LLVM 19.0.0git
SCCPSolver.cpp
Go to the documentation of this file.
1//===- SCCPSolver.cpp - SCCP Utility --------------------------- *- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// \file
10// This file implements the Sparse Conditional Constant Propagation (SCCP)
11// utility.
12//
13//===----------------------------------------------------------------------===//
14
21#include "llvm/IR/InstVisitor.h"
23#include "llvm/Support/Debug.h"
27#include <cassert>
28#include <utility>
29#include <vector>
30
31using namespace llvm;
32
33#define DEBUG_TYPE "sccp"
34
35// The maximum number of range extensions allowed for operations requiring
36// widening.
37static const unsigned MaxNumRangeExtensions = 10;
38
39/// Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions.
43}
44
46 bool UndefAllowed = true) {
47 assert(Ty->isIntOrIntVectorTy() && "Should be int or int vector");
48 if (LV.isConstantRange(UndefAllowed))
49 return LV.getConstantRange();
50 return ConstantRange::getFull(Ty->getScalarSizeInBits());
51}
52
53namespace llvm {
54
56 return LV.isConstant() ||
58}
59
61 return !LV.isUnknownOrUndef() && !SCCPSolver::isConstant(LV);
62}
63
66 return true;
67
68 // Some instructions can be handled but are rejected above. Catch
69 // those cases by falling through to here.
70 // TODO: Mark globals as being constant earlier, so
71 // TODO: wouldInstructionBeTriviallyDead() knows that atomic loads
72 // TODO: are safe to remove.
73 return isa<LoadInst>(I);
74}
75
77 Constant *Const = getConstantOrNull(V);
78 if (!Const)
79 return false;
80 // Replacing `musttail` instructions with constant breaks `musttail` invariant
81 // unless the call itself can be removed.
82 // Calls with "clang.arc.attachedcall" implicitly use the return value and
83 // those uses cannot be updated with a constant.
84 CallBase *CB = dyn_cast<CallBase>(V);
85 if (CB && ((CB->isMustTailCall() &&
89
90 // Don't zap returns of the callee
91 if (F)
93
94 LLVM_DEBUG(dbgs() << " Can\'t treat the result of call " << *CB
95 << " as a constant\n");
96 return false;
97 }
98
99 LLVM_DEBUG(dbgs() << " Constant: " << *Const << " = " << *V << '\n');
100
101 // Replaces all of the uses of a variable with uses of the constant.
102 V->replaceAllUsesWith(Const);
103 return true;
104}
105
106/// Try to use \p Inst's value range from \p Solver to infer the NUW flag.
107static bool refineInstruction(SCCPSolver &Solver,
108 const SmallPtrSetImpl<Value *> &InsertedValues,
109 Instruction &Inst) {
110 bool Changed = false;
111 auto GetRange = [&Solver, &InsertedValues](Value *Op) {
112 if (auto *Const = dyn_cast<ConstantInt>(Op))
113 return ConstantRange(Const->getValue());
114 if (isa<Constant>(Op) || InsertedValues.contains(Op)) {
115 unsigned Bitwidth = Op->getType()->getScalarSizeInBits();
116 return ConstantRange::getFull(Bitwidth);
117 }
118 return getConstantRange(Solver.getLatticeValueFor(Op), Op->getType(),
119 /*UndefAllowed=*/false);
120 };
121
122 if (isa<OverflowingBinaryOperator>(Inst)) {
123 if (Inst.hasNoSignedWrap() && Inst.hasNoUnsignedWrap())
124 return false;
125
126 auto RangeA = GetRange(Inst.getOperand(0));
127 auto RangeB = GetRange(Inst.getOperand(1));
128 if (!Inst.hasNoUnsignedWrap()) {
130 Instruction::BinaryOps(Inst.getOpcode()), RangeB,
132 if (NUWRange.contains(RangeA)) {
134 Changed = true;
135 }
136 }
137 if (!Inst.hasNoSignedWrap()) {
139 Instruction::BinaryOps(Inst.getOpcode()), RangeB,
141 if (NSWRange.contains(RangeA)) {
142 Inst.setHasNoSignedWrap();
143 Changed = true;
144 }
145 }
146 } else if (isa<PossiblyNonNegInst>(Inst) && !Inst.hasNonNeg()) {
147 auto Range = GetRange(Inst.getOperand(0));
148 if (Range.isAllNonNegative()) {
149 Inst.setNonNeg();
150 Changed = true;
151 }
152 } else if (TruncInst *TI = dyn_cast<TruncInst>(&Inst)) {
153 if (TI->hasNoSignedWrap() && TI->hasNoUnsignedWrap())
154 return false;
155
156 auto Range = GetRange(Inst.getOperand(0));
157 uint64_t DestWidth = TI->getDestTy()->getScalarSizeInBits();
158 if (!TI->hasNoUnsignedWrap()) {
159 if (Range.getActiveBits() <= DestWidth) {
160 TI->setHasNoUnsignedWrap(true);
161 Changed = true;
162 }
163 }
164 if (!TI->hasNoSignedWrap()) {
165 if (Range.getMinSignedBits() <= DestWidth) {
166 TI->setHasNoSignedWrap(true);
167 Changed = true;
168 }
169 }
170 }
171
172 return Changed;
173}
174
175/// Try to replace signed instructions with their unsigned equivalent.
176static bool replaceSignedInst(SCCPSolver &Solver,
177 SmallPtrSetImpl<Value *> &InsertedValues,
178 Instruction &Inst) {
179 // Determine if a signed value is known to be >= 0.
180 auto isNonNegative = [&Solver](Value *V) {
181 // If this value was constant-folded, it may not have a solver entry.
182 // Handle integers. Otherwise, return false.
183 if (auto *C = dyn_cast<Constant>(V)) {
184 auto *CInt = dyn_cast<ConstantInt>(C);
185 return CInt && !CInt->isNegative();
186 }
187 const ValueLatticeElement &IV = Solver.getLatticeValueFor(V);
188 return IV.isConstantRange(/*UndefAllowed=*/false) &&
189 IV.getConstantRange().isAllNonNegative();
190 };
191
192 Instruction *NewInst = nullptr;
193 switch (Inst.getOpcode()) {
194 case Instruction::SIToFP:
195 case Instruction::SExt: {
196 // If the source value is not negative, this is a zext/uitofp.
197 Value *Op0 = Inst.getOperand(0);
198 if (InsertedValues.count(Op0) || !isNonNegative(Op0))
199 return false;
200 NewInst = CastInst::Create(Inst.getOpcode() == Instruction::SExt
201 ? Instruction::ZExt
202 : Instruction::UIToFP,
203 Op0, Inst.getType(), "", Inst.getIterator());
204 NewInst->setNonNeg();
205 break;
206 }
207 case Instruction::AShr: {
208 // If the shifted value is not negative, this is a logical shift right.
209 Value *Op0 = Inst.getOperand(0);
210 if (InsertedValues.count(Op0) || !isNonNegative(Op0))
211 return false;
212 NewInst = BinaryOperator::CreateLShr(Op0, Inst.getOperand(1), "", Inst.getIterator());
213 NewInst->setIsExact(Inst.isExact());
214 break;
215 }
216 case Instruction::SDiv:
217 case Instruction::SRem: {
218 // If both operands are not negative, this is the same as udiv/urem.
219 Value *Op0 = Inst.getOperand(0), *Op1 = Inst.getOperand(1);
220 if (InsertedValues.count(Op0) || InsertedValues.count(Op1) ||
221 !isNonNegative(Op0) || !isNonNegative(Op1))
222 return false;
223 auto NewOpcode = Inst.getOpcode() == Instruction::SDiv ? Instruction::UDiv
224 : Instruction::URem;
225 NewInst = BinaryOperator::Create(NewOpcode, Op0, Op1, "", Inst.getIterator());
226 if (Inst.getOpcode() == Instruction::SDiv)
227 NewInst->setIsExact(Inst.isExact());
228 break;
229 }
230 default:
231 return false;
232 }
233
234 // Wire up the new instruction and update state.
235 assert(NewInst && "Expected replacement instruction");
236 NewInst->takeName(&Inst);
237 InsertedValues.insert(NewInst);
238 Inst.replaceAllUsesWith(NewInst);
239 Solver.removeLatticeValueFor(&Inst);
240 Inst.eraseFromParent();
241 return true;
242}
243
245 SmallPtrSetImpl<Value *> &InsertedValues,
246 Statistic &InstRemovedStat,
247 Statistic &InstReplacedStat) {
248 bool MadeChanges = false;
249 for (Instruction &Inst : make_early_inc_range(BB)) {
250 if (Inst.getType()->isVoidTy())
251 continue;
252 if (tryToReplaceWithConstant(&Inst)) {
253 if (canRemoveInstruction(&Inst))
254 Inst.eraseFromParent();
255
256 MadeChanges = true;
257 ++InstRemovedStat;
258 } else if (replaceSignedInst(*this, InsertedValues, Inst)) {
259 MadeChanges = true;
260 ++InstReplacedStat;
261 } else if (refineInstruction(*this, InsertedValues, Inst)) {
262 MadeChanges = true;
263 }
264 }
265 return MadeChanges;
266}
267
269 BasicBlock *&NewUnreachableBB) const {
270 SmallPtrSet<BasicBlock *, 8> FeasibleSuccessors;
271 bool HasNonFeasibleEdges = false;
272 for (BasicBlock *Succ : successors(BB)) {
273 if (isEdgeFeasible(BB, Succ))
274 FeasibleSuccessors.insert(Succ);
275 else
276 HasNonFeasibleEdges = true;
277 }
278
279 // All edges feasible, nothing to do.
280 if (!HasNonFeasibleEdges)
281 return false;
282
283 // SCCP can only determine non-feasible edges for br, switch and indirectbr.
284 Instruction *TI = BB->getTerminator();
285 assert((isa<BranchInst>(TI) || isa<SwitchInst>(TI) ||
286 isa<IndirectBrInst>(TI)) &&
287 "Terminator must be a br, switch or indirectbr");
288
289 if (FeasibleSuccessors.size() == 0) {
290 // Branch on undef/poison, replace with unreachable.
293 for (BasicBlock *Succ : successors(BB)) {
294 Succ->removePredecessor(BB);
295 if (SeenSuccs.insert(Succ).second)
296 Updates.push_back({DominatorTree::Delete, BB, Succ});
297 }
298 TI->eraseFromParent();
299 new UnreachableInst(BB->getContext(), BB);
300 DTU.applyUpdatesPermissive(Updates);
301 } else if (FeasibleSuccessors.size() == 1) {
302 // Replace with an unconditional branch to the only feasible successor.
303 BasicBlock *OnlyFeasibleSuccessor = *FeasibleSuccessors.begin();
305 bool HaveSeenOnlyFeasibleSuccessor = false;
306 for (BasicBlock *Succ : successors(BB)) {
307 if (Succ == OnlyFeasibleSuccessor && !HaveSeenOnlyFeasibleSuccessor) {
308 // Don't remove the edge to the only feasible successor the first time
309 // we see it. We still do need to remove any multi-edges to it though.
310 HaveSeenOnlyFeasibleSuccessor = true;
311 continue;
312 }
313
314 Succ->removePredecessor(BB);
315 Updates.push_back({DominatorTree::Delete, BB, Succ});
316 }
317
318 BranchInst::Create(OnlyFeasibleSuccessor, BB);
319 TI->eraseFromParent();
320 DTU.applyUpdatesPermissive(Updates);
321 } else if (FeasibleSuccessors.size() > 1) {
322 SwitchInstProfUpdateWrapper SI(*cast<SwitchInst>(TI));
324
325 // If the default destination is unfeasible it will never be taken. Replace
326 // it with a new block with a single Unreachable instruction.
327 BasicBlock *DefaultDest = SI->getDefaultDest();
328 if (!FeasibleSuccessors.contains(DefaultDest)) {
329 if (!NewUnreachableBB) {
330 NewUnreachableBB =
331 BasicBlock::Create(DefaultDest->getContext(), "default.unreachable",
332 DefaultDest->getParent(), DefaultDest);
333 new UnreachableInst(DefaultDest->getContext(), NewUnreachableBB);
334 }
335
336 DefaultDest->removePredecessor(BB);
337 SI->setDefaultDest(NewUnreachableBB);
338 Updates.push_back({DominatorTree::Delete, BB, DefaultDest});
339 Updates.push_back({DominatorTree::Insert, BB, NewUnreachableBB});
340 }
341
342 for (auto CI = SI->case_begin(); CI != SI->case_end();) {
343 if (FeasibleSuccessors.contains(CI->getCaseSuccessor())) {
344 ++CI;
345 continue;
346 }
347
348 BasicBlock *Succ = CI->getCaseSuccessor();
349 Succ->removePredecessor(BB);
350 Updates.push_back({DominatorTree::Delete, BB, Succ});
351 SI.removeCase(CI);
352 // Don't increment CI, as we removed a case.
353 }
354
355 DTU.applyUpdatesPermissive(Updates);
356 } else {
357 llvm_unreachable("Must have at least one feasible successor");
358 }
359 return true;
360}
361
362/// Helper class for SCCPSolver. This implements the instruction visitor and
363/// holds all the state.
364class SCCPInstVisitor : public InstVisitor<SCCPInstVisitor> {
365 const DataLayout &DL;
366 std::function<const TargetLibraryInfo &(Function &)> GetTLI;
367 SmallPtrSet<BasicBlock *, 8> BBExecutable; // The BBs that are executable.
369 ValueState; // The state each value is in.
370
371 /// StructValueState - This maintains ValueState for values that have
372 /// StructType, for example for formal arguments, calls, insertelement, etc.
374
375 /// GlobalValue - If we are tracking any values for the contents of a global
376 /// variable, we keep a mapping from the constant accessor to the element of
377 /// the global, to the currently known value. If the value becomes
378 /// overdefined, it's entry is simply removed from this map.
380
381 /// TrackedRetVals - If we are tracking arguments into and the return
382 /// value out of a function, it will have an entry in this map, indicating
383 /// what the known return value for the function is.
385
386 /// TrackedMultipleRetVals - Same as TrackedRetVals, but used for functions
387 /// that return multiple values.
389 TrackedMultipleRetVals;
390
391 /// The set of values whose lattice has been invalidated.
392 /// Populated by resetLatticeValueFor(), cleared after resolving undefs.
393 DenseSet<Value *> Invalidated;
394
395 /// MRVFunctionsTracked - Each function in TrackedMultipleRetVals is
396 /// represented here for efficient lookup.
397 SmallPtrSet<Function *, 16> MRVFunctionsTracked;
398
399 /// A list of functions whose return cannot be modified.
400 SmallPtrSet<Function *, 16> MustPreserveReturnsInFunctions;
401
402 /// TrackingIncomingArguments - This is the set of functions for whose
403 /// arguments we make optimistic assumptions about and try to prove as
404 /// constants.
405 SmallPtrSet<Function *, 16> TrackingIncomingArguments;
406
407 /// The reason for two worklists is that overdefined is the lowest state
408 /// on the lattice, and moving things to overdefined as fast as possible
409 /// makes SCCP converge much faster.
410 ///
411 /// By having a separate worklist, we accomplish this because everything
412 /// possibly overdefined will become overdefined at the soonest possible
413 /// point.
414 SmallVector<Value *, 64> OverdefinedInstWorkList;
415 SmallVector<Value *, 64> InstWorkList;
416
417 // The BasicBlock work list
419
420 /// KnownFeasibleEdges - Entries in this set are edges which have already had
421 /// PHI nodes retriggered.
422 using Edge = std::pair<BasicBlock *, BasicBlock *>;
423 DenseSet<Edge> KnownFeasibleEdges;
424
426
428
429 LLVMContext &Ctx;
430
431private:
432 ConstantInt *getConstantInt(const ValueLatticeElement &IV, Type *Ty) const {
433 return dyn_cast_or_null<ConstantInt>(getConstant(IV, Ty));
434 }
435
436 // pushToWorkList - Helper for markConstant/markOverdefined
437 void pushToWorkList(ValueLatticeElement &IV, Value *V);
438
439 // Helper to push \p V to the worklist, after updating it to \p IV. Also
440 // prints a debug message with the updated value.
441 void pushToWorkListMsg(ValueLatticeElement &IV, Value *V);
442
443 // markConstant - Make a value be marked as "constant". If the value
444 // is not already a constant, add it to the instruction work list so that
445 // the users of the instruction are updated later.
446 bool markConstant(ValueLatticeElement &IV, Value *V, Constant *C,
447 bool MayIncludeUndef = false);
448
449 bool markConstant(Value *V, Constant *C) {
450 assert(!V->getType()->isStructTy() && "structs should use mergeInValue");
451 return markConstant(ValueState[V], V, C);
452 }
453
454 /// markConstantRange - Mark the object as constant range with \p CR. If the
455 /// object is not a constant range with the range \p CR, add it to the
456 /// instruction work list so that the users of the instruction are updated
457 /// later.
458 bool markConstantRange(ValueLatticeElement &IV, Value *V,
459 const ConstantRange &CR);
460
461 // markOverdefined - Make a value be marked as "overdefined". If the
462 // value is not already overdefined, add it to the overdefined instruction
463 // work list so that the users of the instruction are updated later.
464 bool markOverdefined(ValueLatticeElement &IV, Value *V);
465
466 /// Merge \p MergeWithV into \p IV and push \p V to the worklist, if \p IV
467 /// changes.
468 bool mergeInValue(ValueLatticeElement &IV, Value *V,
469 ValueLatticeElement MergeWithV,
471 /*MayIncludeUndef=*/false, /*CheckWiden=*/false});
472
473 bool mergeInValue(Value *V, ValueLatticeElement MergeWithV,
475 /*MayIncludeUndef=*/false, /*CheckWiden=*/false}) {
476 assert(!V->getType()->isStructTy() &&
477 "non-structs should use markConstant");
478 return mergeInValue(ValueState[V], V, MergeWithV, Opts);
479 }
480
481 /// getValueState - Return the ValueLatticeElement object that corresponds to
482 /// the value. This function handles the case when the value hasn't been seen
483 /// yet by properly seeding constants etc.
484 ValueLatticeElement &getValueState(Value *V) {
485 assert(!V->getType()->isStructTy() && "Should use getStructValueState");
486
487 auto I = ValueState.insert(std::make_pair(V, ValueLatticeElement()));
488 ValueLatticeElement &LV = I.first->second;
489
490 if (!I.second)
491 return LV; // Common case, already in the map.
492
493 if (auto *C = dyn_cast<Constant>(V))
494 LV.markConstant(C); // Constants are constant
495
496 // All others are unknown by default.
497 return LV;
498 }
499
500 /// getStructValueState - Return the ValueLatticeElement object that
501 /// corresponds to the value/field pair. This function handles the case when
502 /// the value hasn't been seen yet by properly seeding constants etc.
503 ValueLatticeElement &getStructValueState(Value *V, unsigned i) {
504 assert(V->getType()->isStructTy() && "Should use getValueState");
505 assert(i < cast<StructType>(V->getType())->getNumElements() &&
506 "Invalid element #");
507
508 auto I = StructValueState.insert(
509 std::make_pair(std::make_pair(V, i), ValueLatticeElement()));
510 ValueLatticeElement &LV = I.first->second;
511
512 if (!I.second)
513 return LV; // Common case, already in the map.
514
515 if (auto *C = dyn_cast<Constant>(V)) {
516 Constant *Elt = C->getAggregateElement(i);
517
518 if (!Elt)
519 LV.markOverdefined(); // Unknown sort of constant.
520 else
521 LV.markConstant(Elt); // Constants are constant.
522 }
523
524 // All others are underdefined by default.
525 return LV;
526 }
527
528 /// Traverse the use-def chain of \p Call, marking itself and its users as
529 /// "unknown" on the way.
530 void invalidate(CallBase *Call) {
532 ToInvalidate.push_back(Call);
533
534 while (!ToInvalidate.empty()) {
535 Instruction *Inst = ToInvalidate.pop_back_val();
536
537 if (!Invalidated.insert(Inst).second)
538 continue;
539
540 if (!BBExecutable.count(Inst->getParent()))
541 continue;
542
543 Value *V = nullptr;
544 // For return instructions we need to invalidate the tracked returns map.
545 // Anything else has its lattice in the value map.
546 if (auto *RetInst = dyn_cast<ReturnInst>(Inst)) {
547 Function *F = RetInst->getParent()->getParent();
548 if (auto It = TrackedRetVals.find(F); It != TrackedRetVals.end()) {
549 It->second = ValueLatticeElement();
550 V = F;
551 } else if (MRVFunctionsTracked.count(F)) {
552 auto *STy = cast<StructType>(F->getReturnType());
553 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I)
554 TrackedMultipleRetVals[{F, I}] = ValueLatticeElement();
555 V = F;
556 }
557 } else if (auto *STy = dyn_cast<StructType>(Inst->getType())) {
558 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
559 if (auto It = StructValueState.find({Inst, I});
560 It != StructValueState.end()) {
561 It->second = ValueLatticeElement();
562 V = Inst;
563 }
564 }
565 } else if (auto It = ValueState.find(Inst); It != ValueState.end()) {
566 It->second = ValueLatticeElement();
567 V = Inst;
568 }
569
570 if (V) {
571 LLVM_DEBUG(dbgs() << "Invalidated lattice for " << *V << "\n");
572
573 for (User *U : V->users())
574 if (auto *UI = dyn_cast<Instruction>(U))
575 ToInvalidate.push_back(UI);
576
577 auto It = AdditionalUsers.find(V);
578 if (It != AdditionalUsers.end())
579 for (User *U : It->second)
580 if (auto *UI = dyn_cast<Instruction>(U))
581 ToInvalidate.push_back(UI);
582 }
583 }
584 }
585
586 /// markEdgeExecutable - Mark a basic block as executable, adding it to the BB
587 /// work list if it is not already executable.
588 bool markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest);
589
590 // getFeasibleSuccessors - Return a vector of booleans to indicate which
591 // successors are reachable from a given terminator instruction.
592 void getFeasibleSuccessors(Instruction &TI, SmallVectorImpl<bool> &Succs);
593
594 // OperandChangedState - This method is invoked on all of the users of an
595 // instruction that was just changed state somehow. Based on this
596 // information, we need to update the specified user of this instruction.
597 void operandChangedState(Instruction *I) {
598 if (BBExecutable.count(I->getParent())) // Inst is executable?
599 visit(*I);
600 }
601
602 // Add U as additional user of V.
603 void addAdditionalUser(Value *V, User *U) {
604 auto Iter = AdditionalUsers.insert({V, {}});
605 Iter.first->second.insert(U);
606 }
607
608 // Mark I's users as changed, including AdditionalUsers.
609 void markUsersAsChanged(Value *I) {
610 // Functions include their arguments in the use-list. Changed function
611 // values mean that the result of the function changed. We only need to
612 // update the call sites with the new function result and do not have to
613 // propagate the call arguments.
614 if (isa<Function>(I)) {
615 for (User *U : I->users()) {
616 if (auto *CB = dyn_cast<CallBase>(U))
617 handleCallResult(*CB);
618 }
619 } else {
620 for (User *U : I->users())
621 if (auto *UI = dyn_cast<Instruction>(U))
622 operandChangedState(UI);
623 }
624
625 auto Iter = AdditionalUsers.find(I);
626 if (Iter != AdditionalUsers.end()) {
627 // Copy additional users before notifying them of changes, because new
628 // users may be added, potentially invalidating the iterator.
630 for (User *U : Iter->second)
631 if (auto *UI = dyn_cast<Instruction>(U))
632 ToNotify.push_back(UI);
633 for (Instruction *UI : ToNotify)
634 operandChangedState(UI);
635 }
636 }
637 void handleCallOverdefined(CallBase &CB);
638 void handleCallResult(CallBase &CB);
639 void handleCallArguments(CallBase &CB);
640 void handleExtractOfWithOverflow(ExtractValueInst &EVI,
641 const WithOverflowInst *WO, unsigned Idx);
642
643private:
644 friend class InstVisitor<SCCPInstVisitor>;
645
646 // visit implementations - Something changed in this instruction. Either an
647 // operand made a transition, or the instruction is newly executable. Change
648 // the value type of I to reflect these changes if appropriate.
649 void visitPHINode(PHINode &I);
650
651 // Terminators
652
653 void visitReturnInst(ReturnInst &I);
654 void visitTerminator(Instruction &TI);
655
656 void visitCastInst(CastInst &I);
657 void visitSelectInst(SelectInst &I);
658 void visitUnaryOperator(Instruction &I);
659 void visitFreezeInst(FreezeInst &I);
660 void visitBinaryOperator(Instruction &I);
661 void visitCmpInst(CmpInst &I);
662 void visitExtractValueInst(ExtractValueInst &EVI);
663 void visitInsertValueInst(InsertValueInst &IVI);
664
665 void visitCatchSwitchInst(CatchSwitchInst &CPI) {
666 markOverdefined(&CPI);
667 visitTerminator(CPI);
668 }
669
670 // Instructions that cannot be folded away.
671
672 void visitStoreInst(StoreInst &I);
673 void visitLoadInst(LoadInst &I);
674 void visitGetElementPtrInst(GetElementPtrInst &I);
675
676 void visitInvokeInst(InvokeInst &II) {
677 visitCallBase(II);
678 visitTerminator(II);
679 }
680
681 void visitCallBrInst(CallBrInst &CBI) {
682 visitCallBase(CBI);
683 visitTerminator(CBI);
684 }
685
686 void visitCallBase(CallBase &CB);
687 void visitResumeInst(ResumeInst &I) { /*returns void*/
688 }
689 void visitUnreachableInst(UnreachableInst &I) { /*returns void*/
690 }
691 void visitFenceInst(FenceInst &I) { /*returns void*/
692 }
693
694 void visitInstruction(Instruction &I);
695
696public:
698 FnPredicateInfo.insert({&F, std::make_unique<PredicateInfo>(F, DT, AC)});
699 }
700
701 void visitCallInst(CallInst &I) { visitCallBase(I); }
702
704
706 auto It = FnPredicateInfo.find(I->getParent()->getParent());
707 if (It == FnPredicateInfo.end())
708 return nullptr;
709 return It->second->getPredicateInfoFor(I);
710 }
711
713 std::function<const TargetLibraryInfo &(Function &)> GetTLI,
714 LLVMContext &Ctx)
715 : DL(DL), GetTLI(GetTLI), Ctx(Ctx) {}
716
718 // We only track the contents of scalar globals.
719 if (GV->getValueType()->isSingleValueType()) {
720 ValueLatticeElement &IV = TrackedGlobals[GV];
721 IV.markConstant(GV->getInitializer());
722 }
723 }
724
726 // Add an entry, F -> undef.
727 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
728 MRVFunctionsTracked.insert(F);
729 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
730 TrackedMultipleRetVals.insert(
731 std::make_pair(std::make_pair(F, i), ValueLatticeElement()));
732 } else if (!F->getReturnType()->isVoidTy())
733 TrackedRetVals.insert(std::make_pair(F, ValueLatticeElement()));
734 }
735
737 MustPreserveReturnsInFunctions.insert(F);
738 }
739
741 return MustPreserveReturnsInFunctions.count(F);
742 }
743
745 TrackingIncomingArguments.insert(F);
746 }
747
749 return TrackingIncomingArguments.count(F);
750 }
751
752 void solve();
753
755
757
759 return BBExecutable.count(BB);
760 }
761
762 bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const;
763
764 std::vector<ValueLatticeElement> getStructLatticeValueFor(Value *V) const {
765 std::vector<ValueLatticeElement> StructValues;
766 auto *STy = dyn_cast<StructType>(V->getType());
767 assert(STy && "getStructLatticeValueFor() can be called only on structs");
768 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
769 auto I = StructValueState.find(std::make_pair(V, i));
770 assert(I != StructValueState.end() && "Value not in valuemap!");
771 StructValues.push_back(I->second);
772 }
773 return StructValues;
774 }
775
776 void removeLatticeValueFor(Value *V) { ValueState.erase(V); }
777
778 /// Invalidate the Lattice Value of \p Call and its users after specializing
779 /// the call. Then recompute it.
781 // Calls to void returning functions do not need invalidation.
782 Function *F = Call->getCalledFunction();
783 (void)F;
784 assert(!F->getReturnType()->isVoidTy() &&
785 (TrackedRetVals.count(F) || MRVFunctionsTracked.count(F)) &&
786 "All non void specializations should be tracked");
787 invalidate(Call);
788 handleCallResult(*Call);
789 }
790
792 assert(!V->getType()->isStructTy() &&
793 "Should use getStructLatticeValueFor");
795 ValueState.find(V);
796 assert(I != ValueState.end() &&
797 "V not found in ValueState nor Paramstate map!");
798 return I->second;
799 }
800
802 return TrackedRetVals;
803 }
804
806 return TrackedGlobals;
807 }
808
810 return MRVFunctionsTracked;
811 }
812
814 if (auto *STy = dyn_cast<StructType>(V->getType()))
815 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
816 markOverdefined(getStructValueState(V, i), V);
817 else
818 markOverdefined(ValueState[V], V);
819 }
820
822 if (A->getType()->isIntegerTy()) {
823 if (std::optional<ConstantRange> Range = A->getRange()) {
824 markConstantRange(ValueState[A], A, *Range);
825 return;
826 }
827 }
828 // Assume nothing about the incoming arguments without range.
829 markOverdefined(A);
830 }
831
833
834 Constant *getConstant(const ValueLatticeElement &LV, Type *Ty) const;
835
837
839 return TrackingIncomingArguments;
840 }
841
843 const SmallVectorImpl<ArgInfo> &Args);
844
846 for (auto &BB : *F)
847 BBExecutable.erase(&BB);
848 }
849
851 bool ResolvedUndefs = true;
852 while (ResolvedUndefs) {
853 solve();
854 ResolvedUndefs = false;
855 for (Function &F : M)
856 ResolvedUndefs |= resolvedUndefsIn(F);
857 }
858 }
859
861 bool ResolvedUndefs = true;
862 while (ResolvedUndefs) {
863 solve();
864 ResolvedUndefs = false;
865 for (Function *F : WorkList)
866 ResolvedUndefs |= resolvedUndefsIn(*F);
867 }
868 }
869
871 bool ResolvedUndefs = true;
872 while (ResolvedUndefs) {
873 solve();
874 ResolvedUndefs = false;
875 for (Value *V : Invalidated)
876 if (auto *I = dyn_cast<Instruction>(V))
877 ResolvedUndefs |= resolvedUndef(*I);
878 }
879 Invalidated.clear();
880 }
881};
882
883} // namespace llvm
884
886 if (!BBExecutable.insert(BB).second)
887 return false;
888 LLVM_DEBUG(dbgs() << "Marking Block Executable: " << BB->getName() << '\n');
889 BBWorkList.push_back(BB); // Add the block to the work list!
890 return true;
891}
892
893void SCCPInstVisitor::pushToWorkList(ValueLatticeElement &IV, Value *V) {
894 if (IV.isOverdefined()) {
895 if (OverdefinedInstWorkList.empty() || OverdefinedInstWorkList.back() != V)
896 OverdefinedInstWorkList.push_back(V);
897 return;
898 }
899 if (InstWorkList.empty() || InstWorkList.back() != V)
900 InstWorkList.push_back(V);
901}
902
903void SCCPInstVisitor::pushToWorkListMsg(ValueLatticeElement &IV, Value *V) {
904 LLVM_DEBUG(dbgs() << "updated " << IV << ": " << *V << '\n');
905 pushToWorkList(IV, V);
906}
907
908bool SCCPInstVisitor::markConstant(ValueLatticeElement &IV, Value *V,
909 Constant *C, bool MayIncludeUndef) {
910 if (!IV.markConstant(C, MayIncludeUndef))
911 return false;
912 LLVM_DEBUG(dbgs() << "markConstant: " << *C << ": " << *V << '\n');
913 pushToWorkList(IV, V);
914 return true;
915}
916
917bool SCCPInstVisitor::markConstantRange(ValueLatticeElement &IV, Value *V,
918 const ConstantRange &CR) {
919 if (!IV.markConstantRange(CR))
920 return false;
921 LLVM_DEBUG(dbgs() << "markConstantRange: " << CR << ": " << *V << '\n');
922 pushToWorkList(IV, V);
923 return true;
924}
925
926bool SCCPInstVisitor::markOverdefined(ValueLatticeElement &IV, Value *V) {
927 if (!IV.markOverdefined())
928 return false;
929
930 LLVM_DEBUG(dbgs() << "markOverdefined: ";
931 if (auto *F = dyn_cast<Function>(V)) dbgs()
932 << "Function '" << F->getName() << "'\n";
933 else dbgs() << *V << '\n');
934 // Only instructions go on the work list
935 pushToWorkList(IV, V);
936 return true;
937}
938
940 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
941 const auto &It = TrackedMultipleRetVals.find(std::make_pair(F, i));
942 assert(It != TrackedMultipleRetVals.end());
943 ValueLatticeElement LV = It->second;
944 if (!SCCPSolver::isConstant(LV))
945 return false;
946 }
947 return true;
948}
949
951 Type *Ty) const {
952 if (LV.isConstant()) {
953 Constant *C = LV.getConstant();
954 assert(C->getType() == Ty && "Type mismatch");
955 return C;
956 }
957
958 if (LV.isConstantRange()) {
959 const auto &CR = LV.getConstantRange();
960 if (CR.getSingleElement())
961 return ConstantInt::get(Ty, *CR.getSingleElement());
962 }
963 return nullptr;
964}
965
967 Constant *Const = nullptr;
968 if (V->getType()->isStructTy()) {
969 std::vector<ValueLatticeElement> LVs = getStructLatticeValueFor(V);
971 return nullptr;
972 std::vector<Constant *> ConstVals;
973 auto *ST = cast<StructType>(V->getType());
974 for (unsigned I = 0, E = ST->getNumElements(); I != E; ++I) {
975 ValueLatticeElement LV = LVs[I];
976 ConstVals.push_back(SCCPSolver::isConstant(LV)
977 ? getConstant(LV, ST->getElementType(I))
978 : UndefValue::get(ST->getElementType(I)));
979 }
980 Const = ConstantStruct::get(ST, ConstVals);
981 } else {
984 return nullptr;
985 Const = SCCPSolver::isConstant(LV) ? getConstant(LV, V->getType())
986 : UndefValue::get(V->getType());
987 }
988 assert(Const && "Constant is nullptr here!");
989 return Const;
990}
991
993 const SmallVectorImpl<ArgInfo> &Args) {
994 assert(!Args.empty() && "Specialization without arguments");
995 assert(F->arg_size() == Args[0].Formal->getParent()->arg_size() &&
996 "Functions should have the same number of arguments");
997
998 auto Iter = Args.begin();
999 Function::arg_iterator NewArg = F->arg_begin();
1000 Function::arg_iterator OldArg = Args[0].Formal->getParent()->arg_begin();
1001 for (auto End = F->arg_end(); NewArg != End; ++NewArg, ++OldArg) {
1002
1003 LLVM_DEBUG(dbgs() << "SCCP: Marking argument "
1004 << NewArg->getNameOrAsOperand() << "\n");
1005
1006 // Mark the argument constants in the new function
1007 // or copy the lattice state over from the old function.
1008 if (Iter != Args.end() && Iter->Formal == &*OldArg) {
1009 if (auto *STy = dyn_cast<StructType>(NewArg->getType())) {
1010 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
1011 ValueLatticeElement &NewValue = StructValueState[{&*NewArg, I}];
1012 NewValue.markConstant(Iter->Actual->getAggregateElement(I));
1013 }
1014 } else {
1015 ValueState[&*NewArg].markConstant(Iter->Actual);
1016 }
1017 ++Iter;
1018 } else {
1019 if (auto *STy = dyn_cast<StructType>(NewArg->getType())) {
1020 for (unsigned I = 0, E = STy->getNumElements(); I != E; ++I) {
1021 ValueLatticeElement &NewValue = StructValueState[{&*NewArg, I}];
1022 NewValue = StructValueState[{&*OldArg, I}];
1023 }
1024 } else {
1025 ValueLatticeElement &NewValue = ValueState[&*NewArg];
1026 NewValue = ValueState[&*OldArg];
1027 }
1028 }
1029 }
1030}
1031
1032void SCCPInstVisitor::visitInstruction(Instruction &I) {
1033 // All the instructions we don't do any special handling for just
1034 // go to overdefined.
1035 LLVM_DEBUG(dbgs() << "SCCP: Don't know how to handle: " << I << '\n');
1036 markOverdefined(&I);
1037}
1038
1039bool SCCPInstVisitor::mergeInValue(ValueLatticeElement &IV, Value *V,
1040 ValueLatticeElement MergeWithV,
1042 if (IV.mergeIn(MergeWithV, Opts)) {
1043 pushToWorkList(IV, V);
1044 LLVM_DEBUG(dbgs() << "Merged " << MergeWithV << " into " << *V << " : "
1045 << IV << "\n");
1046 return true;
1047 }
1048 return false;
1049}
1050
1051bool SCCPInstVisitor::markEdgeExecutable(BasicBlock *Source, BasicBlock *Dest) {
1052 if (!KnownFeasibleEdges.insert(Edge(Source, Dest)).second)
1053 return false; // This edge is already known to be executable!
1054
1055 if (!markBlockExecutable(Dest)) {
1056 // If the destination is already executable, we just made an *edge*
1057 // feasible that wasn't before. Revisit the PHI nodes in the block
1058 // because they have potentially new operands.
1059 LLVM_DEBUG(dbgs() << "Marking Edge Executable: " << Source->getName()
1060 << " -> " << Dest->getName() << '\n');
1061
1062 for (PHINode &PN : Dest->phis())
1063 visitPHINode(PN);
1064 }
1065 return true;
1066}
1067
1068// getFeasibleSuccessors - Return a vector of booleans to indicate which
1069// successors are reachable from a given terminator instruction.
1070void SCCPInstVisitor::getFeasibleSuccessors(Instruction &TI,
1071 SmallVectorImpl<bool> &Succs) {
1072 Succs.resize(TI.getNumSuccessors());
1073 if (auto *BI = dyn_cast<BranchInst>(&TI)) {
1074 if (BI->isUnconditional()) {
1075 Succs[0] = true;
1076 return;
1077 }
1078
1079 ValueLatticeElement BCValue = getValueState(BI->getCondition());
1080 ConstantInt *CI = getConstantInt(BCValue, BI->getCondition()->getType());
1081 if (!CI) {
1082 // Overdefined condition variables, and branches on unfoldable constant
1083 // conditions, mean the branch could go either way.
1084 if (!BCValue.isUnknownOrUndef())
1085 Succs[0] = Succs[1] = true;
1086 return;
1087 }
1088
1089 // Constant condition variables mean the branch can only go a single way.
1090 Succs[CI->isZero()] = true;
1091 return;
1092 }
1093
1094 // We cannot analyze special terminators, so consider all successors
1095 // executable.
1096 if (TI.isSpecialTerminator()) {
1097 Succs.assign(TI.getNumSuccessors(), true);
1098 return;
1099 }
1100
1101 if (auto *SI = dyn_cast<SwitchInst>(&TI)) {
1102 if (!SI->getNumCases()) {
1103 Succs[0] = true;
1104 return;
1105 }
1106 const ValueLatticeElement &SCValue = getValueState(SI->getCondition());
1107 if (ConstantInt *CI =
1108 getConstantInt(SCValue, SI->getCondition()->getType())) {
1109 Succs[SI->findCaseValue(CI)->getSuccessorIndex()] = true;
1110 return;
1111 }
1112
1113 // TODO: Switch on undef is UB. Stop passing false once the rest of LLVM
1114 // is ready.
1115 if (SCValue.isConstantRange(/*UndefAllowed=*/false)) {
1116 const ConstantRange &Range = SCValue.getConstantRange();
1117 unsigned ReachableCaseCount = 0;
1118 for (const auto &Case : SI->cases()) {
1119 const APInt &CaseValue = Case.getCaseValue()->getValue();
1120 if (Range.contains(CaseValue)) {
1121 Succs[Case.getSuccessorIndex()] = true;
1122 ++ReachableCaseCount;
1123 }
1124 }
1125
1126 Succs[SI->case_default()->getSuccessorIndex()] =
1127 Range.isSizeLargerThan(ReachableCaseCount);
1128 return;
1129 }
1130
1131 // Overdefined or unknown condition? All destinations are executable!
1132 if (!SCValue.isUnknownOrUndef())
1133 Succs.assign(TI.getNumSuccessors(), true);
1134 return;
1135 }
1136
1137 // In case of indirect branch and its address is a blockaddress, we mark
1138 // the target as executable.
1139 if (auto *IBR = dyn_cast<IndirectBrInst>(&TI)) {
1140 // Casts are folded by visitCastInst.
1141 ValueLatticeElement IBRValue = getValueState(IBR->getAddress());
1142 BlockAddress *Addr = dyn_cast_or_null<BlockAddress>(
1143 getConstant(IBRValue, IBR->getAddress()->getType()));
1144 if (!Addr) { // Overdefined or unknown condition?
1145 // All destinations are executable!
1146 if (!IBRValue.isUnknownOrUndef())
1147 Succs.assign(TI.getNumSuccessors(), true);
1148 return;
1149 }
1150
1151 BasicBlock *T = Addr->getBasicBlock();
1152 assert(Addr->getFunction() == T->getParent() &&
1153 "Block address of a different function ?");
1154 for (unsigned i = 0; i < IBR->getNumSuccessors(); ++i) {
1155 // This is the target.
1156 if (IBR->getDestination(i) == T) {
1157 Succs[i] = true;
1158 return;
1159 }
1160 }
1161
1162 // If we didn't find our destination in the IBR successor list, then we
1163 // have undefined behavior. Its ok to assume no successor is executable.
1164 return;
1165 }
1166
1167 LLVM_DEBUG(dbgs() << "Unknown terminator instruction: " << TI << '\n');
1168 llvm_unreachable("SCCP: Don't know how to handle this terminator!");
1169}
1170
1171// isEdgeFeasible - Return true if the control flow edge from the 'From' basic
1172// block to the 'To' basic block is currently feasible.
1174 // Check if we've called markEdgeExecutable on the edge yet. (We could
1175 // be more aggressive and try to consider edges which haven't been marked
1176 // yet, but there isn't any need.)
1177 return KnownFeasibleEdges.count(Edge(From, To));
1178}
1179
1180// visit Implementations - Something changed in this instruction, either an
1181// operand made a transition, or the instruction is newly executable. Change
1182// the value type of I to reflect these changes if appropriate. This method
1183// makes sure to do the following actions:
1184//
1185// 1. If a phi node merges two constants in, and has conflicting value coming
1186// from different branches, or if the PHI node merges in an overdefined
1187// value, then the PHI node becomes overdefined.
1188// 2. If a phi node merges only constants in, and they all agree on value, the
1189// PHI node becomes a constant value equal to that.
1190// 3. If V <- x (op) y && isConstant(x) && isConstant(y) V = Constant
1191// 4. If V <- x (op) y && (isOverdefined(x) || isOverdefined(y)) V = Overdefined
1192// 5. If V <- MEM or V <- CALL or V <- (unknown) then V = Overdefined
1193// 6. If a conditional branch has a value that is constant, make the selected
1194// destination executable
1195// 7. If a conditional branch has a value that is overdefined, make all
1196// successors executable.
1197void SCCPInstVisitor::visitPHINode(PHINode &PN) {
1198 // If this PN returns a struct, just mark the result overdefined.
1199 // TODO: We could do a lot better than this if code actually uses this.
1200 if (PN.getType()->isStructTy())
1201 return (void)markOverdefined(&PN);
1202
1203 if (getValueState(&PN).isOverdefined())
1204 return; // Quick exit
1205
1206 // Super-extra-high-degree PHI nodes are unlikely to ever be marked constant,
1207 // and slow us down a lot. Just mark them overdefined.
1208 if (PN.getNumIncomingValues() > 64)
1209 return (void)markOverdefined(&PN);
1210
1211 unsigned NumActiveIncoming = 0;
1212
1213 // Look at all of the executable operands of the PHI node. If any of them
1214 // are overdefined, the PHI becomes overdefined as well. If they are all
1215 // constant, and they agree with each other, the PHI becomes the identical
1216 // constant. If they are constant and don't agree, the PHI is a constant
1217 // range. If there are no executable operands, the PHI remains unknown.
1218 ValueLatticeElement PhiState = getValueState(&PN);
1219 for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i) {
1220 if (!isEdgeFeasible(PN.getIncomingBlock(i), PN.getParent()))
1221 continue;
1222
1223 ValueLatticeElement IV = getValueState(PN.getIncomingValue(i));
1224 PhiState.mergeIn(IV);
1225 NumActiveIncoming++;
1226 if (PhiState.isOverdefined())
1227 break;
1228 }
1229
1230 // We allow up to 1 range extension per active incoming value and one
1231 // additional extension. Note that we manually adjust the number of range
1232 // extensions to match the number of active incoming values. This helps to
1233 // limit multiple extensions caused by the same incoming value, if other
1234 // incoming values are equal.
1235 mergeInValue(&PN, PhiState,
1236 ValueLatticeElement::MergeOptions().setMaxWidenSteps(
1237 NumActiveIncoming + 1));
1238 ValueLatticeElement &PhiStateRef = getValueState(&PN);
1239 PhiStateRef.setNumRangeExtensions(
1240 std::max(NumActiveIncoming, PhiStateRef.getNumRangeExtensions()));
1241}
1242
1243void SCCPInstVisitor::visitReturnInst(ReturnInst &I) {
1244 if (I.getNumOperands() == 0)
1245 return; // ret void
1246
1247 Function *F = I.getParent()->getParent();
1248 Value *ResultOp = I.getOperand(0);
1249
1250 // If we are tracking the return value of this function, merge it in.
1251 if (!TrackedRetVals.empty() && !ResultOp->getType()->isStructTy()) {
1252 auto TFRVI = TrackedRetVals.find(F);
1253 if (TFRVI != TrackedRetVals.end()) {
1254 mergeInValue(TFRVI->second, F, getValueState(ResultOp));
1255 return;
1256 }
1257 }
1258
1259 // Handle functions that return multiple values.
1260 if (!TrackedMultipleRetVals.empty()) {
1261 if (auto *STy = dyn_cast<StructType>(ResultOp->getType()))
1262 if (MRVFunctionsTracked.count(F))
1263 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1264 mergeInValue(TrackedMultipleRetVals[std::make_pair(F, i)], F,
1265 getStructValueState(ResultOp, i));
1266 }
1267}
1268
1269void SCCPInstVisitor::visitTerminator(Instruction &TI) {
1270 SmallVector<bool, 16> SuccFeasible;
1271 getFeasibleSuccessors(TI, SuccFeasible);
1272
1273 BasicBlock *BB = TI.getParent();
1274
1275 // Mark all feasible successors executable.
1276 for (unsigned i = 0, e = SuccFeasible.size(); i != e; ++i)
1277 if (SuccFeasible[i])
1278 markEdgeExecutable(BB, TI.getSuccessor(i));
1279}
1280
1281void SCCPInstVisitor::visitCastInst(CastInst &I) {
1282 // ResolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1283 // discover a concrete value later.
1284 if (ValueState[&I].isOverdefined())
1285 return;
1286
1287 ValueLatticeElement OpSt = getValueState(I.getOperand(0));
1288 if (OpSt.isUnknownOrUndef())
1289 return;
1290
1291 if (Constant *OpC = getConstant(OpSt, I.getOperand(0)->getType())) {
1292 // Fold the constant as we build.
1293 if (Constant *C =
1294 ConstantFoldCastOperand(I.getOpcode(), OpC, I.getType(), DL))
1295 return (void)markConstant(&I, C);
1296 }
1297
1298 if (I.getDestTy()->isIntegerTy() && I.getSrcTy()->isIntOrIntVectorTy()) {
1299 auto &LV = getValueState(&I);
1300 ConstantRange OpRange = getConstantRange(OpSt, I.getSrcTy());
1301
1302 Type *DestTy = I.getDestTy();
1303 // Vectors where all elements have the same known constant range are treated
1304 // as a single constant range in the lattice. When bitcasting such vectors,
1305 // there is a mis-match between the width of the lattice value (single
1306 // constant range) and the original operands (vector). Go to overdefined in
1307 // that case.
1308 if (I.getOpcode() == Instruction::BitCast &&
1309 I.getOperand(0)->getType()->isVectorTy() &&
1310 OpRange.getBitWidth() < DL.getTypeSizeInBits(DestTy))
1311 return (void)markOverdefined(&I);
1312
1313 ConstantRange Res =
1314 OpRange.castOp(I.getOpcode(), DL.getTypeSizeInBits(DestTy));
1315 mergeInValue(LV, &I, ValueLatticeElement::getRange(Res));
1316 } else
1317 markOverdefined(&I);
1318}
1319
1320void SCCPInstVisitor::handleExtractOfWithOverflow(ExtractValueInst &EVI,
1321 const WithOverflowInst *WO,
1322 unsigned Idx) {
1323 Value *LHS = WO->getLHS(), *RHS = WO->getRHS();
1324 ValueLatticeElement L = getValueState(LHS);
1325 ValueLatticeElement R = getValueState(RHS);
1326 addAdditionalUser(LHS, &EVI);
1327 addAdditionalUser(RHS, &EVI);
1328 if (L.isUnknownOrUndef() || R.isUnknownOrUndef())
1329 return; // Wait to resolve.
1330
1331 Type *Ty = LHS->getType();
1332 ConstantRange LR = getConstantRange(L, Ty);
1333 ConstantRange RR = getConstantRange(R, Ty);
1334 if (Idx == 0) {
1335 ConstantRange Res = LR.binaryOp(WO->getBinaryOp(), RR);
1336 mergeInValue(&EVI, ValueLatticeElement::getRange(Res));
1337 } else {
1338 assert(Idx == 1 && "Index can only be 0 or 1");
1340 WO->getBinaryOp(), RR, WO->getNoWrapKind());
1341 if (NWRegion.contains(LR))
1342 return (void)markConstant(&EVI, ConstantInt::getFalse(EVI.getType()));
1343 markOverdefined(&EVI);
1344 }
1345}
1346
1347void SCCPInstVisitor::visitExtractValueInst(ExtractValueInst &EVI) {
1348 // If this returns a struct, mark all elements over defined, we don't track
1349 // structs in structs.
1350 if (EVI.getType()->isStructTy())
1351 return (void)markOverdefined(&EVI);
1352
1353 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1354 // discover a concrete value later.
1355 if (ValueState[&EVI].isOverdefined())
1356 return (void)markOverdefined(&EVI);
1357
1358 // If this is extracting from more than one level of struct, we don't know.
1359 if (EVI.getNumIndices() != 1)
1360 return (void)markOverdefined(&EVI);
1361
1362 Value *AggVal = EVI.getAggregateOperand();
1363 if (AggVal->getType()->isStructTy()) {
1364 unsigned i = *EVI.idx_begin();
1365 if (auto *WO = dyn_cast<WithOverflowInst>(AggVal))
1366 return handleExtractOfWithOverflow(EVI, WO, i);
1367 ValueLatticeElement EltVal = getStructValueState(AggVal, i);
1368 mergeInValue(getValueState(&EVI), &EVI, EltVal);
1369 } else {
1370 // Otherwise, must be extracting from an array.
1371 return (void)markOverdefined(&EVI);
1372 }
1373}
1374
1375void SCCPInstVisitor::visitInsertValueInst(InsertValueInst &IVI) {
1376 auto *STy = dyn_cast<StructType>(IVI.getType());
1377 if (!STy)
1378 return (void)markOverdefined(&IVI);
1379
1380 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1381 // discover a concrete value later.
1382 if (SCCPSolver::isOverdefined(ValueState[&IVI]))
1383 return (void)markOverdefined(&IVI);
1384
1385 // If this has more than one index, we can't handle it, drive all results to
1386 // undef.
1387 if (IVI.getNumIndices() != 1)
1388 return (void)markOverdefined(&IVI);
1389
1390 Value *Aggr = IVI.getAggregateOperand();
1391 unsigned Idx = *IVI.idx_begin();
1392
1393 // Compute the result based on what we're inserting.
1394 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1395 // This passes through all values that aren't the inserted element.
1396 if (i != Idx) {
1397 ValueLatticeElement EltVal = getStructValueState(Aggr, i);
1398 mergeInValue(getStructValueState(&IVI, i), &IVI, EltVal);
1399 continue;
1400 }
1401
1402 Value *Val = IVI.getInsertedValueOperand();
1403 if (Val->getType()->isStructTy())
1404 // We don't track structs in structs.
1405 markOverdefined(getStructValueState(&IVI, i), &IVI);
1406 else {
1407 ValueLatticeElement InVal = getValueState(Val);
1408 mergeInValue(getStructValueState(&IVI, i), &IVI, InVal);
1409 }
1410 }
1411}
1412
1413void SCCPInstVisitor::visitSelectInst(SelectInst &I) {
1414 // If this select returns a struct, just mark the result overdefined.
1415 // TODO: We could do a lot better than this if code actually uses this.
1416 if (I.getType()->isStructTy())
1417 return (void)markOverdefined(&I);
1418
1419 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1420 // discover a concrete value later.
1421 if (ValueState[&I].isOverdefined())
1422 return (void)markOverdefined(&I);
1423
1424 ValueLatticeElement CondValue = getValueState(I.getCondition());
1425 if (CondValue.isUnknownOrUndef())
1426 return;
1427
1428 if (ConstantInt *CondCB =
1429 getConstantInt(CondValue, I.getCondition()->getType())) {
1430 Value *OpVal = CondCB->isZero() ? I.getFalseValue() : I.getTrueValue();
1431 mergeInValue(&I, getValueState(OpVal));
1432 return;
1433 }
1434
1435 // Otherwise, the condition is overdefined or a constant we can't evaluate.
1436 // See if we can produce something better than overdefined based on the T/F
1437 // value.
1438 ValueLatticeElement TVal = getValueState(I.getTrueValue());
1439 ValueLatticeElement FVal = getValueState(I.getFalseValue());
1440
1441 bool Changed = ValueState[&I].mergeIn(TVal);
1442 Changed |= ValueState[&I].mergeIn(FVal);
1443 if (Changed)
1444 pushToWorkListMsg(ValueState[&I], &I);
1445}
1446
1447// Handle Unary Operators.
1448void SCCPInstVisitor::visitUnaryOperator(Instruction &I) {
1449 ValueLatticeElement V0State = getValueState(I.getOperand(0));
1450
1451 ValueLatticeElement &IV = ValueState[&I];
1452 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1453 // discover a concrete value later.
1455 return (void)markOverdefined(&I);
1456
1457 // If something is unknown/undef, wait for it to resolve.
1458 if (V0State.isUnknownOrUndef())
1459 return;
1460
1461 if (SCCPSolver::isConstant(V0State))
1463 I.getOpcode(), getConstant(V0State, I.getType()), DL))
1464 return (void)markConstant(IV, &I, C);
1465
1466 markOverdefined(&I);
1467}
1468
1469void SCCPInstVisitor::visitFreezeInst(FreezeInst &I) {
1470 // If this freeze returns a struct, just mark the result overdefined.
1471 // TODO: We could do a lot better than this.
1472 if (I.getType()->isStructTy())
1473 return (void)markOverdefined(&I);
1474
1475 ValueLatticeElement V0State = getValueState(I.getOperand(0));
1476 ValueLatticeElement &IV = ValueState[&I];
1477 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1478 // discover a concrete value later.
1480 return (void)markOverdefined(&I);
1481
1482 // If something is unknown/undef, wait for it to resolve.
1483 if (V0State.isUnknownOrUndef())
1484 return;
1485
1486 if (SCCPSolver::isConstant(V0State) &&
1487 isGuaranteedNotToBeUndefOrPoison(getConstant(V0State, I.getType())))
1488 return (void)markConstant(IV, &I, getConstant(V0State, I.getType()));
1489
1490 markOverdefined(&I);
1491}
1492
1493// Handle Binary Operators.
1494void SCCPInstVisitor::visitBinaryOperator(Instruction &I) {
1495 ValueLatticeElement V1State = getValueState(I.getOperand(0));
1496 ValueLatticeElement V2State = getValueState(I.getOperand(1));
1497
1498 ValueLatticeElement &IV = ValueState[&I];
1499 if (IV.isOverdefined())
1500 return;
1501
1502 // If something is undef, wait for it to resolve.
1503 if (V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef())
1504 return;
1505
1506 if (V1State.isOverdefined() && V2State.isOverdefined())
1507 return (void)markOverdefined(&I);
1508
1509 // If either of the operands is a constant, try to fold it to a constant.
1510 // TODO: Use information from notconstant better.
1511 if ((V1State.isConstant() || V2State.isConstant())) {
1512 Value *V1 = SCCPSolver::isConstant(V1State)
1513 ? getConstant(V1State, I.getOperand(0)->getType())
1514 : I.getOperand(0);
1515 Value *V2 = SCCPSolver::isConstant(V2State)
1516 ? getConstant(V2State, I.getOperand(1)->getType())
1517 : I.getOperand(1);
1518 Value *R = simplifyBinOp(I.getOpcode(), V1, V2, SimplifyQuery(DL));
1519 auto *C = dyn_cast_or_null<Constant>(R);
1520 if (C) {
1521 // Conservatively assume that the result may be based on operands that may
1522 // be undef. Note that we use mergeInValue to combine the constant with
1523 // the existing lattice value for I, as different constants might be found
1524 // after one of the operands go to overdefined, e.g. due to one operand
1525 // being a special floating value.
1527 NewV.markConstant(C, /*MayIncludeUndef=*/true);
1528 return (void)mergeInValue(&I, NewV);
1529 }
1530 }
1531
1532 // Only use ranges for binary operators on integers.
1533 if (!I.getType()->isIntegerTy())
1534 return markOverdefined(&I);
1535
1536 // Try to simplify to a constant range.
1537 ConstantRange A = getConstantRange(V1State, I.getType());
1538 ConstantRange B = getConstantRange(V2State, I.getType());
1539
1540 auto *BO = cast<BinaryOperator>(&I);
1541 ConstantRange R = ConstantRange::getEmpty(I.getType()->getScalarSizeInBits());
1542 if (auto *OBO = dyn_cast<OverflowingBinaryOperator>(BO))
1543 R = A.overflowingBinaryOp(BO->getOpcode(), B, OBO->getNoWrapKind());
1544 else
1545 R = A.binaryOp(BO->getOpcode(), B);
1546 mergeInValue(&I, ValueLatticeElement::getRange(R));
1547
1548 // TODO: Currently we do not exploit special values that produce something
1549 // better than overdefined with an overdefined operand for vector or floating
1550 // point types, like and <4 x i32> overdefined, zeroinitializer.
1551}
1552
1553// Handle ICmpInst instruction.
1554void SCCPInstVisitor::visitCmpInst(CmpInst &I) {
1555 // Do not cache this lookup, getValueState calls later in the function might
1556 // invalidate the reference.
1557 if (SCCPSolver::isOverdefined(ValueState[&I]))
1558 return (void)markOverdefined(&I);
1559
1560 Value *Op1 = I.getOperand(0);
1561 Value *Op2 = I.getOperand(1);
1562
1563 // For parameters, use ParamState which includes constant range info if
1564 // available.
1565 auto V1State = getValueState(Op1);
1566 auto V2State = getValueState(Op2);
1567
1568 Constant *C = V1State.getCompare(I.getPredicate(), I.getType(), V2State, DL);
1569 if (C) {
1571 CV.markConstant(C);
1572 mergeInValue(&I, CV);
1573 return;
1574 }
1575
1576 // If operands are still unknown, wait for it to resolve.
1577 if ((V1State.isUnknownOrUndef() || V2State.isUnknownOrUndef()) &&
1578 !SCCPSolver::isConstant(ValueState[&I]))
1579 return;
1580
1581 markOverdefined(&I);
1582}
1583
1584// Handle getelementptr instructions. If all operands are constants then we
1585// can turn this into a getelementptr ConstantExpr.
1586void SCCPInstVisitor::visitGetElementPtrInst(GetElementPtrInst &I) {
1587 if (SCCPSolver::isOverdefined(ValueState[&I]))
1588 return (void)markOverdefined(&I);
1589
1591 Operands.reserve(I.getNumOperands());
1592
1593 for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
1594 ValueLatticeElement State = getValueState(I.getOperand(i));
1595 if (State.isUnknownOrUndef())
1596 return; // Operands are not resolved yet.
1597
1598 if (SCCPSolver::isOverdefined(State))
1599 return (void)markOverdefined(&I);
1600
1601 if (Constant *C = getConstant(State, I.getOperand(i)->getType())) {
1602 Operands.push_back(C);
1603 continue;
1604 }
1605
1606 return (void)markOverdefined(&I);
1607 }
1608
1610 markConstant(&I, C);
1611}
1612
1613void SCCPInstVisitor::visitStoreInst(StoreInst &SI) {
1614 // If this store is of a struct, ignore it.
1615 if (SI.getOperand(0)->getType()->isStructTy())
1616 return;
1617
1618 if (TrackedGlobals.empty() || !isa<GlobalVariable>(SI.getOperand(1)))
1619 return;
1620
1621 GlobalVariable *GV = cast<GlobalVariable>(SI.getOperand(1));
1622 auto I = TrackedGlobals.find(GV);
1623 if (I == TrackedGlobals.end())
1624 return;
1625
1626 // Get the value we are storing into the global, then merge it.
1627 mergeInValue(I->second, GV, getValueState(SI.getOperand(0)),
1629 if (I->second.isOverdefined())
1630 TrackedGlobals.erase(I); // No need to keep tracking this!
1631}
1632
1634 if (I->getType()->isIntegerTy()) {
1635 if (MDNode *Ranges = I->getMetadata(LLVMContext::MD_range))
1638
1639 if (const auto *CB = dyn_cast<CallBase>(I))
1640 if (std::optional<ConstantRange> Range = CB->getRange())
1641 return ValueLatticeElement::getRange(*Range);
1642 }
1643 if (I->hasMetadata(LLVMContext::MD_nonnull))
1645 ConstantPointerNull::get(cast<PointerType>(I->getType())));
1647}
1648
1649// Handle load instructions. If the operand is a constant pointer to a constant
1650// global, we can replace the load with the loaded constant value!
1651void SCCPInstVisitor::visitLoadInst(LoadInst &I) {
1652 // If this load is of a struct or the load is volatile, just mark the result
1653 // as overdefined.
1654 if (I.getType()->isStructTy() || I.isVolatile())
1655 return (void)markOverdefined(&I);
1656
1657 // resolvedUndefsIn might mark I as overdefined. Bail out, even if we would
1658 // discover a concrete value later.
1659 if (ValueState[&I].isOverdefined())
1660 return (void)markOverdefined(&I);
1661
1662 ValueLatticeElement PtrVal = getValueState(I.getOperand(0));
1663 if (PtrVal.isUnknownOrUndef())
1664 return; // The pointer is not resolved yet!
1665
1666 ValueLatticeElement &IV = ValueState[&I];
1667
1668 if (SCCPSolver::isConstant(PtrVal)) {
1669 Constant *Ptr = getConstant(PtrVal, I.getOperand(0)->getType());
1670
1671 // load null is undefined.
1672 if (isa<ConstantPointerNull>(Ptr)) {
1673 if (NullPointerIsDefined(I.getFunction(), I.getPointerAddressSpace()))
1674 return (void)markOverdefined(IV, &I);
1675 else
1676 return;
1677 }
1678
1679 // Transform load (constant global) into the value loaded.
1680 if (auto *GV = dyn_cast<GlobalVariable>(Ptr)) {
1681 if (!TrackedGlobals.empty()) {
1682 // If we are tracking this global, merge in the known value for it.
1683 auto It = TrackedGlobals.find(GV);
1684 if (It != TrackedGlobals.end()) {
1685 mergeInValue(IV, &I, It->second, getMaxWidenStepsOpts());
1686 return;
1687 }
1688 }
1689 }
1690
1691 // Transform load from a constant into a constant if possible.
1692 if (Constant *C = ConstantFoldLoadFromConstPtr(Ptr, I.getType(), DL))
1693 return (void)markConstant(IV, &I, C);
1694 }
1695
1696 // Fall back to metadata.
1697 mergeInValue(&I, getValueFromMetadata(&I));
1698}
1699
1700void SCCPInstVisitor::visitCallBase(CallBase &CB) {
1701 handleCallResult(CB);
1702 handleCallArguments(CB);
1703}
1704
1705void SCCPInstVisitor::handleCallOverdefined(CallBase &CB) {
1707
1708 // Void return and not tracking callee, just bail.
1709 if (CB.getType()->isVoidTy())
1710 return;
1711
1712 // Always mark struct return as overdefined.
1713 if (CB.getType()->isStructTy())
1714 return (void)markOverdefined(&CB);
1715
1716 // Otherwise, if we have a single return value case, and if the function is
1717 // a declaration, maybe we can constant fold it.
1718 if (F && F->isDeclaration() && canConstantFoldCallTo(&CB, F)) {
1720 for (const Use &A : CB.args()) {
1721 if (A.get()->getType()->isStructTy())
1722 return markOverdefined(&CB); // Can't handle struct args.
1723 if (A.get()->getType()->isMetadataTy())
1724 continue; // Carried in CB, not allowed in Operands.
1725 ValueLatticeElement State = getValueState(A);
1726
1727 if (State.isUnknownOrUndef())
1728 return; // Operands are not resolved yet.
1729 if (SCCPSolver::isOverdefined(State))
1730 return (void)markOverdefined(&CB);
1731 assert(SCCPSolver::isConstant(State) && "Unknown state!");
1732 Operands.push_back(getConstant(State, A->getType()));
1733 }
1734
1735 if (SCCPSolver::isOverdefined(getValueState(&CB)))
1736 return (void)markOverdefined(&CB);
1737
1738 // If we can constant fold this, mark the result of the call as a
1739 // constant.
1740 if (Constant *C = ConstantFoldCall(&CB, F, Operands, &GetTLI(*F)))
1741 return (void)markConstant(&CB, C);
1742 }
1743
1744 // Fall back to metadata.
1745 mergeInValue(&CB, getValueFromMetadata(&CB));
1746}
1747
1748void SCCPInstVisitor::handleCallArguments(CallBase &CB) {
1750 // If this is a local function that doesn't have its address taken, mark its
1751 // entry block executable and merge in the actual arguments to the call into
1752 // the formal arguments of the function.
1753 if (TrackingIncomingArguments.count(F)) {
1754 markBlockExecutable(&F->front());
1755
1756 // Propagate information from this call site into the callee.
1757 auto CAI = CB.arg_begin();
1758 for (Function::arg_iterator AI = F->arg_begin(), E = F->arg_end(); AI != E;
1759 ++AI, ++CAI) {
1760 // If this argument is byval, and if the function is not readonly, there
1761 // will be an implicit copy formed of the input aggregate.
1762 if (AI->hasByValAttr() && !F->onlyReadsMemory()) {
1763 markOverdefined(&*AI);
1764 continue;
1765 }
1766
1767 if (auto *STy = dyn_cast<StructType>(AI->getType())) {
1768 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1769 ValueLatticeElement CallArg = getStructValueState(*CAI, i);
1770 mergeInValue(getStructValueState(&*AI, i), &*AI, CallArg,
1772 }
1773 } else
1774 mergeInValue(&*AI, getValueState(*CAI), getMaxWidenStepsOpts());
1775 }
1776 }
1777}
1778
1779void SCCPInstVisitor::handleCallResult(CallBase &CB) {
1781
1782 if (auto *II = dyn_cast<IntrinsicInst>(&CB)) {
1783 if (II->getIntrinsicID() == Intrinsic::ssa_copy) {
1784 if (ValueState[&CB].isOverdefined())
1785 return;
1786
1787 Value *CopyOf = CB.getOperand(0);
1788 ValueLatticeElement CopyOfVal = getValueState(CopyOf);
1789 const auto *PI = getPredicateInfoFor(&CB);
1790 assert(PI && "Missing predicate info for ssa.copy");
1791
1792 const std::optional<PredicateConstraint> &Constraint =
1793 PI->getConstraint();
1794 if (!Constraint) {
1795 mergeInValue(ValueState[&CB], &CB, CopyOfVal);
1796 return;
1797 }
1798
1799 CmpInst::Predicate Pred = Constraint->Predicate;
1800 Value *OtherOp = Constraint->OtherOp;
1801
1802 // Wait until OtherOp is resolved.
1803 if (getValueState(OtherOp).isUnknown()) {
1804 addAdditionalUser(OtherOp, &CB);
1805 return;
1806 }
1807
1808 ValueLatticeElement CondVal = getValueState(OtherOp);
1809 ValueLatticeElement &IV = ValueState[&CB];
1810 if (CondVal.isConstantRange() || CopyOfVal.isConstantRange()) {
1811 auto ImposedCR =
1812 ConstantRange::getFull(DL.getTypeSizeInBits(CopyOf->getType()));
1813
1814 // Get the range imposed by the condition.
1815 if (CondVal.isConstantRange())
1817 Pred, CondVal.getConstantRange());
1818
1819 // Combine range info for the original value with the new range from the
1820 // condition.
1821 auto CopyOfCR = getConstantRange(CopyOfVal, CopyOf->getType());
1822 auto NewCR = ImposedCR.intersectWith(CopyOfCR);
1823 // If the existing information is != x, do not use the information from
1824 // a chained predicate, as the != x information is more likely to be
1825 // helpful in practice.
1826 if (!CopyOfCR.contains(NewCR) && CopyOfCR.getSingleMissingElement())
1827 NewCR = CopyOfCR;
1828
1829 // The new range is based on a branch condition. That guarantees that
1830 // neither of the compare operands can be undef in the branch targets,
1831 // unless we have conditions that are always true/false (e.g. icmp ule
1832 // i32, %a, i32_max). For the latter overdefined/empty range will be
1833 // inferred, but the branch will get folded accordingly anyways.
1834 addAdditionalUser(OtherOp, &CB);
1835 mergeInValue(
1836 IV, &CB,
1837 ValueLatticeElement::getRange(NewCR, /*MayIncludeUndef*/ false));
1838 return;
1839 } else if (Pred == CmpInst::ICMP_EQ &&
1840 (CondVal.isConstant() || CondVal.isNotConstant())) {
1841 // For non-integer values or integer constant expressions, only
1842 // propagate equal constants or not-constants.
1843 addAdditionalUser(OtherOp, &CB);
1844 mergeInValue(IV, &CB, CondVal);
1845 return;
1846 } else if (Pred == CmpInst::ICMP_NE && CondVal.isConstant()) {
1847 // Propagate inequalities.
1848 addAdditionalUser(OtherOp, &CB);
1849 mergeInValue(IV, &CB,
1851 return;
1852 }
1853
1854 return (void)mergeInValue(IV, &CB, CopyOfVal);
1855 }
1856
1857 if (ConstantRange::isIntrinsicSupported(II->getIntrinsicID())) {
1858 // Compute result range for intrinsics supported by ConstantRange.
1859 // Do this even if we don't know a range for all operands, as we may
1860 // still know something about the result range, e.g. of abs(x).
1862 for (Value *Op : II->args()) {
1863 const ValueLatticeElement &State = getValueState(Op);
1864 if (State.isUnknownOrUndef())
1865 return;
1866 OpRanges.push_back(getConstantRange(State, Op->getType()));
1867 }
1868
1870 ConstantRange::intrinsic(II->getIntrinsicID(), OpRanges);
1871 return (void)mergeInValue(II, ValueLatticeElement::getRange(Result));
1872 }
1873 }
1874
1875 // The common case is that we aren't tracking the callee, either because we
1876 // are not doing interprocedural analysis or the callee is indirect, or is
1877 // external. Handle these cases first.
1878 if (!F || F->isDeclaration())
1879 return handleCallOverdefined(CB);
1880
1881 // If this is a single/zero retval case, see if we're tracking the function.
1882 if (auto *STy = dyn_cast<StructType>(F->getReturnType())) {
1883 if (!MRVFunctionsTracked.count(F))
1884 return handleCallOverdefined(CB); // Not tracking this callee.
1885
1886 // If we are tracking this callee, propagate the result of the function
1887 // into this call site.
1888 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i)
1889 mergeInValue(getStructValueState(&CB, i), &CB,
1890 TrackedMultipleRetVals[std::make_pair(F, i)],
1892 } else {
1893 auto TFRVI = TrackedRetVals.find(F);
1894 if (TFRVI == TrackedRetVals.end())
1895 return handleCallOverdefined(CB); // Not tracking this callee.
1896
1897 // If so, propagate the return value of the callee into this call result.
1898 mergeInValue(&CB, TFRVI->second, getMaxWidenStepsOpts());
1899 }
1900}
1901
1903 // Process the work lists until they are empty!
1904 while (!BBWorkList.empty() || !InstWorkList.empty() ||
1905 !OverdefinedInstWorkList.empty()) {
1906 // Process the overdefined instruction's work list first, which drives other
1907 // things to overdefined more quickly.
1908 while (!OverdefinedInstWorkList.empty()) {
1909 Value *I = OverdefinedInstWorkList.pop_back_val();
1910 Invalidated.erase(I);
1911
1912 LLVM_DEBUG(dbgs() << "\nPopped off OI-WL: " << *I << '\n');
1913
1914 // "I" got into the work list because it either made the transition from
1915 // bottom to constant, or to overdefined.
1916 //
1917 // Anything on this worklist that is overdefined need not be visited
1918 // since all of its users will have already been marked as overdefined
1919 // Update all of the users of this instruction's value.
1920 //
1921 markUsersAsChanged(I);
1922 }
1923
1924 // Process the instruction work list.
1925 while (!InstWorkList.empty()) {
1926 Value *I = InstWorkList.pop_back_val();
1927 Invalidated.erase(I);
1928
1929 LLVM_DEBUG(dbgs() << "\nPopped off I-WL: " << *I << '\n');
1930
1931 // "I" got into the work list because it made the transition from undef to
1932 // constant.
1933 //
1934 // Anything on this worklist that is overdefined need not be visited
1935 // since all of its users will have already been marked as overdefined.
1936 // Update all of the users of this instruction's value.
1937 //
1938 if (I->getType()->isStructTy() || !getValueState(I).isOverdefined())
1939 markUsersAsChanged(I);
1940 }
1941
1942 // Process the basic block work list.
1943 while (!BBWorkList.empty()) {
1944 BasicBlock *BB = BBWorkList.pop_back_val();
1945
1946 LLVM_DEBUG(dbgs() << "\nPopped off BBWL: " << *BB << '\n');
1947
1948 // Notify all instructions in this basic block that they are newly
1949 // executable.
1950 visit(BB);
1951 }
1952 }
1953}
1954
1956 // Look for instructions which produce undef values.
1957 if (I.getType()->isVoidTy())
1958 return false;
1959
1960 if (auto *STy = dyn_cast<StructType>(I.getType())) {
1961 // Only a few things that can be structs matter for undef.
1962
1963 // Tracked calls must never be marked overdefined in resolvedUndefsIn.
1964 if (auto *CB = dyn_cast<CallBase>(&I))
1965 if (Function *F = CB->getCalledFunction())
1966 if (MRVFunctionsTracked.count(F))
1967 return false;
1968
1969 // extractvalue and insertvalue don't need to be marked; they are
1970 // tracked as precisely as their operands.
1971 if (isa<ExtractValueInst>(I) || isa<InsertValueInst>(I))
1972 return false;
1973 // Send the results of everything else to overdefined. We could be
1974 // more precise than this but it isn't worth bothering.
1975 for (unsigned i = 0, e = STy->getNumElements(); i != e; ++i) {
1976 ValueLatticeElement &LV = getStructValueState(&I, i);
1977 if (LV.isUnknown()) {
1978 markOverdefined(LV, &I);
1979 return true;
1980 }
1981 }
1982 return false;
1983 }
1984
1985 ValueLatticeElement &LV = getValueState(&I);
1986 if (!LV.isUnknown())
1987 return false;
1988
1989 // There are two reasons a call can have an undef result
1990 // 1. It could be tracked.
1991 // 2. It could be constant-foldable.
1992 // Because of the way we solve return values, tracked calls must
1993 // never be marked overdefined in resolvedUndefsIn.
1994 if (auto *CB = dyn_cast<CallBase>(&I))
1995 if (Function *F = CB->getCalledFunction())
1996 if (TrackedRetVals.count(F))
1997 return false;
1998
1999 if (isa<LoadInst>(I)) {
2000 // A load here means one of two things: a load of undef from a global,
2001 // a load from an unknown pointer. Either way, having it return undef
2002 // is okay.
2003 return false;
2004 }
2005
2006 markOverdefined(&I);
2007 return true;
2008}
2009
2010/// While solving the dataflow for a function, we don't compute a result for
2011/// operations with an undef operand, to allow undef to be lowered to a
2012/// constant later. For example, constant folding of "zext i8 undef to i16"
2013/// would result in "i16 0", and if undef is later lowered to "i8 1", then the
2014/// zext result would become "i16 1" and would result into an overdefined
2015/// lattice value once merged with the previous result. Not computing the
2016/// result of the zext (treating undef the same as unknown) allows us to handle
2017/// a later undef->constant lowering more optimally.
2018///
2019/// However, if the operand remains undef when the solver returns, we do need
2020/// to assign some result to the instruction (otherwise we would treat it as
2021/// unreachable). For simplicity, we mark any instructions that are still
2022/// unknown as overdefined.
2024 bool MadeChange = false;
2025 for (BasicBlock &BB : F) {
2026 if (!BBExecutable.count(&BB))
2027 continue;
2028
2029 for (Instruction &I : BB)
2030 MadeChange |= resolvedUndef(I);
2031 }
2032
2033 LLVM_DEBUG(if (MadeChange) dbgs()
2034 << "\nResolved undefs in " << F.getName() << '\n');
2035
2036 return MadeChange;
2037}
2038
2039//===----------------------------------------------------------------------===//
2040//
2041// SCCPSolver implementations
2042//
2044 const DataLayout &DL,
2045 std::function<const TargetLibraryInfo &(Function &)> GetTLI,
2046 LLVMContext &Ctx)
2047 : Visitor(new SCCPInstVisitor(DL, std::move(GetTLI), Ctx)) {}
2048
2049SCCPSolver::~SCCPSolver() = default;
2050
2052 AssumptionCache &AC) {
2053 Visitor->addPredicateInfo(F, DT, AC);
2054}
2055
2057 return Visitor->markBlockExecutable(BB);
2058}
2059
2061 return Visitor->getPredicateInfoFor(I);
2062}
2063
2065 Visitor->trackValueOfGlobalVariable(GV);
2066}
2067
2069 Visitor->addTrackedFunction(F);
2070}
2071
2073 Visitor->addToMustPreserveReturnsInFunctions(F);
2074}
2075
2077 return Visitor->mustPreserveReturn(F);
2078}
2079
2081 Visitor->addArgumentTrackedFunction(F);
2082}
2083
2085 return Visitor->isArgumentTrackedFunction(F);
2086}
2087
2088void SCCPSolver::solve() { Visitor->solve(); }
2089
2091 return Visitor->resolvedUndefsIn(F);
2092}
2093
2095 Visitor->solveWhileResolvedUndefsIn(M);
2096}
2097
2098void
2100 Visitor->solveWhileResolvedUndefsIn(WorkList);
2101}
2102
2104 Visitor->solveWhileResolvedUndefs();
2105}
2106
2108 return Visitor->isBlockExecutable(BB);
2109}
2110
2112 return Visitor->isEdgeFeasible(From, To);
2113}
2114
2115std::vector<ValueLatticeElement>
2117 return Visitor->getStructLatticeValueFor(V);
2118}
2119
2121 return Visitor->removeLatticeValueFor(V);
2122}
2123
2125 Visitor->resetLatticeValueFor(Call);
2126}
2127
2129 return Visitor->getLatticeValueFor(V);
2130}
2131
2134 return Visitor->getTrackedRetVals();
2135}
2136
2139 return Visitor->getTrackedGlobals();
2140}
2141
2143 return Visitor->getMRVFunctionsTracked();
2144}
2145
2146void SCCPSolver::markOverdefined(Value *V) { Visitor->markOverdefined(V); }
2147
2149 Visitor->trackValueOfArgument(V);
2150}
2151
2153 return Visitor->isStructLatticeConstant(F, STy);
2154}
2155
2157 Type *Ty) const {
2158 return Visitor->getConstant(LV, Ty);
2159}
2160
2162 return Visitor->getConstantOrNull(V);
2163}
2164
2166 return Visitor->getArgumentTrackedFunctions();
2167}
2168
2170 const SmallVectorImpl<ArgInfo> &Args) {
2171 Visitor->setLatticeValueForSpecializationArguments(F, Args);
2172}
2173
2175 Visitor->markFunctionUnreachable(F);
2176}
2177
2178void SCCPSolver::visit(Instruction *I) { Visitor->visit(I); }
2179
2180void SCCPSolver::visitCall(CallInst &I) { Visitor->visitCall(I); }
MachineBasicBlock MachineBasicBlock::iterator DebugLoc DL
BlockVerifier::State From
static GCRegistry::Add< OcamlGC > B("ocaml", "ocaml 3.10-compatible GC")
static GCRegistry::Add< ErlangGC > A("erlang", "erlang-compatible garbage collector")
static GCRegistry::Add< CoreCLRGC > E("coreclr", "CoreCLR-compatible GC")
Returns the sub type a function will return at a given Idx Should correspond to the result type of an ExtractValue instruction executed with just that one unsigned Idx
#define LLVM_DEBUG(X)
Definition: Debug.h:101
uint64_t Addr
bool End
Definition: ELF_riscv.cpp:480
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
mir Rename Register Operands
static ValueLatticeElement::MergeOptions getMaxWidenStepsOpts()
Returns MergeOptions with MaxWidenSteps set to MaxNumRangeExtensions.
Definition: SCCPSolver.cpp:40
static const unsigned MaxNumRangeExtensions
Definition: SCCPSolver.cpp:37
static ValueLatticeElement getValueFromMetadata(const Instruction *I)
static ConstantRange getConstantRange(const ValueLatticeElement &LV, Type *Ty, bool UndefAllowed=true)
Definition: SCCPSolver.cpp:45
assert(ImpDefSCC.getReg()==AMDGPU::SCC &&ImpDefSCC.isDef())
Value * RHS
Value * LHS
static const uint32_t IV[8]
Definition: blake3_impl.h:78
Class for arbitrary precision integers.
Definition: APInt.h:76
This class represents an incoming formal argument to a Function.
Definition: Argument.h:31
A cache of @llvm.assume calls within a function.
LLVM Basic Block Representation.
Definition: BasicBlock.h:60
iterator_range< const_phi_iterator > phis() const
Returns a range that iterates over the phis in the basic block.
Definition: BasicBlock.h:499
static BasicBlock * Create(LLVMContext &Context, const Twine &Name="", Function *Parent=nullptr, BasicBlock *InsertBefore=nullptr)
Creates a new BasicBlock.
Definition: BasicBlock.h:199
const Function * getParent() const
Return the enclosing method, or null if none.
Definition: BasicBlock.h:206
LLVMContext & getContext() const
Get the context in which this basic block lives.
Definition: BasicBlock.cpp:168
const Instruction * getTerminator() const LLVM_READONLY
Returns the terminator instruction if the block is well formed or null if the block is not well forme...
Definition: BasicBlock.h:221
void removePredecessor(BasicBlock *Pred, bool KeepOneInputPHIs=false)
Update PHI nodes in this BasicBlock before removal of predecessor Pred.
Definition: BasicBlock.cpp:509
Value * getRHS() const
unsigned getNoWrapKind() const
Returns one of OBO::NoSignedWrap or OBO::NoUnsignedWrap.
Instruction::BinaryOps getBinaryOp() const
Returns the binary operation underlying the intrinsic.
Value * getLHS() const
static BinaryOperator * Create(BinaryOps Op, Value *S1, Value *S2, const Twine &Name, BasicBlock::iterator InsertBefore)
Construct a binary instruction, given the opcode and the two operands.
The address of a basic block.
Definition: Constants.h:889
static BranchInst * Create(BasicBlock *IfTrue, BasicBlock::iterator InsertBefore)
Base class for all callable instructions (InvokeInst and CallInst) Holds everything related to callin...
Definition: InstrTypes.h:1494
std::optional< OperandBundleUse > getOperandBundle(StringRef Name) const
Return an operand bundle by name, if present.
Definition: InstrTypes.h:2411
Function * getCalledFunction() const
Returns the function called, or null if this is an indirect function invocation or the function signa...
Definition: InstrTypes.h:1742
User::op_iterator arg_begin()
Return the iterator pointing to the beginning of the argument list.
Definition: InstrTypes.h:1662
bool isMustTailCall() const
Tests if this call site must be tail call optimized.
iterator_range< User::op_iterator > args()
Iteration adapter for range-for loops.
Definition: InstrTypes.h:1678
CallBr instruction, tracking function calls that may not return control but instead transfer it to a ...
This class represents a function call, abstracting a target machine's calling convention.
This is the base class for all instructions that perform data casts.
Definition: InstrTypes.h:601
static CastInst * Create(Instruction::CastOps, Value *S, Type *Ty, const Twine &Name, BasicBlock::iterator InsertBefore)
Provides a way to construct any of the CastInst subclasses using an opcode instead of the subclass's ...
This class is the base class for the comparison instructions.
Definition: InstrTypes.h:983
Predicate
This enumeration lists the possible predicates for CmpInst subclasses.
Definition: InstrTypes.h:993
@ ICMP_EQ
equal
Definition: InstrTypes.h:1014
@ ICMP_NE
not equal
Definition: InstrTypes.h:1015
This is the shared class of boolean and integer constants.
Definition: Constants.h:80
bool isZero() const
This is just a convenience method to make client code smaller for a common code.
Definition: Constants.h:205
static ConstantInt * getFalse(LLVMContext &Context)
Definition: Constants.cpp:856
static ConstantPointerNull * get(PointerType *T)
Static factory methods - Return objects of the specified value.
Definition: Constants.cpp:1775
This class represents a range of values.
Definition: ConstantRange.h:47
const APInt * getSingleElement() const
If this set contains a single element, return it, otherwise return null.
ConstantRange castOp(Instruction::CastOps CastOp, uint32_t BitWidth) const
Return a new range representing the possible values resulting from an application of the specified ca...
static ConstantRange intrinsic(Intrinsic::ID IntrinsicID, ArrayRef< ConstantRange > Ops)
Compute range of intrinsic result for the given operand ranges.
static bool isIntrinsicSupported(Intrinsic::ID IntrinsicID)
Returns true if ConstantRange calculations are supported for intrinsic with IntrinsicID.
bool isSingleElement() const
Return true if this set contains exactly one member.
static ConstantRange makeAllowedICmpRegion(CmpInst::Predicate Pred, const ConstantRange &Other)
Produce the smallest range such that all values that may satisfy the given predicate with any value c...
bool contains(const APInt &Val) const
Return true if the specified value is in the set.
static ConstantRange makeGuaranteedNoWrapRegion(Instruction::BinaryOps BinOp, const ConstantRange &Other, unsigned NoWrapKind)
Produce the largest range containing all X such that "X BinOp Y" is guaranteed not to wrap (overflow)...
uint32_t getBitWidth() const
Get the bit width of this ConstantRange.
ConstantRange binaryOp(Instruction::BinaryOps BinOp, const ConstantRange &Other) const
Return a new range representing the possible values resulting from an application of the specified bi...
static Constant * get(StructType *T, ArrayRef< Constant * > V)
Definition: Constants.cpp:1356
This is an important base class in LLVM.
Definition: Constant.h:41
This class represents an Operation in the Expression.
A parsed version of the target data layout string in and methods for querying it.
Definition: DataLayout.h:110
iterator find(const_arg_type_t< KeyT > Val)
Definition: DenseMap.h:155
bool erase(const KeyT &Val)
Definition: DenseMap.h:329
iterator end()
Definition: DenseMap.h:84
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: DenseMap.h:220
Implements a dense probed hash-table based set.
Definition: DenseSet.h:271
void applyUpdatesPermissive(ArrayRef< DominatorTree::UpdateType > Updates)
Submit updates to all available trees.
Concrete subclass of DominatorTreeBase that is used to compute a normal dominator tree.
Definition: Dominators.h:162
This instruction extracts a struct member or array element value from an aggregate value.
unsigned getNumIndices() const
idx_iterator idx_begin() const
An instruction for ordering other memory operations.
Definition: Instructions.h:460
This class represents a freeze function that returns random concrete value if an operand is either a ...
an instruction for type-safe pointer arithmetic to access elements of arrays and structs
Definition: Instructions.h:973
Type * getValueType() const
Definition: GlobalValue.h:296
const Constant * getInitializer() const
getInitializer - Return the initializer for this global variable.
This instruction inserts a struct field of array element value into an aggregate value.
Base class for instruction visitors.
Definition: InstVisitor.h:78
void visit(Iterator Start, Iterator End)
Definition: InstVisitor.h:87
void setHasNoUnsignedWrap(bool b=true)
Set or clear the nuw flag on this instruction, which must be an operator which supports this flag.
bool hasNoUnsignedWrap() const LLVM_READONLY
Determine whether the no unsigned wrap flag is set.
unsigned getNumSuccessors() const LLVM_READONLY
Return the number of successors that this instruction has.
bool hasNoSignedWrap() const LLVM_READONLY
Determine whether the no signed wrap flag is set.
void setHasNoSignedWrap(bool b=true)
Set or clear the nsw flag on this instruction, which must be an operator which supports this flag.
const BasicBlock * getParent() const
Definition: Instruction.h:152
InstListType::iterator eraseFromParent()
This method unlinks 'this' from the containing basic block and deletes it.
bool isExact() const LLVM_READONLY
Determine whether the exact flag is set.
BasicBlock * getSuccessor(unsigned Idx) const LLVM_READONLY
Return the specified successor. This instruction must be a terminator.
void setNonNeg(bool b=true)
Set or clear the nneg flag on this instruction, which must be a zext instruction.
bool hasNonNeg() const LLVM_READONLY
Determine whether the the nneg flag is set.
unsigned getOpcode() const
Returns a member of one of the enums like Instruction::Add.
Definition: Instruction.h:252
void setIsExact(bool b=true)
Set or clear the exact flag on this instruction, which must be an operator which supports this flag.
bool isSpecialTerminator() const
Definition: Instruction.h:262
Invoke instruction.
This is an important class for using LLVM in a threaded context.
Definition: LLVMContext.h:67
An instruction for reading from memory.
Definition: Instructions.h:184
Metadata node.
Definition: Metadata.h:1067
This class implements a map that also provides access to all stored values in a deterministic order.
Definition: MapVector.h:36
size_type count(const KeyT &Key) const
Definition: MapVector.h:165
iterator end()
Definition: MapVector.h:71
iterator find(const KeyT &Key)
Definition: MapVector.h:167
std::pair< iterator, bool > insert(const std::pair< KeyT, ValueT > &KV)
Definition: MapVector.h:141
A Module instance is used to store all the information related to an LLVM module.
Definition: Module.h:65
BasicBlock * getIncomingBlock(unsigned i) const
Return incoming basic block number i.
Value * getIncomingValue(unsigned i) const
Return incoming value number x.
unsigned getNumIncomingValues() const
Return the number of incoming edges.
Resume the propagation of an exception.
Return a value (possibly void), from a function.
Helper class for SCCPSolver.
Definition: SCCPSolver.cpp:364
const PredicateBase * getPredicateInfoFor(Instruction *I)
Definition: SCCPSolver.cpp:705
std::vector< ValueLatticeElement > getStructLatticeValueFor(Value *V) const
Definition: SCCPSolver.cpp:764
bool resolvedUndef(Instruction &I)
void markFunctionUnreachable(Function *F)
Definition: SCCPSolver.cpp:845
bool markBlockExecutable(BasicBlock *BB)
Definition: SCCPSolver.cpp:885
bool resolvedUndefsIn(Function &F)
While solving the dataflow for a function, we don't compute a result for operations with an undef ope...
Constant * getConstant(const ValueLatticeElement &LV, Type *Ty) const
Definition: SCCPSolver.cpp:950
SCCPInstVisitor(const DataLayout &DL, std::function< const TargetLibraryInfo &(Function &)> GetTLI, LLVMContext &Ctx)
Definition: SCCPSolver.cpp:712
const ValueLatticeElement & getLatticeValueFor(Value *V) const
Definition: SCCPSolver.cpp:791
void removeLatticeValueFor(Value *V)
Definition: SCCPSolver.cpp:776
const DenseMap< GlobalVariable *, ValueLatticeElement > & getTrackedGlobals()
Definition: SCCPSolver.cpp:805
void trackValueOfArgument(Argument *A)
Definition: SCCPSolver.cpp:821
void visitCallInst(CallInst &I)
Definition: SCCPSolver.cpp:701
void markOverdefined(Value *V)
Definition: SCCPSolver.cpp:813
bool isArgumentTrackedFunction(Function *F)
Definition: SCCPSolver.cpp:748
void addTrackedFunction(Function *F)
Definition: SCCPSolver.cpp:725
SmallPtrSetImpl< Function * > & getArgumentTrackedFunctions()
Definition: SCCPSolver.cpp:838
void solveWhileResolvedUndefsIn(Module &M)
Definition: SCCPSolver.cpp:850
void trackValueOfGlobalVariable(GlobalVariable *GV)
Definition: SCCPSolver.cpp:717
Constant * getConstantOrNull(Value *V) const
Definition: SCCPSolver.cpp:966
const SmallPtrSet< Function *, 16 > getMRVFunctionsTracked()
Definition: SCCPSolver.cpp:809
void resetLatticeValueFor(CallBase *Call)
Invalidate the Lattice Value of Call and its users after specializing the call.
Definition: SCCPSolver.cpp:780
const MapVector< Function *, ValueLatticeElement > & getTrackedRetVals()
Definition: SCCPSolver.cpp:801
void addPredicateInfo(Function &F, DominatorTree &DT, AssumptionCache &AC)
Definition: SCCPSolver.cpp:697
void addToMustPreserveReturnsInFunctions(Function *F)
Definition: SCCPSolver.cpp:736
void addArgumentTrackedFunction(Function *F)
Definition: SCCPSolver.cpp:744
bool isStructLatticeConstant(Function *F, StructType *STy)
Definition: SCCPSolver.cpp:939
void solveWhileResolvedUndefsIn(SmallVectorImpl< Function * > &WorkList)
Definition: SCCPSolver.cpp:860
bool isBlockExecutable(BasicBlock *BB) const
Definition: SCCPSolver.cpp:758
bool mustPreserveReturn(Function *F)
Definition: SCCPSolver.cpp:740
void setLatticeValueForSpecializationArguments(Function *F, const SmallVectorImpl< ArgInfo > &Args)
Definition: SCCPSolver.cpp:992
bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const
SCCPSolver - This interface class is a general purpose solver for Sparse Conditional Constant Propaga...
Definition: SCCPSolver.h:65
void visitCall(CallInst &I)
const DenseMap< GlobalVariable *, ValueLatticeElement > & getTrackedGlobals()
getTrackedGlobals - Get and return the set of inferred initializers for global variables.
void resetLatticeValueFor(CallBase *Call)
Invalidate the Lattice Value of Call and its users after specializing the call.
void trackValueOfGlobalVariable(GlobalVariable *GV)
trackValueOfGlobalVariable - Clients can use this method to inform the SCCPSolver that it should trac...
bool tryToReplaceWithConstant(Value *V)
Definition: SCCPSolver.cpp:76
bool isStructLatticeConstant(Function *F, StructType *STy)
void addPredicateInfo(Function &F, DominatorTree &DT, AssumptionCache &AC)
void solve()
Solve - Solve for constants and executable blocks.
void visit(Instruction *I)
void trackValueOfArgument(Argument *V)
trackValueOfArgument - Mark the specified argument overdefined unless it have range attribute.
void addTrackedFunction(Function *F)
addTrackedFunction - If the SCCP solver is supposed to track calls into and out of the specified func...
const MapVector< Function *, ValueLatticeElement > & getTrackedRetVals()
getTrackedRetVals - Get the inferred return value map.
void solveWhileResolvedUndefsIn(Module &M)
const PredicateBase * getPredicateInfoFor(Instruction *I)
bool resolvedUndefsIn(Function &F)
resolvedUndefsIn - While solving the dataflow for a function, we assume that branches on undef values...
void addArgumentTrackedFunction(Function *F)
void solveWhileResolvedUndefs()
void removeLatticeValueFor(Value *V)
std::vector< ValueLatticeElement > getStructLatticeValueFor(Value *V) const
const SmallPtrSet< Function *, 16 > getMRVFunctionsTracked()
getMRVFunctionsTracked - Get the set of functions which return multiple values tracked by the pass.
Constant * getConstantOrNull(Value *V) const
Return either a Constant or nullptr for a given Value.
bool simplifyInstsInBlock(BasicBlock &BB, SmallPtrSetImpl< Value * > &InsertedValues, Statistic &InstRemovedStat, Statistic &InstReplacedStat)
Definition: SCCPSolver.cpp:244
Constant * getConstant(const ValueLatticeElement &LV, Type *Ty) const
Helper to return a Constant if LV is either a constant or a constant range with a single element.
const ValueLatticeElement & getLatticeValueFor(Value *V) const
void addToMustPreserveReturnsInFunctions(Function *F)
Add function to the list of functions whose return cannot be modified.
bool removeNonFeasibleEdges(BasicBlock *BB, DomTreeUpdater &DTU, BasicBlock *&NewUnreachableBB) const
Definition: SCCPSolver.cpp:268
bool isBlockExecutable(BasicBlock *BB) const
bool markBlockExecutable(BasicBlock *BB)
markBlockExecutable - This method can be used by clients to mark all of the blocks that are known to ...
void setLatticeValueForSpecializationArguments(Function *F, const SmallVectorImpl< ArgInfo > &Args)
Set the Lattice Value for the arguments of a specialization F.
static bool isConstant(const ValueLatticeElement &LV)
Definition: SCCPSolver.cpp:55
bool isEdgeFeasible(BasicBlock *From, BasicBlock *To) const
bool mustPreserveReturn(Function *F)
Returns true if the return of the given function cannot be modified.
static bool isOverdefined(const ValueLatticeElement &LV)
Definition: SCCPSolver.cpp:60
void markFunctionUnreachable(Function *F)
Mark all of the blocks in function F non-executable.
bool isArgumentTrackedFunction(Function *F)
Returns true if the given function is in the solver's set of argument-tracked functions.
SCCPSolver(const DataLayout &DL, std::function< const TargetLibraryInfo &(Function &)> GetTLI, LLVMContext &Ctx)
SmallPtrSetImpl< Function * > & getArgumentTrackedFunctions()
Return a reference to the set of argument tracked functions.
void markOverdefined(Value *V)
markOverdefined - Mark the specified value overdefined.
This class represents the LLVM 'select' instruction.
size_type size() const
Definition: SmallPtrSet.h:94
A templated base class for SmallPtrSet which provides the typesafe interface that is common across al...
Definition: SmallPtrSet.h:321
size_type count(ConstPtrType Ptr) const
count - Return 1 if the specified pointer is in the set, 0 otherwise.
Definition: SmallPtrSet.h:360
std::pair< iterator, bool > insert(PtrType Ptr)
Inserts Ptr if and only if there is no element in the container equal to Ptr.
Definition: SmallPtrSet.h:342
iterator begin() const
Definition: SmallPtrSet.h:380
bool contains(ConstPtrType Ptr) const
Definition: SmallPtrSet.h:366
SmallPtrSet - This class implements a set which is optimized for holding SmallSize or less elements.
Definition: SmallPtrSet.h:427
bool empty() const
Definition: SmallVector.h:94
size_t size() const
Definition: SmallVector.h:91
This class consists of common code factored out of the SmallVector class to reduce code duplication b...
Definition: SmallVector.h:586
void assign(size_type NumElts, ValueParamT Elt)
Definition: SmallVector.h:717
void resize(size_type N)
Definition: SmallVector.h:651
void push_back(const T &Elt)
Definition: SmallVector.h:426
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
An instruction for storing to memory.
Definition: Instructions.h:317
Class to represent struct types.
Definition: DerivedTypes.h:216
unsigned getNumElements() const
Random access to the elements.
Definition: DerivedTypes.h:341
A wrapper class to simplify modification of SwitchInst cases along with their prof branch_weights met...
Provides information about what library functions are available for the current target.
This class represents a truncation of integer types.
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
bool isIntOrIntVectorTy() const
Return true if this is an integer type or a vector of integer types.
Definition: Type.h:234
bool isSingleValueType() const
Return true if the type is a valid type for a register in codegen.
Definition: Type.h:287
unsigned getScalarSizeInBits() const LLVM_READONLY
If this is a vector type, return the getPrimitiveSizeInBits value for the element type.
bool isStructTy() const
True if this is an instance of StructType.
Definition: Type.h:249
bool isVoidTy() const
Return true if this is 'void'.
Definition: Type.h:140
static UndefValue * get(Type *T)
Static factory methods - Return an 'undef' object of the specified type.
Definition: Constants.cpp:1808
This function has undefined behavior.
A Use represents the edge between a Value definition and its users.
Definition: Use.h:43
Value * getOperand(unsigned i) const
Definition: User.h:169
This class represents lattice values for constants.
Definition: ValueLattice.h:29
static ValueLatticeElement getRange(ConstantRange CR, bool MayIncludeUndef=false)
Definition: ValueLattice.h:214
Constant * getCompare(CmpInst::Predicate Pred, Type *Ty, const ValueLatticeElement &Other, const DataLayout &DL) const
true, false or undef constants, or nullptr if the comparison cannot be evaluated.
static ValueLatticeElement getNot(Constant *C)
Definition: ValueLattice.h:208
void setNumRangeExtensions(unsigned N)
Definition: ValueLattice.h:456
const ConstantRange & getConstantRange(bool UndefAllowed=true) const
Returns the constant range for this value.
Definition: ValueLattice.h:269
bool isConstantRange(bool UndefAllowed=true) const
Returns true if this value is a constant range.
Definition: ValueLattice.h:249
unsigned getNumRangeExtensions() const
Definition: ValueLattice.h:455
bool isUnknownOrUndef() const
Definition: ValueLattice.h:239
Constant * getConstant() const
Definition: ValueLattice.h:255
bool mergeIn(const ValueLatticeElement &RHS, MergeOptions Opts=MergeOptions())
Updates this object to approximate both this object and RHS.
Definition: ValueLattice.h:385
bool markConstant(Constant *V, bool MayIncludeUndef=false)
Definition: ValueLattice.h:301
static ValueLatticeElement getOverdefined()
Definition: ValueLattice.h:231
LLVM Value Representation.
Definition: Value.h:74
Type * getType() const
All values are typed, get the type of this value.
Definition: Value.h:255
std::string getNameOrAsOperand() const
Definition: Value.cpp:445
void replaceAllUsesWith(Value *V)
Change all uses of this to point to a new Value.
Definition: Value.cpp:534
StringRef getName() const
Return a constant reference to the value's name.
Definition: Value.cpp:309
void takeName(Value *V)
Transfer the name from V to this value.
Definition: Value.cpp:383
Represents an op.with.overflow intrinsic.
std::pair< iterator, bool > insert(const ValueT &V)
Definition: DenseSet.h:206
size_type count(const_arg_type_t< ValueT > V) const
Return 1 if the specified key is in the set, 0 otherwise.
Definition: DenseSet.h:97
self_iterator getIterator()
Definition: ilist_node.h:109
#define llvm_unreachable(msg)
Marks that the current location is not supposed to be reachable.
@ C
The default llvm calling convention, compatible with C.
Definition: CallingConv.h:34
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
static bool replaceSignedInst(SCCPSolver &Solver, SmallPtrSetImpl< Value * > &InsertedValues, Instruction &Inst)
Try to replace signed instructions with their unsigned equivalent.
Definition: SCCPSolver.cpp:176
bool canConstantFoldCallTo(const CallBase *Call, const Function *F)
canConstantFoldCallTo - Return true if its even possible to fold a call to the specified function.
auto successors(const MachineBasicBlock *BB)
iterator_range< early_inc_iterator_impl< detail::IterOfRange< RangeT > > > make_early_inc_range(RangeT &&Range)
Make a range that does early increment to allow mutation of the underlying range without disrupting i...
Definition: STLExtras.h:656
ConstantRange getConstantRangeFromMetadata(const MDNode &RangeMD)
Parse out a conservative ConstantRange from !range metadata.
Constant * ConstantFoldCall(const CallBase *Call, Function *F, ArrayRef< Constant * > Operands, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldCall - Attempt to constant fold a call to the specified function with the specified argum...
bool any_of(R &&range, UnaryPredicate P)
Provide wrappers to std::any_of which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1729
Constant * ConstantFoldUnaryOpOperand(unsigned Opcode, Constant *Op, const DataLayout &DL)
Attempt to constant fold a unary operation with the specified operand.
Constant * ConstantFoldInstOperands(Instruction *I, ArrayRef< Constant * > Ops, const DataLayout &DL, const TargetLibraryInfo *TLI=nullptr)
ConstantFoldInstOperands - Attempt to constant fold an instruction with the specified operands.
bool NullPointerIsDefined(const Function *F, unsigned AS=0)
Check whether null pointer dereferencing is considered undefined behavior for a given function or an ...
Definition: Function.cpp:2060
raw_ostream & dbgs()
dbgs() - This returns a reference to a raw_ostream for debugging messages.
Definition: Debug.cpp:163
bool wouldInstructionBeTriviallyDead(const Instruction *I, const TargetLibraryInfo *TLI=nullptr)
Return true if the result produced by the instruction would have no side effects if it was not used.
Definition: Local.cpp:419
Constant * ConstantFoldCastOperand(unsigned Opcode, Constant *C, Type *DestTy, const DataLayout &DL)
Attempt to constant fold a cast with the specified operand.
Value * simplifyBinOp(unsigned Opcode, Value *LHS, Value *RHS, const SimplifyQuery &Q)
Given operands for a BinaryOperator, fold the result or return null.
DWARFExpression::Operation Op
bool isGuaranteedNotToBeUndefOrPoison(const Value *V, AssumptionCache *AC=nullptr, const Instruction *CtxI=nullptr, const DominatorTree *DT=nullptr, unsigned Depth=0)
Return true if this function can prove that V does not have undef bits and is never poison.
OutputIt move(R &&Range, OutputIt Out)
Provide wrappers to std::move which take ranges instead of having to pass begin/end explicitly.
Definition: STLExtras.h:1849
static bool canRemoveInstruction(Instruction *I)
Definition: SCCPSolver.cpp:64
Constant * ConstantFoldLoadFromConstPtr(Constant *C, Type *Ty, APInt Offset, const DataLayout &DL)
Return the value that a load from C with offset Offset would produce if it is constant and determinab...
static bool refineInstruction(SCCPSolver &Solver, const SmallPtrSetImpl< Value * > &InsertedValues, Instruction &Inst)
Try to use Inst's value range from Solver to infer the NUW flag.
Definition: SCCPSolver.cpp:107
Implement std::hash so that hash_code can be used in STL containers.
Definition: BitVector.h:858
Struct to control some aspects related to merging constant ranges.
Definition: ValueLattice.h:111
MergeOptions & setMaxWidenSteps(unsigned Steps=1)
Definition: ValueLattice.h:140
MergeOptions & setCheckWiden(bool V=true)
Definition: ValueLattice.h:135