instcombine c...
virtual bool alignLoopsWithOptSize() const
Should loops be aligned even when the function is marked OptSize (but not MinSize).
unsigned getMaxAtomicSizeInBitsSupported() const
Returns the maximum atomic operation size (in bits) supported by the backend.
bool isIndexedLoadLegal(unsigned IdxMode, EVT VT) const
Return true if the specified indexed load is legal on this target.
void setMinCmpXchgSizeInBits(unsigned SizeInBits)
Sets the minimum cmpxchg or ll/sc size supported by the backend.
virtual bool canMergeStoresTo(unsigned AS, EVT MemVT, const MachineFunction &MF) const
Returns if it's reasonable to merge stores to MemVT size.
LegalizeAction getStrictFPOperationAction(unsigned Op, EVT VT) const
void setStackPointerRegisterToSaveRestore(Register R)
If set to a physical register, this specifies the register that llvm.savestack/llvm....
virtual bool preferABDSToABSWithNSW(EVT VT) const
void AddPromotedToType(unsigned Opc, MVT OrigVT, MVT DestVT)
If Opc/OrigVT is specified as being promoted, the promotion code defaults to trying a larger integer/...
unsigned getMinimumJumpTableDensity(bool OptForSize) const
Return lower limit of the density in a jump table.
bool isLoadExtLegal(unsigned ExtType, EVT ValVT, EVT MemVT) const
Return true if the specified load with extension is legal on this target.
virtual bool hasInlineStackProbe(const MachineFunction &MF) const
AtomicExpansionKind
Enum that specifies what an atomic load/AtomicRMWInst is expanded to, if at all.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, MVT VT, LegalizeAction Action)
Indicate that the specified condition code is or isn't supported on the target and indicate what to d...
void setBooleanContents(BooleanContent IntTy, BooleanContent FloatTy)
Specify how the target extends the result of integer and floating point boolean values from i1 to a w...
const DenseMap< unsigned int, unsigned int > & getBypassSlowDivWidths() const
Returns map of slow types for division or remainder with corresponding fast types.
void setOperationPromotedToType(ArrayRef< unsigned > Ops, MVT OrigVT, MVT DestVT)
unsigned getMaxLargeFPConvertBitWidthSupported() const
Returns the size in bits of the maximum larget fp convert the backend supports.
virtual bool isFMAFasterThanFMulAndFAdd(const MachineFunction &MF, LLT) const
Return true if an FMA operation is faster than a pair of fmul and fadd instructions.
virtual bool isTruncateFree(EVT FromVT, EVT ToVT) const
virtual bool isCheapToSpeculateCtlz(Type *Ty) const
Return true if it is cheap to speculate a call to intrinsic ctlz.
virtual bool shouldExpandCttzElements(EVT VT) const
Return true if the @llvm.experimental.cttz.elts intrinsic should be expanded using generic code in Se...
virtual bool signExtendConstant(const ConstantInt *C) const
Return true if this constant should be sign extended when promoting to a larger type.
AndOrSETCCFoldKind
Enum of different potentially desirable ways to fold (and/or (setcc ...), (setcc ....
virtual std::pair< const TargetRegisterClass *, uint8_t > findRepresentativeClass(const TargetRegisterInfo *TRI, MVT VT) const
Return the largest legal super-reg register class of the register class for the specified type and it...
virtual bool shouldScalarizeBinop(SDValue VecOp) const
Try to convert an extract element of a vector binary operation into an extract element followed by a ...
Align getPrefFunctionAlignment() const
Return the preferred function alignment.
Align getMinFunctionAlignment() const
Return the minimum function alignment.
virtual AtomicExpansionKind shouldExpandAtomicStoreInIR(StoreInst *SI) const
Returns how the given (atomic) store should be expanded by the IR-level AtomicExpand pass into.
void setTargetDAGCombine(ArrayRef< ISD::NodeType > NTs)
Targets should invoke this method for each target independent node that they want to provide a custom...
virtual bool isCtlzFast() const
Return true if ctlz instruction is fast.
virtual bool useSoftFloat() const
virtual bool isStoreBitCastBeneficial(EVT StoreVT, EVT BitcastVT, const SelectionDAG &DAG, const MachineMemOperand &MMO) const
Return true if the following transform is beneficial: (store (y (conv x)), y*)) -> (store x,...
BooleanContent getBooleanContents(EVT Type) const
virtual AtomicExpansionKind shouldExpandAtomicRMWInIR(AtomicRMWInst *RMW) const
Returns how the IR-level AtomicExpand pass should expand the given AtomicRMW, if at all.
bool isIndexedMaskedStoreLegal(unsigned IdxMode, EVT VT) const
Return true if the specified indexed load is legal on this target.
virtual int64_t getPreferredLargeGEPBaseOffset(int64_t MinOffset, int64_t MaxOffset) const
Return the prefered common base offset.
virtual bool isVectorClearMaskLegal(ArrayRef< int >, EVT) const
Similar to isShuffleMaskLegal.
LegalizeKind getTypeConversion(LLVMContext &Context, EVT VT) const
Return pair that represents the legalization kind (first) that needs to happen to EVT (second) in ord...
Align getMinStackArgumentAlignment() const
Return the minimum stack alignment of an argument.
virtual bool shouldUseStrictFP_TO_INT(EVT FpVT, EVT IntVT, bool IsSigned) const
Return true if it is more correct/profitable to use strict FP_TO_INT conversion operations - canonica...
void setLoadExtAction(unsigned ExtType, MVT ValVT, MVT MemVT, LegalizeAction Action)
Indicate that the specified load with extension does not work with the specified type and indicate wh...
bool hasTargetDAGCombine(ISD::NodeType NT) const
If true, the target has custom DAG combine transformations that it can perform for the specified node...
virtual bool fallBackToDAGISel(const Instruction &Inst) const
unsigned GatherAllAliasesMaxDepth
Depth that GatherAllAliases should continue looking for chain dependencies when trying to find a more...
virtual bool shouldSplatInsEltVarIndex(EVT) const
Return true if inserting a scalar into a variable element of an undef vector is more efficiently hand...
LegalizeAction getIndexedMaskedLoadAction(unsigned IdxMode, MVT VT) const
Return how the indexed load should be treated: either it is legal, needs to be promoted to a larger s...
NegatibleCost
Enum that specifies when a float negation is beneficial.
bool isTruncStoreLegalOrCustom(EVT ValVT, EVT MemVT) const
Return true if the specified store with truncation has solution on this target.
LegalizeTypeAction getTypeAction(LLVMContext &Context, EVT VT) const
Return how we should legalize values of this type, either it is already legal (return 'Legal') or we ...
ISD::CondCode getCmpLibcallCC(RTLIB::Libcall Call) const
Get the CondCode that's to be used to test the result of the comparison libcall against zero.
int getSqrtRefinementSteps(EVT VT, MachineFunction &MF) const
Return the refinement step count for a square root of the given type based on the function's attribut...
virtual unsigned preferedOpcodeForCmpEqPiecesOfOperand(EVT VT, unsigned ShiftOpc, bool MayTransformRotate, const APInt &ShiftOrRotateAmt, const std::optional< APInt > &AndMask) const
virtual void emitCmpArithAtomicRMWIntrinsic(AtomicRMWInst *AI) const
Perform a atomicrmw which the result is only used by comparison, using a target-specific intrinsic.
virtual Register getExceptionPointerRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception address on entry to an ...
virtual bool isFMADLegal(const MachineInstr &MI, LLT Ty) const
Returns true if MI can be combined with another instruction to form TargetOpcode::G_FMAD.
void setCondCodeAction(ArrayRef< ISD::CondCode > CCs, ArrayRef< MVT > VTs, LegalizeAction Action)
bool supportsUnalignedAtomics() const
Whether the target supports unaligned atomic operations.
const char * getLibcallName(RTLIB::Libcall Call) const
Get the libcall routine name for the specified libcall.
virtual bool isLegalAddScalableImmediate(int64_t) const
Return true if adding the specified scalable immediate is legal, that is the target has add instructi...
std::vector< ArgListEntry > ArgListTy
bool allowsMemoryAccessForAlignment(LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace=0, Align Alignment=Align(1), MachineMemOperand::Flags Flags=MachineMemOperand::MONone, unsigned *Fast=nullptr) const
This function returns true if the memory access is aligned or if the target allows this specific unal...
virtual bool shouldAlignPointerArgs(CallInst *, unsigned &, Align &) const
Return true if the pointer arguments to CI should be aligned by aligning the object whose address is ...
virtual bool hasVectorBlend() const
Return true if the target has a vector blend instruction.
virtual AtomicExpansionKind shouldCastAtomicStoreInIR(StoreInst *SI) const
Returns how the given (atomic) store should be cast by the IR-level AtomicExpand pass into.
virtual Instruction * emitTrailingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
void setIndexedStoreAction(ArrayRef< unsigned > IdxModes, ArrayRef< MVT > VTs, LegalizeAction Action)
virtual bool isVScaleKnownToBeAPowerOfTwo() const
Return true only if vscale must be a power of two.
virtual bool aggressivelyPreferBuildVectorSources(EVT VecVT) const
virtual MachineMemOperand::Flags getTargetMMOFlags(const MemSDNode &Node) const
This callback is used to inspect load/store SDNode.
virtual Type * shouldConvertSplatType(ShuffleVectorInst *SVI) const
Given a shuffle vector SVI representing a vector splat, return a new scalar type of size equal to SVI...
virtual bool isZExtFree(SDValue Val, EVT VT2) const
Return true if zero-extending the specific node Val to type VT2 is free (either because it's implicit...
void setAtomicLoadExtAction(ArrayRef< unsigned > ExtTypes, MVT ValVT, MVT MemVT, LegalizeAction Action)
virtual bool shouldRemoveExtendFromGSIndex(SDValue Extend, EVT DataVT) const
unsigned getMaxStoresPerMemset(bool OptSize) const
Get maximum # of store operations permitted for llvm.memset.
virtual LLVM_READONLY LLT getPreferredShiftAmountTy(LLT ShiftValueTy) const
Return the preferred type to use for a shift opcode, given the shifted amount type is ShiftValueTy.
void setHasMultipleConditionRegisters(bool hasManyRegs=true)
Tells the code generator that the target has multiple (allocatable) condition registers that can be u...
bool isBeneficialToExpandPowI(int64_t Exponent, bool OptForSize) const
Return true if it is beneficial to expand an @llvm.powi.
virtual EVT getAsmOperandValueType(const DataLayout &DL, Type *Ty, bool AllowUnknown=false) const
void setIndexedLoadAction(ArrayRef< unsigned > IdxModes, ArrayRef< MVT > VTs, LegalizeAction Action)
virtual AtomicExpansionKind shouldCastAtomicLoadInIR(LoadInst *LI) const
Returns how the given (atomic) load should be cast by the IR-level AtomicExpand pass.
virtual Instruction * emitLeadingFence(IRBuilderBase &Builder, Instruction *Inst, AtomicOrdering Ord) const
Inserts in the IR a target-specific intrinsic specifying a fence.
bool isCondCodeLegalOrCustom(ISD::CondCode CC, MVT VT) const
Return true if the specified condition code is legal or custom on this target.
virtual bool isComplexDeinterleavingSupported() const
Does this target support complex deinterleaving.
unsigned MaxStoresPerMemcpy
Specify maximum number of store instructions per memcpy call.
MVT getFrameIndexTy(const DataLayout &DL) const
Return the type for frame index, which is determined by the alloca address space specified through th...
virtual Register getExceptionSelectorRegister(const Constant *PersonalityFn) const
If a physical register, this returns the register that receives the exception typeid on entry to a la...
virtual MVT getPointerMemTy(const DataLayout &DL, uint32_t AS=0) const
Return the in-memory pointer type for the given address space, defaults to the pointer type from the ...
void setSchedulingPreference(Sched::Preference Pref)
Specify the target scheduling preference.
virtual bool addressingModeSupportsTLS(const GlobalValue &) const
Returns true if the targets addressing mode can target thread local storage (TLS).
MVT getRegisterType(MVT VT) const
Return the type of registers that this ValueType will eventually require.
virtual void insertSSPDeclarations(Module &M) const
Inserts necessary declarations for SSP (stack protection) purpose.
virtual bool shouldConvertPhiType(Type *From, Type *To) const
Given a set in interconnected phis of type 'From' that are loaded/stored or bitcast to type 'To',...
virtual bool isFAbsFree(EVT VT) const
Return true if an fabs operation is free to the point where it is never worthwhile to replace it with...
virtual bool isLegalStoreImmediate(int64_t Value) const
Return true if the specified immediate is legal for the value input of a store instruction.
void setJumpIsExpensive(bool isExpensive=true)
Tells the code generator not to expand logic operations on comparison predicates into separate sequen...
virtual bool preferZeroCompareBranch() const
Return true if the heuristic to prefer icmp eq zero should be used in code gen prepare.
LegalizeAction getOperationAction(unsigned Op, EVT VT) const
Return how this operation should be treated: either it is legal, needs to be promoted to a larger siz...
virtual bool shouldSinkOperands(Instruction *I, SmallVectorImpl< Use * > &Ops) const
Return true if sinking I's operands to the same basic block as I is profitable, e....
MVT getTypeToPromoteTo(unsigned Op, MVT VT) const
If the action for this operation is to promote, this method returns the ValueType to promote to.
virtual bool generateFMAsInMachineCombiner(EVT VT, CodeGenOptLevel OptLevel) const
virtual LoadInst * lowerIdempotentRMWIntoFencedLoad(AtomicRMWInst *RMWI) const
On some platforms, an AtomicRMW that never actually modifies the value (such as fetch_add of 0) can b...
virtual bool isLegalAddressingMode(const DataLayout &DL, const AddrMode &AM, Type *Ty, unsigned AddrSpace, Instruction *I=nullptr) const
Return true if the addressing mode represented by AM is legal for this target, for a load/store of th...
virtual bool hasPairedLoad(EVT, Align &) const
Return true if the target supplies and combines to a paired load two loaded values of type LoadedType...
virtual bool convertSelectOfConstantsToMath(EVT VT) const
Return true if a select of constants (select Cond, C1, C2) should be transformed into simple math ops...
bool isOperationLegalOrCustomOrPromote(unsigned Op, EVT VT, bool LegalOnly=false) const
Return true if the specified operation is legal on this target or can be made legal with custom lower...
unsigned getVectorTypeBreakdown(LLVMContext &Context, EVT VT, EVT &IntermediateVT, unsigned &NumIntermediates, MVT &RegisterVT) const
Vector types are broken down into some number of legal first class types.
virtual bool optimizeExtendOrTruncateConversion(Instruction *I, Loop *L, const TargetTransformInfo &TTI) const
Try to optimize extending or truncating conversion instructions (like zext, trunc,...
virtual MVT getVPExplicitVectorLengthTy() const
Returns the type to be used for the EVL/AVL operand of VP nodes: ISD::VP_ADD, ISD::VP_SUB,...
std::pair< LegalizeTypeAction, EVT > LegalizeKind
LegalizeKind holds the legalization kind that needs to happen to EVT in order to type-legalize it.
TargetLoweringBase & operator=(const TargetLoweringBase &)=delete
MulExpansionKind
Enum that specifies when a multiplication should be expanded.
static ISD::NodeType getExtendForContent(BooleanContent Content)
virtual bool shouldConvertFpToSat(unsigned Op, EVT FPVT, EVT VT) const
Should we generate fp_to_si_sat and fp_to_ui_sat from type FPVT to type VT from min(max(fptoi)) satur...
This class defines information used to lower LLVM code to legal SelectionDAG operators that the targe...
virtual bool supportKCFIBundles() const
Return true if the target supports kcfi operand bundles.
SDValue expandAddSubSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US][ADD|SUB]SAT.
SDValue buildSDIVPow2WithCMov(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Build sdiv by power-of-2 with conditional move instructions Ref: "Hacker's Delight" by Henry Warren 1...
virtual ConstraintWeight getMultipleConstraintMatchWeight(AsmOperandInfo &info, int maIndex) const
Examine constraint type and operand type and determine a weight value.
SDValue expandVPCTLZ(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTLZ/VP_CTLZ_ZERO_UNDEF nodes.
bool expandMULO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]MULO.
bool expandMUL(SDNode *N, SDValue &Lo, SDValue &Hi, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL=SDValue(), SDValue LH=SDValue(), SDValue RL=SDValue(), SDValue RH=SDValue()) const
Expand a MUL into two nodes.
virtual const MCExpr * getPICJumpTableRelocBaseExpr(const MachineFunction *MF, unsigned JTI, MCContext &Ctx) const
This returns the relocation base for the given PIC jumptable, the same as getPICJumpTableRelocBase,...
virtual SDValue getSqrtEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps, bool &UseOneConstNR, bool Reciprocal) const
Hooks for building estimates in place of slower divisions and square roots.
virtual bool isDesirableToCommuteWithShift(const MachineInstr &MI, bool IsAfterLegal) const
GlobalISel - return true if it is profitable to move this shift by a constant amount through its oper...
virtual void ReplaceNodeResults(SDNode *, SmallVectorImpl< SDValue > &, SelectionDAG &) const
This callback is invoked when a node result type is illegal for the target, and the operation was reg...
bool SimplifyDemandedVectorElts(SDValue Op, const APInt &DemandedEltMask, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Vector Op.
virtual bool isUsedByReturnOnly(SDNode *, SDValue &) const
Return true if result of the specified node is used by a return node only.
virtual bool supportSwiftError() const
Return true if the target supports swifterror attribute.
virtual void computeKnownBitsForFrameIndex(int FIOp, KnownBits &Known, const MachineFunction &MF) const
Determine which of the bits of FrameIndex FIOp are known to be 0.
SDValue scalarizeVectorStore(StoreSDNode *ST, SelectionDAG &DAG) const
virtual unsigned ComputeNumSignBitsForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const
This method can be implemented by targets that want to expose additional information about sign bits ...
virtual SDValue emitStackGuardXorFP(SelectionDAG &DAG, SDValue Val, const SDLoc &DL) const
SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, unsigned Depth=0) const
This is the helper function to return the newly negated expression if the cost is not expensive.
SDValue lowerCmpEqZeroToCtlzSrl(SDValue Op, SelectionDAG &DAG) const
virtual unsigned computeNumSignBitsForTargetInstr(GISelKnownBits &Analysis, Register R, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
This method can be implemented by targets that want to expose additional information about sign bits ...
virtual bool useLoadStackGuardNode() const
If this function returns true, SelectionDAGBuilder emits a LOAD_STACK_GUARD node when it is lowering ...
virtual bool isReassocProfitable(SelectionDAG &DAG, SDValue N0, SDValue N1) const
virtual EVT getTypeForExtReturn(LLVMContext &Context, EVT VT, ISD::NodeType) const
Return the type that should be used to zero or sign extend a zeroext/signext integer return value.
SDValue expandVPBSWAP(SDNode *N, SelectionDAG &DAG) const
Expand VP_BSWAP nodes.
void softenSetCCOperands(SelectionDAG &DAG, EVT VT, SDValue &NewLHS, SDValue &NewRHS, ISD::CondCode &CCCode, const SDLoc &DL, const SDValue OldLHS, const SDValue OldRHS) const
Soften the operands of a comparison.
SDValue getCheaperOrNeutralNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, const NegatibleCost CostThreshold=NegatibleCost::Neutral, unsigned Depth=0) const
std::pair< SDValue, SDValue > makeLibCall(SelectionDAG &DAG, RTLIB::Libcall LC, EVT RetVT, ArrayRef< SDValue > Ops, MakeLibCallOptions CallOptions, const SDLoc &dl, SDValue Chain=SDValue()) const
Returns a pair of (return value, chain).
SDValue expandVecReduceSeq(SDNode *Node, SelectionDAG &DAG) const
Expand a VECREDUCE_SEQ_* into an explicit ordered calculation.
virtual Register getRegisterByName(const char *RegName, LLT Ty, const MachineFunction &MF) const
Return the register ID of the name passed in.
SDValue expandCTLZ(SDNode *N, SelectionDAG &DAG) const
Expand CTLZ/CTLZ_ZERO_UNDEF nodes.
SDValue expandBITREVERSE(SDNode *N, SelectionDAG &DAG) const
Expand BITREVERSE nodes.
SDValue expandCTTZ(SDNode *N, SelectionDAG &DAG) const
Expand CTTZ/CTTZ_ZERO_UNDEF nodes.
virtual SDValue expandIndirectJTBranch(const SDLoc &dl, SDValue Value, SDValue Addr, int JTI, SelectionDAG &DAG) const
Expands target specific indirect branch for the case of JumpTable expansion.
SDValue expandABD(SDNode *N, SelectionDAG &DAG) const
Expand ABDS/ABDU nodes.
virtual InlineAsm::ConstraintCode getInlineAsmMemConstraint(StringRef ConstraintCode) const
virtual bool targetShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const
virtual Align computeKnownAlignForTargetInstr(GISelKnownBits &Analysis, Register R, const MachineRegisterInfo &MRI, unsigned Depth=0) const
Determine the known alignment for the pointer value R.
std::vector< AsmOperandInfo > AsmOperandInfoVector
SDValue expandShlSat(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]SHLSAT.
SDValue expandIS_FPCLASS(EVT ResultVT, SDValue Op, FPClassTest Test, SDNodeFlags Flags, const SDLoc &DL, SelectionDAG &DAG) const
Expand check for floating point class.
virtual bool isTargetCanonicalConstantNode(SDValue Op) const
Returns true if the given Opc is considered a canonical constant for the target, which should not be ...
SDValue expandFP_TO_INT_SAT(SDNode *N, SelectionDAG &DAG) const
Expand FP_TO_[US]INT_SAT into FP_TO_[US]INT and selects or min/max.
SDValue getCheaperNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, unsigned Depth=0) const
This is the helper function to return the newly negated expression only when the cost is cheaper.
virtual SDValue prepareVolatileOrAtomicLoad(SDValue Chain, const SDLoc &DL, SelectionDAG &DAG) const
This callback is used to prepare for a volatile or atomic load.
SDValue SimplifyMultipleUseDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
More limited version of SimplifyDemandedBits that can be used to "look through" ops that don't contri...
SDValue expandUnalignedStore(StoreSDNode *ST, SelectionDAG &DAG) const
Expands an unaligned store to 2 half-size stores for integer values, and possibly more for vectors.
SDValue SimplifyMultipleUseDemandedVectorElts(SDValue Op, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth=0) const
Helper wrapper around SimplifyMultipleUseDemandedBits, demanding all bits from only some vector eleme...
virtual void verifyTargetSDNode(const SDNode *N) const
Check the given SDNode. Aborts if it is invalid.
virtual bool findOptimalMemOpLowering(std::vector< EVT > &MemOps, unsigned Limit, const MemOp &Op, unsigned DstAS, unsigned SrcAS, const AttributeList &FuncAttributes) const
Determines the optimal series of memory ops to replace the memset / memcpy.
virtual ConstraintType getConstraintType(StringRef Constraint) const
Given a constraint, return the type of constraint it is for this target.
virtual SDValue unwrapAddress(SDValue N) const
void expandSADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::S(ADD|SUB)O.
SDValue expandVPBITREVERSE(SDNode *N, SelectionDAG &DAG) const
Expand VP_BITREVERSE nodes.
SDValue expandABS(SDNode *N, SelectionDAG &DAG, bool IsNegative=false) const
Expand ABS nodes.
SDValue expandVecReduce(SDNode *Node, SelectionDAG &DAG) const
Expand a VECREDUCE_* into an explicit calculation.
bool ShrinkDemandedConstant(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, TargetLoweringOpt &TLO) const
Check to see if the specified operand of the specified instruction is a constant integer.
virtual bool splitValueIntoRegisterParts(SelectionDAG &DAG, const SDLoc &DL, SDValue Val, SDValue *Parts, unsigned NumParts, MVT PartVT, std::optional< CallingConv::ID > CC) const
Target-specific splitting of values into parts that fit a register storing a legal type.
virtual bool IsDesirableToPromoteOp(SDValue, EVT &) const
This method query the target whether it is beneficial for dag combiner to promote the specified node.
SDValue expandVPCTTZElements(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTTZ_ELTS/VP_CTTZ_ELTS_ZERO_UNDEF nodes.
virtual const char * getTargetNodeName(unsigned Opcode) const
This method returns the name of a target specific DAG node.
bool expandFP_TO_UINT(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand float to UINT conversion.
bool parametersInCSRMatch(const MachineRegisterInfo &MRI, const uint32_t *CallerPreservedMask, const SmallVectorImpl< CCValAssign > &ArgLocs, const SmallVectorImpl< SDValue > &OutVals) const
Check whether parameters to a call that are passed in callee saved registers are the same as from the...
virtual bool SimplifyDemandedVectorEltsForTargetNode(SDValue Op, const APInt &DemandedElts, APInt &KnownUndef, APInt &KnownZero, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded vector elements, returning true on success...
virtual SDValue joinRegisterPartsIntoValue(SelectionDAG &DAG, const SDLoc &DL, const SDValue *Parts, unsigned NumParts, MVT PartVT, EVT ValueVT, std::optional< CallingConv::ID > CC) const
Target-specific combining of register parts into its original value.
virtual void insertCopiesSplitCSR(MachineBasicBlock *Entry, const SmallVectorImpl< MachineBasicBlock * > &Exits) const
Insert explicit copies in entry and exit blocks.
virtual SDValue LowerCall(CallLoweringInfo &, SmallVectorImpl< SDValue > &) const
This hook must be implemented to lower calls into the specified DAG.
bool expandREM(SDNode *Node, SDValue &Result, SelectionDAG &DAG) const
Expand an SREM or UREM using SDIV/UDIV or SDIVREM/UDIVREM, if legal.
std::pair< SDValue, SDValue > expandUnalignedLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Expands an unaligned load to 2 half-size loads for an integer, and possibly more for vectors.
virtual SDValue LowerToTLSEmulatedModel(const GlobalAddressSDNode *GA, SelectionDAG &DAG) const
Lower TLS global address SDNode for target independent emulated TLS model.
virtual bool isTypeDesirableForOp(unsigned, EVT VT) const
Return true if the target has native support for the specified value type and it is 'desirable' to us...
SDValue expandVectorSplice(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::VECTOR_SPLICE.
virtual const char * LowerXConstraint(EVT ConstraintVT) const
Try to replace an X constraint, which matches anything, with another that has more specific requireme...
SDValue expandCTPOP(SDNode *N, SelectionDAG &DAG) const
Expand CTPOP nodes.
std::pair< SDValue, SDValue > LowerCallTo(CallLoweringInfo &CLI) const
This function lowers an abstract call to a function into an actual call.
SDValue expandBSWAP(SDNode *N, SelectionDAG &DAG) const
Expand BSWAP nodes.
virtual const char * getClearCacheBuiltinName() const
Return the builtin name for the __builtin___clear_cache intrinsic Default is to invoke the clear cach...
TargetLowering & operator=(const TargetLowering &)=delete
SDValue expandFMINIMUM_FMAXIMUM(SDNode *N, SelectionDAG &DAG) const
Expand fminimum/fmaximum into multiple comparison with selects.
SDValue CTTZTableLookup(SDNode *N, SelectionDAG &DAG, const SDLoc &DL, EVT VT, SDValue Op, unsigned NumBitsPerElt) const
Expand CTTZ via Table Lookup.
virtual bool isKnownNeverNaNForTargetNode(SDValue Op, const SelectionDAG &DAG, bool SNaN=false, unsigned Depth=0) const
If SNaN is false,.
bool expandDIVREMByConstant(SDNode *N, SmallVectorImpl< SDValue > &Result, EVT HiLoVT, SelectionDAG &DAG, SDValue LL=SDValue(), SDValue LH=SDValue()) const
Attempt to expand an n-bit div/rem/divrem by constant using a n/2-bit urem by constant and other arit...
virtual bool isDesirableToPullExtFromShl(const MachineInstr &MI) const
GlobalISel - return true if it's profitable to perform the combine: shl ([sza]ext x),...
SDValue getVectorSubVecPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, EVT SubVecVT, SDValue Index) const
Get a pointer to a sub-vector of type SubVecVT at index Idx located in memory for a vector of type Ve...
virtual void computeKnownBitsForTargetNode(const SDValue Op, KnownBits &Known, const APInt &DemandedElts, const SelectionDAG &DAG, unsigned Depth=0) const
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
bool isPositionIndependent() const
std::pair< StringRef, TargetLowering::ConstraintType > ConstraintPair
virtual SDValue getNegatedExpression(SDValue Op, SelectionDAG &DAG, bool LegalOps, bool OptForSize, NegatibleCost &Cost, unsigned Depth=0) const
Return the newly negated expression if the cost is not expensive and set the cost in Cost to indicate...
virtual ConstraintWeight getSingleConstraintMatchWeight(AsmOperandInfo &info, const char *constraint) const
Examine constraint string and operand type and determine a weight value.
virtual bool isIndexingLegal(MachineInstr &MI, Register Base, Register Offset, bool IsPre, MachineRegisterInfo &MRI) const
Returns true if the specified base+offset is a legal indexed addressing mode for this target.
virtual void AdjustInstrPostInstrSelection(MachineInstr &MI, SDNode *Node) const
This method should be implemented by targets that mark instructions with the 'hasPostISelHook' flag.
virtual SDValue getSqrtInputTest(SDValue Operand, SelectionDAG &DAG, const DenormalMode &Mode) const
Return a target-dependent comparison result if the input operand is suitable for use with a square ro...
ConstraintGroup getConstraintPreferences(AsmOperandInfo &OpInfo) const
Given an OpInfo with list of constraints codes as strings, return a sorted Vector of pairs of constra...
bool expandFP_TO_SINT(SDNode *N, SDValue &Result, SelectionDAG &DAG) const
Expand float(f32) to SINT(i64) conversion.
virtual SDValue SimplifyMultipleUseDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, SelectionDAG &DAG, unsigned Depth) const
More limited version of SimplifyDemandedBits that can be used to "look through" ops that don't contri...
virtual SDValue LowerAsmOutputForConstraint(SDValue &Chain, SDValue &Glue, const SDLoc &DL, const AsmOperandInfo &OpInfo, SelectionDAG &DAG) const
virtual void initializeSplitCSR(MachineBasicBlock *Entry) const
Perform necessary initialization to handle a subset of CSRs explicitly via copies.
virtual bool isSDNodeSourceOfDivergence(const SDNode *N, FunctionLoweringInfo *FLI, UniformityInfo *UA) const
SDValue buildLegalVectorShuffle(EVT VT, const SDLoc &DL, SDValue N0, SDValue N1, MutableArrayRef< int > Mask, SelectionDAG &DAG) const
Tries to build a legal vector shuffle using the provided parameters or equivalent variations.
virtual bool ExpandInlineAsm(CallInst *) const
This hook allows the target to expand an inline asm call to be explicit llvm code if it wants to.
virtual SDValue getRecipEstimate(SDValue Operand, SelectionDAG &DAG, int Enabled, int &RefinementSteps) const
Return a reciprocal estimate value for the input operand.
virtual SDValue getPICJumpTableRelocBase(SDValue Table, SelectionDAG &DAG) const
Returns relocation base for the given PIC jumptable.
std::pair< SDValue, SDValue > scalarizeVectorLoad(LoadSDNode *LD, SelectionDAG &DAG) const
Turn load of vector type into a load of the individual elements.
virtual std::pair< unsigned, const TargetRegisterClass * > getRegForInlineAsmConstraint(const TargetRegisterInfo *TRI, StringRef Constraint, MVT VT) const
Given a physical register constraint (e.g.
virtual bool isSDNodeAlwaysUniform(const SDNode *N) const
bool SimplifyDemandedBits(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0, bool AssumeSingleUse=false) const
Look at Op.
void forceExpandWideMUL(SelectionDAG &DAG, const SDLoc &dl, bool Signed, EVT WideVT, const SDValue LL, const SDValue LH, const SDValue RL, const SDValue RH, SDValue &Lo, SDValue &Hi) const
forceExpandWideMUL - Unconditionally expand a MUL into either a libcall or brute force via a wide mul...
virtual bool SimplifyDemandedBitsForTargetNode(SDValue Op, const APInt &DemandedBits, const APInt &DemandedElts, KnownBits &Known, TargetLoweringOpt &TLO, unsigned Depth=0) const
Attempt to simplify any target nodes based on the demanded bits/elts, returning true on success.
virtual bool isDesirableToCommuteXorWithShift(const SDNode *N) const
Return true if it is profitable to combine an XOR of a logical shift to create a logical shift of NOT...
TargetLowering(const TargetLowering &)=delete
virtual bool shouldSimplifyDemandedVectorElts(SDValue Op, const TargetLoweringOpt &TLO) const
Return true if the target supports simplifying demanded vector elements by converting them to undefs.
bool isConstFalseVal(SDValue N) const
Return if the N is a constant or constant vector equal to the false value from getBooleanContents().
SDValue BuildUDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, SmallVectorImpl< SDNode * > &Created) const
Given an ISD::UDIV node expressing a divide by constant, return a DAG expression to select that will ...
SDValue IncrementMemoryAddress(SDValue Addr, SDValue Mask, const SDLoc &DL, EVT DataVT, SelectionDAG &DAG, bool IsCompressedMemory) const
Increments memory address Addr according to the type of the value DataVT that should be stored.
bool verifyReturnAddressArgumentIsConstant(SDValue Op, SelectionDAG &DAG) const
bool isInTailCallPosition(SelectionDAG &DAG, SDNode *Node, SDValue &Chain) const
Check whether a given call node is in tail position within its function.
virtual SDValue LowerFormalArguments(SDValue, CallingConv::ID, bool, const SmallVectorImpl< ISD::InputArg > &, const SDLoc &, SelectionDAG &, SmallVectorImpl< SDValue > &) const
This hook must be implemented to lower the incoming (formal) arguments, described by the Ins array,...
virtual MachineBasicBlock * EmitInstrWithCustomInserter(MachineInstr &MI, MachineBasicBlock *MBB) const
This method should be implemented by targets that mark instructions with the 'usesCustomInserter' fla...
virtual AsmOperandInfoVector ParseConstraints(const DataLayout &DL, const TargetRegisterInfo *TRI, const CallBase &Call) const
Split up the constraint string from the inline assembly value into the specific constraints and their...
virtual bool isSplatValueForTargetNode(SDValue Op, const APInt &DemandedElts, APInt &UndefElts, const SelectionDAG &DAG, unsigned Depth=0) const
Return true if vector Op has the same value across all DemandedElts, indicating any elements which ma...
virtual SDValue getSqrtResultForDenormInput(SDValue Operand, SelectionDAG &DAG) const
Return a target-dependent result if the input operand is not suitable for use with a square root esti...
SDValue expandRoundInexactToOdd(EVT ResultVT, SDValue Op, const SDLoc &DL, SelectionDAG &DAG) const
Truncate Op to ResultVT.
virtual bool getPostIndexedAddressParts(SDNode *, SDNode *, SDValue &, SDValue &, ISD::MemIndexedMode &, SelectionDAG &) const
Returns true by value, base pointer and offset pointer and addressing mode by reference if this node ...
virtual bool shouldSplitFunctionArgumentsAsLittleEndian(const DataLayout &DL) const
For most targets, an LLVM type must be broken down into multiple smaller types.
SDValue SimplifySetCC(EVT VT, SDValue N0, SDValue N1, ISD::CondCode Cond, bool foldBooleans, DAGCombinerInfo &DCI, const SDLoc &dl) const
Try to simplify a setcc built with the specified operands and cc.
SDValue expandFunnelShift(SDNode *N, SelectionDAG &DAG) const
Expand funnel shift.
virtual bool isOffsetFoldingLegal(const GlobalAddressSDNode *GA) const
Return true if folding a constant offset with the given GlobalAddress is legal.
bool LegalizeSetCCCondCode(SelectionDAG &DAG, EVT VT, SDValue &LHS, SDValue &RHS, SDValue &CC, SDValue Mask, SDValue EVL, bool &NeedInvert, const SDLoc &dl, SDValue &Chain, bool IsSignaling=false) const
Legalize a SETCC or VP_SETCC with given LHS and RHS and condition code CC on the current target.
bool isExtendedTrueVal(const ConstantSDNode *N, EVT VT, bool SExt) const
Return if N is a True value when extended to VT.
bool ShrinkDemandedOp(SDValue Op, unsigned BitWidth, const APInt &DemandedBits, TargetLoweringOpt &TLO) const
Convert x+y to (VT)((SmallVT)x+(SmallVT)y) if the casts are free.
virtual SDValue LowerOperation(SDValue Op, SelectionDAG &DAG) const
This callback is invoked for operations that are unsupported by the target, which are registered to u...
bool isConstTrueVal(SDValue N) const
Return if the N is a constant or constant vector equal to the true value from getBooleanContents().
virtual ArrayRef< MCPhysReg > getRoundingControlRegisters() const
Returns a 0 terminated array of rounding control registers that can be attached into strict FP call.
virtual SDValue LowerReturn(SDValue, CallingConv::ID, bool, const SmallVectorImpl< ISD::OutputArg > &, const SmallVectorImpl< SDValue > &, const SDLoc &, SelectionDAG &) const
This hook must be implemented to lower outgoing return values, described by the Outs array,...
SDValue expandVPCTPOP(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTPOP nodes.
SDValue expandFixedPointDiv(unsigned Opcode, const SDLoc &dl, SDValue LHS, SDValue RHS, unsigned Scale, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US]DIVFIX[SAT].
virtual bool functionArgumentNeedsConsecutiveRegisters(Type *Ty, CallingConv::ID CallConv, bool isVarArg, const DataLayout &DL) const
For some targets, an LLVM struct type must be broken down into multiple simple types,...
SDValue getVectorElementPointer(SelectionDAG &DAG, SDValue VecPtr, EVT VecVT, SDValue Index) const
Get a pointer to vector element Idx located in memory for a vector of type VecVT starting at a base a...
virtual bool isDesirableToCommuteWithShift(const SDNode *N, CombineLevel Level) const
Return true if it is profitable to move this shift by a constant amount through its operand,...
virtual void ComputeConstraintToUse(AsmOperandInfo &OpInfo, SDValue Op, SelectionDAG *DAG=nullptr) const
Determines the constraint code and constraint type to use for the specific AsmOperandInfo,...
virtual void CollectTargetIntrinsicOperands(const CallInst &I, SmallVectorImpl< SDValue > &Ops, SelectionDAG &DAG) const
SDValue expandVPCTTZ(SDNode *N, SelectionDAG &DAG) const
Expand VP_CTTZ/VP_CTTZ_ZERO_UNDEF nodes.
virtual const MCExpr * LowerCustomJumpTableEntry(const MachineJumpTableInfo *, const MachineBasicBlock *, unsigned, MCContext &) const
virtual const Constant * getTargetConstantFromLoad(LoadSDNode *LD) const
This method returns the constant pool value that will be loaded by LD.
SDValue expandFP_ROUND(SDNode *Node, SelectionDAG &DAG) const
Expand round(fp) to fp conversion.
SDValue createSelectForFMINNUM_FMAXNUM(SDNode *Node, SelectionDAG &DAG) const
Try to convert the fminnum/fmaxnum to a compare/select sequence.
virtual unsigned combineRepeatedFPDivisors() const
Indicate whether this target prefers to combine FDIVs with the same divisor.
SDValue expandROT(SDNode *N, bool AllowVectorOps, SelectionDAG &DAG) const
Expand rotations.
virtual void LowerAsmOperandForConstraint(SDValue Op, StringRef Constraint, std::vector< SDValue > &Ops, SelectionDAG &DAG) const
Lower the specified operand into the Ops vector.
virtual AndOrSETCCFoldKind isDesirableToCombineLogicOpOfSETCC(const SDNode *LogicOp, const SDNode *SETCC0, const SDNode *SETCC1) const
virtual void HandleByVal(CCState *, unsigned &, Align) const
Target-specific cleanup for formal ByVal parameters.
virtual const MCPhysReg * getScratchRegisters(CallingConv::ID CC) const
Returns a 0 terminated array of registers that can be safely used as scratch registers.
virtual bool getPreIndexedAddressParts(SDNode *, SDValue &, SDValue &, ISD::MemIndexedMode &, SelectionDAG &) const
Returns true by value, base pointer and offset pointer and addressing mode by reference if the node's...
SDValue expandFMINNUM_FMAXNUM(SDNode *N, SelectionDAG &DAG) const
Expand fminnum/fmaxnum into fminnum_ieee/fmaxnum_ieee with quieted inputs.
virtual bool isGAPlusOffset(SDNode *N, const GlobalValue *&GA, int64_t &Offset) const
Returns true (and the GlobalValue and the offset) if the node is a GlobalAddress + offset.
virtual FastISel * createFastISel(FunctionLoweringInfo &, const TargetLibraryInfo *) const
This method returns a target specific FastISel object, or null if the target does not support "fast" ...
virtual bool isGuaranteedNotToBeUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, unsigned Depth) const
Return true if this function can prove that Op is never poison and, if PoisonOnly is false,...
virtual unsigned getJumpTableEncoding() const
Return the entry encoding for a jump table in the current function.
virtual bool checkForPhysRegDependency(SDNode *Def, SDNode *User, unsigned Op, const TargetRegisterInfo *TRI, const TargetInstrInfo *TII, unsigned &PhysReg, int &Cost) const
Allows the target to handle physreg-carried dependency in target-specific way.
virtual bool supportSplitCSR(MachineFunction *MF) const
Return true if the target supports that a subset of CSRs for the given machine function is handled ex...
virtual bool CanLowerReturn(CallingConv::ID, MachineFunction &, bool, const SmallVectorImpl< ISD::OutputArg > &, LLVMContext &) const
This hook should be implemented to check whether the return values described by the Outs array can fi...
virtual void LowerOperationWrapper(SDNode *N, SmallVectorImpl< SDValue > &Results, SelectionDAG &DAG) const
This callback is invoked by the type legalizer to legalize nodes with an illegal operand type but leg...
virtual bool isReassocProfitable(MachineRegisterInfo &MRI, Register N0, Register N1) const
void expandShiftParts(SDNode *N, SDValue &Lo, SDValue &Hi, SelectionDAG &DAG) const
Expand shift-by-parts.
virtual bool mayBeEmittedAsTailCall(const CallInst *) const
Return true if the target may be able emit the call instruction as a tail call.
virtual SDValue PerformDAGCombine(SDNode *N, DAGCombinerInfo &DCI) const
This method will be invoked for all target nodes and for any target-independent nodes that the target...
virtual bool canCreateUndefOrPoisonForTargetNode(SDValue Op, const APInt &DemandedElts, const SelectionDAG &DAG, bool PoisonOnly, bool ConsiderFlags, unsigned Depth) const
Return true if Op can create undef or poison from non-undef & non-poison operands.
SDValue expandFixedPointMul(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[U|S]MULFIX[SAT].
virtual bool isInlineAsmTargetBranch(const SmallVectorImpl< StringRef > &AsmStrs, unsigned OpNo) const
On x86, return true if the operand with index OpNo is a CALL or JUMP instruction, which can use eithe...
SDValue expandIntMINMAX(SDNode *Node, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::[US][MIN|MAX].
virtual void computeKnownBitsForTargetInstr(GISelKnownBits &Analysis, Register R, KnownBits &Known, const APInt &DemandedElts, const MachineRegisterInfo &MRI, unsigned Depth=0) const
Determine which of the bits specified in Mask are known to be either zero or one and return them in t...
void expandUADDSUBO(SDNode *Node, SDValue &Result, SDValue &Overflow, SelectionDAG &DAG) const
Method for building the DAG expansion of ISD::U(ADD|SUB)O.
SDValue BuildSDIV(SDNode *N, SelectionDAG &DAG, bool IsAfterLegalization, SmallVectorImpl< SDNode * > &Created) const
Given an ISD::SDIV node expressing a divide by constant, return a DAG expression to select that will ...
virtual SDValue BuildSDIVPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Targets may override this function to provide custom SDIV lowering for power-of-2 denominators.
virtual SDValue BuildSREMPow2(SDNode *N, const APInt &Divisor, SelectionDAG &DAG, SmallVectorImpl< SDNode * > &Created) const
Targets may override this function to provide custom SREM lowering for power-of-2 denominators.
bool expandUINT_TO_FP(SDNode *N, SDValue &Result, SDValue &Chain, SelectionDAG &DAG) const
Expand UINT(i64) to double(f64) conversion.
bool expandMUL_LOHI(unsigned Opcode, EVT VT, const SDLoc &dl, SDValue LHS, SDValue RHS, SmallVectorImpl< SDValue > &Result, EVT HiLoVT, SelectionDAG &DAG, MulExpansionKind Kind, SDValue LL=SDValue(), SDValue LH=SDValue(), SDValue RL=SDValue(), SDValue RH=SDValue()) const
Expand a MUL or [US]MUL_LOHI of n-bit values into two or four nodes, respectively,...
virtual bool isXAndYEqZeroPreferableToXAndYEqY(ISD::CondCode, EVT) const
virtual bool isDesirableToTransformToIntegerOp(unsigned, EVT) const
Return true if it is profitable for dag combiner to transform a floating point op of specified opcode...
Primary interface to the complete machine description for the target machine.
Definition: TargetMachine.h:76
TargetRegisterInfo base class - We assume that the target defines a static array of TargetRegisterDes...
This pass provides access to the codegen interfaces that are needed for IR-level transformations.
Target - Wrapper for Target specific information.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isPointerTy() const
True if this is an instance of PointerType.
Definition: Type.h:255
LLVMContext & getContext() const
Return the LLVMContext in which this type was uniqued.
Definition: Type.h:129
bool isFloatingPointTy() const
Return true if this is one of the floating-point types.
Definition: Type.h:185
bool isIntegerTy() const
True if this is an instance of IntegerType.
Definition: Type.h:228
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
#define UINT64_MAX
Definition: DataTypes.h:77
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
unsigned ID
LLVM IR allows to use arbitrary numbers as calling convention identifiers.
Definition: CallingConv.h:24
@ Fast
Attempts to make calls as fast as possible (e.g.
Definition: CallingConv.h:41
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
NodeType
ISD::NodeType enum - This enum defines the target-independent operators for a SelectionDAG.
Definition: ISDOpcodes.h:40
@ SMUL_LOHI
SMUL_LOHI/UMUL_LOHI - Multiply two integers of type iN, producing a signed/unsigned value of type i[2...
Definition: ISDOpcodes.h:251
@ SMULFIX
RESULT = [US]MULFIX(LHS, RHS, SCALE) - Perform fixed point multiplication on 2 integers with the same...
Definition: ISDOpcodes.h:368
@ ADDC
Carry-setting nodes for multiple precision addition and subtraction.
Definition: ISDOpcodes.h:270
@ FMAD
FMAD - Perform a * b + c, while getting the same result as the separately rounded operations.
Definition: ISDOpcodes.h:488
@ FMAXNUM_IEEE
Definition: ISDOpcodes.h:986
@ ADD
Simple integer binary arithmetic operators.
Definition: ISDOpcodes.h:240
@ SMULFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition: ISDOpcodes.h:374
@ ANY_EXTEND
ANY_EXTEND - Used for integer types. The high bits are undefined.
Definition: ISDOpcodes.h:784
@ FADD
Simple binary floating point operators.
Definition: ISDOpcodes.h:391
@ SDIVFIX
RESULT = [US]DIVFIX(LHS, RHS, SCALE) - Perform fixed point division on 2 integers with the same width...
Definition: ISDOpcodes.h:381
@ BUILTIN_OP_END
BUILTIN_OP_END - This must be the last enum value in this list.
Definition: ISDOpcodes.h:1407
@ SIGN_EXTEND
Conversion operators.
Definition: ISDOpcodes.h:775
@ AVGCEILS
AVGCEILS/AVGCEILU - Rounding averaging add - Add two integers using an integer of type i[N+2],...
Definition: ISDOpcodes.h:663
@ BRIND
BRIND - Indirect branch.
Definition: ISDOpcodes.h:1059
@ BR_JT
BR_JT - Jumptable branch.
Definition: ISDOpcodes.h:1063
@ SSUBSAT
RESULT = [US]SUBSAT(LHS, RHS) - Perform saturation subtraction on 2 integers with the same bit width ...
Definition: ISDOpcodes.h:350
@ SPLAT_VECTOR
SPLAT_VECTOR(VAL) - Returns a vector with the scalar value VAL duplicated in all lanes.
Definition: ISDOpcodes.h:628
@ SADDO
RESULT, BOOL = [SU]ADDO(LHS, RHS) - Overflow-aware nodes for addition.
Definition: ISDOpcodes.h:324
@ MULHU
MULHU/MULHS - Multiply high - Multiply two integers of type iN, producing an unsigned/signed value of...
Definition: ISDOpcodes.h:652
@ SHL
Shift and rotation operations.
Definition: ISDOpcodes.h:706
@ FMINNUM_IEEE
FMINNUM_IEEE/FMAXNUM_IEEE - Perform floating-point minimumNumber or maximumNumber on two values,...
Definition: ISDOpcodes.h:985
@ ZERO_EXTEND
ZERO_EXTEND - Used for integer types, zeroing the new bits.
Definition: ISDOpcodes.h:781
@ FMINNUM
FMINNUM/FMAXNUM - Perform floating-point minimum or maximum on two values.
Definition: ISDOpcodes.h:972
@ SMIN
[US]{MIN/MAX} - Binary minimum or maximum of signed or unsigned integers.
Definition: ISDOpcodes.h:675
@ SDIVFIXSAT
Same as the corresponding unsaturated fixed point instructions, but the result is clamped between the...
Definition: ISDOpcodes.h:387
@ FMINIMUM
FMINIMUM/FMAXIMUM - NaN-propagating minimum/maximum that also treat -0.0 as less than 0....
Definition: ISDOpcodes.h:991
@ AND
Bitwise operators - logical and, logical or, logical xor.
Definition: ISDOpcodes.h:681
@ AVGFLOORS
AVGFLOORS/AVGFLOORU - Averaging add - Add two integers using an integer of type i[N+1],...
Definition: ISDOpcodes.h:658
@ ADDE
Carry-using nodes for multiple precision addition and subtraction.
Definition: ISDOpcodes.h:280
@ SPLAT_VECTOR_PARTS
SPLAT_VECTOR_PARTS(SCALAR1, SCALAR2, ...) - Returns a vector with the scalar values joined together a...
Definition: ISDOpcodes.h:637
@ SADDSAT
RESULT = [US]ADDSAT(LHS, RHS) - Perform saturation addition on 2 integers with the same bit width (W)...
Definition: ISDOpcodes.h:341
static const int LAST_LOADEXT_TYPE
Definition: ISDOpcodes.h:1512
MemIndexedMode
MemIndexedMode enum - This enum defines the load / store indexed addressing modes.
Definition: ISDOpcodes.h:1479
CondCode
ISD::CondCode enum - These are ordered carefully to make the bitfields below work out,...
Definition: ISDOpcodes.h:1530
LoadExtType
LoadExtType enum - This enum defines the three variants of LOADEXT (load with extension).
Definition: ISDOpcodes.h:1510
static const int LAST_INDEXED_MODE
Definition: ISDOpcodes.h:1481
Libcall
RTLIB::Libcall enum - This enum defines all of the runtime library calls the backend can emit.
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Low
Lower the current thread's priority such that it does not affect foreground tasks significantly.
@ Offset
Definition: DWP.cpp:456
int popcount(T Value) noexcept
Count the number of set bits in a value.
Definition: bit.h:385
EVT getApproximateEVTForLLT(LLT Ty, const DataLayout &DL, LLVMContext &Ctx)
void GetReturnInfo(CallingConv::ID CC, Type *ReturnType, AttributeList attr, SmallVectorImpl< ISD::OutputArg > &Outs, const TargetLowering &TLI, const DataLayout &DL)
Given an LLVM IR type and return type attributes, compute the return value EVTs and flags,...
bool isAligned(Align Lhs, uint64_t SizeInBytes)
Checks that SizeInBytes is a multiple of the alignment.
Definition: Alignment.h:145
void * PointerTy
Definition: GenericValue.h:21
unsigned Log2_64(uint64_t Value)
Return the floor log base 2 of the specified value, -1 if the value is zero.
Definition: MathExtras.h:330
FPClassTest
Floating-point class tests, supported by 'is_fpclass' intrinsic.
void report_fatal_error(Error Err, bool gen_crash_diag=true)
Report a serious error, calling any installed error handler.
Definition: Error.cpp:156
CodeGenOptLevel
Code generation optimization level.
Definition: CodeGen.h:54
AtomicOrdering
Atomic ordering for LLVM's memory model.
CombineLevel
Definition: DAGCombine.h:15
@ AfterLegalizeDAG
Definition: DAGCombine.h:19
@ AfterLegalizeVectorOps
Definition: DAGCombine.h:18
@ BeforeLegalizeTypes
Definition: DAGCombine.h:16
DWARFExpression::Operation Op
constexpr unsigned BitWidth
Definition: BitmaskEnum.h:191
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1849
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:858
#define N
This struct is a compact representation of a valid (non-zero power of two) alignment.
Definition: Alignment.h:39
uint64_t value() const
This is a hole in the type system and should not be abused.
Definition: Alignment.h:85
Represent subnormal handling kind for floating point instruction inputs and outputs.
Extended Value Type.
Definition: ValueTypes.h:34
bool isSimple() const
Test if the given EVT is simple (as opposed to being extended).
Definition: ValueTypes.h:136
static EVT getVectorVT(LLVMContext &Context, EVT VT, unsigned NumElements, bool IsScalable=false)
Returns the EVT that represents a vector NumElements in length, where each element is of type VT.
Definition: ValueTypes.h:73
bool bitsLT(EVT VT) const
Return true if this has less bits than VT.
Definition: ValueTypes.h:290
bool isFloatingPoint() const
Return true if this is a FP or a vector FP type.
Definition: ValueTypes.h:146
TypeSize getSizeInBits() const
Return the size of the specified value type in bits.
Definition: ValueTypes.h:358
bool isByteSized() const
Return true if the bit size is a multiple of 8.
Definition: ValueTypes.h:233
static EVT getEVT(Type *Ty, bool HandleUnknown=false)
Return the value type corresponding to the specified type.
Definition: ValueTypes.cpp:628
MVT getSimpleVT() const
Return the SimpleValueType held in the specified simple EVT.
Definition: ValueTypes.h:306
bool isVector() const
Return true if this is a vector value type.
Definition: ValueTypes.h:167
bool isExtended() const
Test if the given EVT is extended (as opposed to being simple).
Definition: ValueTypes.h:141
bool isScalarInteger() const
Return true if this is an integer, but not a vector.
Definition: ValueTypes.h:156
bool isInteger() const
Return true if this is an integer or a vector integer type.
Definition: ValueTypes.h:151
ConstraintInfo()=default
Default constructor.
This struct is a compact representation of a valid (power of two) or undefined (0) alignment.
Definition: Alignment.h:117
bool isDstAligned(Align AlignCheck) const
bool allowOverlap() const
bool isFixedDstAlign() const
uint64_t size() const
static MemOp Set(uint64_t Size, bool DstAlignCanChange, Align DstAlign, bool IsZeroMemset, bool IsVolatile)
Align getDstAlign() const
bool isMemcpyStrSrc() const
bool isAligned(Align AlignCheck) const
static MemOp Copy(uint64_t Size, bool DstAlignCanChange, Align DstAlign, Align SrcAlign, bool IsVolatile, bool MemcpyStrSrc=false)
bool isSrcAligned(Align AlignCheck) const
bool isMemset() const
bool isMemcpy() const
bool isMemcpyWithFixedDstAlign() const
bool isZeroMemset() const
Align getSrcAlign() const
These are IR-level optimization flags that may be propagated to SDNodes.
This represents an addressing mode of: BaseGV + BaseOffs + BaseReg + Scale*ScaleReg + ScalableOffset*...
std::optional< unsigned > fallbackAddressSpace
PointerUnion< const Value *, const PseudoSourceValue * > ptrVal
This contains information for each constraint that we are lowering.
AsmOperandInfo(InlineAsm::ConstraintInfo Info)
Copy constructor for copying from a ConstraintInfo.
MVT ConstraintVT
The ValueType for the operand value.
std::string ConstraintCode
This contains the actual string for the code, like "m".
Value * CallOperandVal
If this is the result output operand or a clobber, this is null, otherwise it is the incoming operand...
unsigned getMatchedOperand() const
If this is an input matching constraint, this method returns the output operand it matches.
bool isMatchingInputConstraint() const
Return true of this is an input operand that is a matching constraint like "4".
This structure contains all information that is necessary for lowering calls.
CallLoweringInfo & setConvergent(bool Value=true)
CallLoweringInfo & setIsPostTypeLegalization(bool Value=true)
CallLoweringInfo & setCallee(Type *ResultType, FunctionType *FTy, SDValue Target, ArgListTy &&ArgsList, const CallBase &Call)
CallLoweringInfo & setCFIType(const ConstantInt *Type)
CallLoweringInfo & setInRegister(bool Value=true)
CallLoweringInfo & setLibCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList)
SmallVector< ISD::InputArg, 32 > Ins
CallLoweringInfo & setVarArg(bool Value=true)
CallLoweringInfo & setDiscardResult(bool Value=true)
CallLoweringInfo & setZExtResult(bool Value=true)
CallLoweringInfo & setIsPatchPoint(bool Value=true)
CallLoweringInfo & setDebugLoc(const SDLoc &dl)
CallLoweringInfo & setTailCall(bool Value=true)
CallLoweringInfo & setIsPreallocated(bool Value=true)
CallLoweringInfo & setSExtResult(bool Value=true)
CallLoweringInfo & setNoReturn(bool Value=true)
CallLoweringInfo & setConvergenceControlToken(SDValue Token)
SmallVector< ISD::OutputArg, 32 > Outs
SmallVector< SDValue, 32 > OutVals
CallLoweringInfo & setChain(SDValue InChain)
CallLoweringInfo & setCallee(CallingConv::ID CC, Type *ResultType, SDValue Target, ArgListTy &&ArgsList, AttributeSet ResultAttrs={})
DAGCombinerInfo(SelectionDAG &dag, CombineLevel level, bool cl, void *dc)
SDValue CombineTo(SDNode *N, ArrayRef< SDValue > To, bool AddTo=true)
void CommitTargetLoweringOpt(const TargetLoweringOpt &TLO)
This structure is used to pass arguments to makeLibCall function.
MakeLibCallOptions & setIsPostTypeLegalization(bool Value=true)
MakeLibCallOptions & setDiscardResult(bool Value=true)
MakeLibCallOptions & setSExt(bool Value=true)
MakeLibCallOptions & setTypeListBeforeSoften(ArrayRef< EVT > OpsVT, EVT RetVT, bool Value=true)
MakeLibCallOptions & setNoReturn(bool Value=true)
A convenience struct that encapsulates a DAG, and two SDValues for returning information from TargetL...
bool CombineTo(SDValue O, SDValue N)
TargetLoweringOpt(SelectionDAG &InDAG, bool LT, bool LO)