LLVM 19.0.0git
Host.cpp
Go to the documentation of this file.
1//===-- Host.cpp - Implement OS Host Detection ------------------*- C++ -*-===//
2//
3// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4// See https://llvm.org/LICENSE.txt for license information.
5// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6//
7//===----------------------------------------------------------------------===//
8//
9// This file implements the operating system Host detection.
10//
11//===----------------------------------------------------------------------===//
12
15#include "llvm/ADT/StringMap.h"
16#include "llvm/ADT/StringRef.h"
18#include "llvm/Config/llvm-config.h"
23#include <string.h>
24
25// Include the platform-specific parts of this class.
26#ifdef LLVM_ON_UNIX
27#include "Unix/Host.inc"
28#include <sched.h>
29#endif
30#ifdef _WIN32
31#include "Windows/Host.inc"
32#endif
33#ifdef _MSC_VER
34#include <intrin.h>
35#endif
36#ifdef __MVS__
37#include "llvm/Support/BCD.h"
38#endif
39#if defined(__APPLE__)
40#include <mach/host_info.h>
41#include <mach/mach.h>
42#include <mach/mach_host.h>
43#include <mach/machine.h>
44#include <sys/param.h>
45#include <sys/sysctl.h>
46#endif
47#ifdef _AIX
48#include <sys/systemcfg.h>
49#endif
50#if defined(__sun__) && defined(__svr4__)
51#include <kstat.h>
52#endif
53
54#define DEBUG_TYPE "host-detection"
55
56//===----------------------------------------------------------------------===//
57//
58// Implementations of the CPU detection routines
59//
60//===----------------------------------------------------------------------===//
61
62using namespace llvm;
63
64static std::unique_ptr<llvm::MemoryBuffer>
68 if (std::error_code EC = Text.getError()) {
69 llvm::errs() << "Can't read "
70 << "/proc/cpuinfo: " << EC.message() << "\n";
71 return nullptr;
72 }
73 return std::move(*Text);
74}
75
77 // Access to the Processor Version Register (PVR) on PowerPC is privileged,
78 // and so we must use an operating-system interface to determine the current
79 // processor type. On Linux, this is exposed through the /proc/cpuinfo file.
80 const char *generic = "generic";
81
82 // The cpu line is second (after the 'processor: 0' line), so if this
83 // buffer is too small then something has changed (or is wrong).
84 StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin();
85 StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end();
86
87 StringRef::const_iterator CIP = CPUInfoStart;
88
89 StringRef::const_iterator CPUStart = nullptr;
90 size_t CPULen = 0;
91
92 // We need to find the first line which starts with cpu, spaces, and a colon.
93 // After the colon, there may be some additional spaces and then the cpu type.
94 while (CIP < CPUInfoEnd && CPUStart == nullptr) {
95 if (CIP < CPUInfoEnd && *CIP == '\n')
96 ++CIP;
97
98 if (CIP < CPUInfoEnd && *CIP == 'c') {
99 ++CIP;
100 if (CIP < CPUInfoEnd && *CIP == 'p') {
101 ++CIP;
102 if (CIP < CPUInfoEnd && *CIP == 'u') {
103 ++CIP;
104 while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
105 ++CIP;
106
107 if (CIP < CPUInfoEnd && *CIP == ':') {
108 ++CIP;
109 while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
110 ++CIP;
111
112 if (CIP < CPUInfoEnd) {
113 CPUStart = CIP;
114 while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
115 *CIP != ',' && *CIP != '\n'))
116 ++CIP;
117 CPULen = CIP - CPUStart;
118 }
119 }
120 }
121 }
122 }
123
124 if (CPUStart == nullptr)
125 while (CIP < CPUInfoEnd && *CIP != '\n')
126 ++CIP;
127 }
128
129 if (CPUStart == nullptr)
130 return generic;
131
132 return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
133 .Case("604e", "604e")
134 .Case("604", "604")
135 .Case("7400", "7400")
136 .Case("7410", "7400")
137 .Case("7447", "7400")
138 .Case("7455", "7450")
139 .Case("G4", "g4")
140 .Case("POWER4", "970")
141 .Case("PPC970FX", "970")
142 .Case("PPC970MP", "970")
143 .Case("G5", "g5")
144 .Case("POWER5", "g5")
145 .Case("A2", "a2")
146 .Case("POWER6", "pwr6")
147 .Case("POWER7", "pwr7")
148 .Case("POWER8", "pwr8")
149 .Case("POWER8E", "pwr8")
150 .Case("POWER8NVL", "pwr8")
151 .Case("POWER9", "pwr9")
152 .Case("POWER10", "pwr10")
153 // FIXME: If we get a simulator or machine with the capabilities of
154 // mcpu=future, we should revisit this and add the name reported by the
155 // simulator/machine.
156 .Default(generic);
157}
158
160 // The cpuid register on arm is not accessible from user space. On Linux,
161 // it is exposed through the /proc/cpuinfo file.
162
163 // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line
164 // in all cases.
166 ProcCpuinfoContent.split(Lines, "\n");
167
168 // Look for the CPU implementer line.
169 StringRef Implementer;
170 StringRef Hardware;
171 StringRef Part;
172 for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
173 if (Lines[I].starts_with("CPU implementer"))
174 Implementer = Lines[I].substr(15).ltrim("\t :");
175 if (Lines[I].starts_with("Hardware"))
176 Hardware = Lines[I].substr(8).ltrim("\t :");
177 if (Lines[I].starts_with("CPU part"))
178 Part = Lines[I].substr(8).ltrim("\t :");
179 }
180
181 if (Implementer == "0x41") { // ARM Ltd.
182 // MSM8992/8994 may give cpu part for the core that the kernel is running on,
183 // which is undeterministic and wrong. Always return cortex-a53 for these SoC.
184 if (Hardware.ends_with("MSM8994") || Hardware.ends_with("MSM8996"))
185 return "cortex-a53";
186
187
188 // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
189 // values correspond to the "Part number" in the CP15/c0 register. The
190 // contents are specified in the various processor manuals.
191 // This corresponds to the Main ID Register in Technical Reference Manuals.
192 // and is used in programs like sys-utils
193 return StringSwitch<const char *>(Part)
194 .Case("0x926", "arm926ej-s")
195 .Case("0xb02", "mpcore")
196 .Case("0xb36", "arm1136j-s")
197 .Case("0xb56", "arm1156t2-s")
198 .Case("0xb76", "arm1176jz-s")
199 .Case("0xc05", "cortex-a5")
200 .Case("0xc07", "cortex-a7")
201 .Case("0xc08", "cortex-a8")
202 .Case("0xc09", "cortex-a9")
203 .Case("0xc0f", "cortex-a15")
204 .Case("0xc0e", "cortex-a17")
205 .Case("0xc20", "cortex-m0")
206 .Case("0xc23", "cortex-m3")
207 .Case("0xc24", "cortex-m4")
208 .Case("0xc27", "cortex-m7")
209 .Case("0xd20", "cortex-m23")
210 .Case("0xd21", "cortex-m33")
211 .Case("0xd24", "cortex-m52")
212 .Case("0xd22", "cortex-m55")
213 .Case("0xd23", "cortex-m85")
214 .Case("0xc18", "cortex-r8")
215 .Case("0xd13", "cortex-r52")
216 .Case("0xd15", "cortex-r82")
217 .Case("0xd14", "cortex-r82ae")
218 .Case("0xd02", "cortex-a34")
219 .Case("0xd04", "cortex-a35")
220 .Case("0xd03", "cortex-a53")
221 .Case("0xd05", "cortex-a55")
222 .Case("0xd46", "cortex-a510")
223 .Case("0xd80", "cortex-a520")
224 .Case("0xd88", "cortex-a520ae")
225 .Case("0xd07", "cortex-a57")
226 .Case("0xd06", "cortex-a65")
227 .Case("0xd43", "cortex-a65ae")
228 .Case("0xd08", "cortex-a72")
229 .Case("0xd09", "cortex-a73")
230 .Case("0xd0a", "cortex-a75")
231 .Case("0xd0b", "cortex-a76")
232 .Case("0xd0e", "cortex-a76ae")
233 .Case("0xd0d", "cortex-a77")
234 .Case("0xd41", "cortex-a78")
235 .Case("0xd42", "cortex-a78ae")
236 .Case("0xd4b", "cortex-a78c")
237 .Case("0xd47", "cortex-a710")
238 .Case("0xd4d", "cortex-a715")
239 .Case("0xd81", "cortex-a720")
240 .Case("0xd89", "cortex-a720ae")
241 .Case("0xd44", "cortex-x1")
242 .Case("0xd4c", "cortex-x1c")
243 .Case("0xd48", "cortex-x2")
244 .Case("0xd4e", "cortex-x3")
245 .Case("0xd82", "cortex-x4")
246 .Case("0xd4a", "neoverse-e1")
247 .Case("0xd0c", "neoverse-n1")
248 .Case("0xd49", "neoverse-n2")
249 .Case("0xd8e", "neoverse-n3")
250 .Case("0xd40", "neoverse-v1")
251 .Case("0xd4f", "neoverse-v2")
252 .Case("0xd84", "neoverse-v3")
253 .Case("0xd83", "neoverse-v3ae")
254 .Default("generic");
255 }
256
257 if (Implementer == "0x42" || Implementer == "0x43") { // Broadcom | Cavium.
258 return StringSwitch<const char *>(Part)
259 .Case("0x516", "thunderx2t99")
260 .Case("0x0516", "thunderx2t99")
261 .Case("0xaf", "thunderx2t99")
262 .Case("0x0af", "thunderx2t99")
263 .Case("0xa1", "thunderxt88")
264 .Case("0x0a1", "thunderxt88")
265 .Default("generic");
266 }
267
268 if (Implementer == "0x46") { // Fujitsu Ltd.
269 return StringSwitch<const char *>(Part)
270 .Case("0x001", "a64fx")
271 .Default("generic");
272 }
273
274 if (Implementer == "0x4e") { // NVIDIA Corporation
275 return StringSwitch<const char *>(Part)
276 .Case("0x004", "carmel")
277 .Default("generic");
278 }
279
280 if (Implementer == "0x48") // HiSilicon Technologies, Inc.
281 // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
282 // values correspond to the "Part number" in the CP15/c0 register. The
283 // contents are specified in the various processor manuals.
284 return StringSwitch<const char *>(Part)
285 .Case("0xd01", "tsv110")
286 .Default("generic");
287
288 if (Implementer == "0x51") // Qualcomm Technologies, Inc.
289 // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
290 // values correspond to the "Part number" in the CP15/c0 register. The
291 // contents are specified in the various processor manuals.
292 return StringSwitch<const char *>(Part)
293 .Case("0x06f", "krait") // APQ8064
294 .Case("0x201", "kryo")
295 .Case("0x205", "kryo")
296 .Case("0x211", "kryo")
297 .Case("0x800", "cortex-a73") // Kryo 2xx Gold
298 .Case("0x801", "cortex-a73") // Kryo 2xx Silver
299 .Case("0x802", "cortex-a75") // Kryo 3xx Gold
300 .Case("0x803", "cortex-a75") // Kryo 3xx Silver
301 .Case("0x804", "cortex-a76") // Kryo 4xx Gold
302 .Case("0x805", "cortex-a76") // Kryo 4xx/5xx Silver
303 .Case("0xc00", "falkor")
304 .Case("0xc01", "saphira")
305 .Default("generic");
306 if (Implementer == "0x53") { // Samsung Electronics Co., Ltd.
307 // The Exynos chips have a convoluted ID scheme that doesn't seem to follow
308 // any predictive pattern across variants and parts.
309 unsigned Variant = 0, Part = 0;
310
311 // Look for the CPU variant line, whose value is a 1 digit hexadecimal
312 // number, corresponding to the Variant bits in the CP15/C0 register.
313 for (auto I : Lines)
314 if (I.consume_front("CPU variant"))
315 I.ltrim("\t :").getAsInteger(0, Variant);
316
317 // Look for the CPU part line, whose value is a 3 digit hexadecimal
318 // number, corresponding to the PartNum bits in the CP15/C0 register.
319 for (auto I : Lines)
320 if (I.consume_front("CPU part"))
321 I.ltrim("\t :").getAsInteger(0, Part);
322
323 unsigned Exynos = (Variant << 12) | Part;
324 switch (Exynos) {
325 default:
326 // Default by falling through to Exynos M3.
327 [[fallthrough]];
328 case 0x1002:
329 return "exynos-m3";
330 case 0x1003:
331 return "exynos-m4";
332 }
333 }
334
335 if (Implementer == "0x6d") { // Microsoft Corporation.
336 // The Microsoft Azure Cobalt 100 CPU is handled as a Neoverse N2.
337 return StringSwitch<const char *>(Part)
338 .Case("0xd49", "neoverse-n2")
339 .Default("generic");
340 }
341
342 if (Implementer == "0xc0") { // Ampere Computing
343 return StringSwitch<const char *>(Part)
344 .Case("0xac3", "ampere1")
345 .Case("0xac4", "ampere1a")
346 .Case("0xac5", "ampere1b")
347 .Default("generic");
348 }
349
350 return "generic";
351}
352
353namespace {
354StringRef getCPUNameFromS390Model(unsigned int Id, bool HaveVectorSupport) {
355 switch (Id) {
356 case 2064: // z900 not supported by LLVM
357 case 2066:
358 case 2084: // z990 not supported by LLVM
359 case 2086:
360 case 2094: // z9-109 not supported by LLVM
361 case 2096:
362 return "generic";
363 case 2097:
364 case 2098:
365 return "z10";
366 case 2817:
367 case 2818:
368 return "z196";
369 case 2827:
370 case 2828:
371 return "zEC12";
372 case 2964:
373 case 2965:
374 return HaveVectorSupport? "z13" : "zEC12";
375 case 3906:
376 case 3907:
377 return HaveVectorSupport? "z14" : "zEC12";
378 case 8561:
379 case 8562:
380 return HaveVectorSupport? "z15" : "zEC12";
381 case 3931:
382 case 3932:
383 default:
384 return HaveVectorSupport? "z16" : "zEC12";
385 }
386}
387} // end anonymous namespace
388
390 // STIDP is a privileged operation, so use /proc/cpuinfo instead.
391
392 // The "processor 0:" line comes after a fair amount of other information,
393 // including a cache breakdown, but this should be plenty.
395 ProcCpuinfoContent.split(Lines, "\n");
396
397 // Look for the CPU features.
398 SmallVector<StringRef, 32> CPUFeatures;
399 for (unsigned I = 0, E = Lines.size(); I != E; ++I)
400 if (Lines[I].starts_with("features")) {
401 size_t Pos = Lines[I].find(':');
402 if (Pos != StringRef::npos) {
403 Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');
404 break;
405 }
406 }
407
408 // We need to check for the presence of vector support independently of
409 // the machine type, since we may only use the vector register set when
410 // supported by the kernel (and hypervisor).
411 bool HaveVectorSupport = false;
412 for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
413 if (CPUFeatures[I] == "vx")
414 HaveVectorSupport = true;
415 }
416
417 // Now check the processor machine type.
418 for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
419 if (Lines[I].starts_with("processor ")) {
420 size_t Pos = Lines[I].find("machine = ");
421 if (Pos != StringRef::npos) {
422 Pos += sizeof("machine = ") - 1;
423 unsigned int Id;
424 if (!Lines[I].drop_front(Pos).getAsInteger(10, Id))
425 return getCPUNameFromS390Model(Id, HaveVectorSupport);
426 }
427 break;
428 }
429 }
430
431 return "generic";
432}
433
435 // There are 24 lines in /proc/cpuinfo
437 ProcCpuinfoContent.split(Lines, "\n");
438
439 // Look for uarch line to determine cpu name
440 StringRef UArch;
441 for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
442 if (Lines[I].starts_with("uarch")) {
443 UArch = Lines[I].substr(5).ltrim("\t :");
444 break;
445 }
446 }
447
448 return StringSwitch<const char *>(UArch)
449 .Case("sifive,u74-mc", "sifive-u74")
450 .Case("sifive,bullet0", "sifive-u74")
451 .Default("generic");
452}
453
455#if !defined(__linux__) || !defined(__x86_64__)
456 return "generic";
457#else
458 uint8_t v3_insns[40] __attribute__ ((aligned (8))) =
459 /* BPF_MOV64_IMM(BPF_REG_0, 0) */
460 { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
461 /* BPF_MOV64_IMM(BPF_REG_2, 1) */
462 0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
463 /* BPF_JMP32_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
464 0xae, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
465 /* BPF_MOV64_IMM(BPF_REG_0, 1) */
466 0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
467 /* BPF_EXIT_INSN() */
468 0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };
469
470 uint8_t v2_insns[40] __attribute__ ((aligned (8))) =
471 /* BPF_MOV64_IMM(BPF_REG_0, 0) */
472 { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
473 /* BPF_MOV64_IMM(BPF_REG_2, 1) */
474 0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
475 /* BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
476 0xad, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
477 /* BPF_MOV64_IMM(BPF_REG_0, 1) */
478 0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
479 /* BPF_EXIT_INSN() */
480 0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };
481
482 struct bpf_prog_load_attr {
483 uint32_t prog_type;
484 uint32_t insn_cnt;
485 uint64_t insns;
486 uint64_t license;
487 uint32_t log_level;
488 uint32_t log_size;
489 uint64_t log_buf;
490 uint32_t kern_version;
491 uint32_t prog_flags;
492 } attr = {};
493 attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
494 attr.insn_cnt = 5;
495 attr.insns = (uint64_t)v3_insns;
496 attr.license = (uint64_t)"DUMMY";
497
498 int fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr,
499 sizeof(attr));
500 if (fd >= 0) {
501 close(fd);
502 return "v3";
503 }
504
505 /* Clear the whole attr in case its content changed by syscall. */
506 memset(&attr, 0, sizeof(attr));
507 attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
508 attr.insn_cnt = 5;
509 attr.insns = (uint64_t)v2_insns;
510 attr.license = (uint64_t)"DUMMY";
511 fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr, sizeof(attr));
512 if (fd >= 0) {
513 close(fd);
514 return "v2";
515 }
516 return "v1";
517#endif
518}
519
520#if defined(__i386__) || defined(_M_IX86) || \
521 defined(__x86_64__) || defined(_M_X64)
522
523// The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).
524// Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID
525// support. Consequently, for i386, the presence of CPUID is checked first
526// via the corresponding eflags bit.
527// Removal of cpuid.h header motivated by PR30384
528// Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp
529// or test-suite, but are used in external projects e.g. libstdcxx
530static bool isCpuIdSupported() {
531#if defined(__GNUC__) || defined(__clang__)
532#if defined(__i386__)
533 int __cpuid_supported;
534 __asm__(" pushfl\n"
535 " popl %%eax\n"
536 " movl %%eax,%%ecx\n"
537 " xorl $0x00200000,%%eax\n"
538 " pushl %%eax\n"
539 " popfl\n"
540 " pushfl\n"
541 " popl %%eax\n"
542 " movl $0,%0\n"
543 " cmpl %%eax,%%ecx\n"
544 " je 1f\n"
545 " movl $1,%0\n"
546 "1:"
547 : "=r"(__cpuid_supported)
548 :
549 : "eax", "ecx");
550 if (!__cpuid_supported)
551 return false;
552#endif
553 return true;
554#endif
555 return true;
556}
557
558/// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
559/// the specified arguments. If we can't run cpuid on the host, return true.
560static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
561 unsigned *rECX, unsigned *rEDX) {
562#if defined(__GNUC__) || defined(__clang__)
563#if defined(__x86_64__)
564 // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
565 // FIXME: should we save this for Clang?
566 __asm__("movq\t%%rbx, %%rsi\n\t"
567 "cpuid\n\t"
568 "xchgq\t%%rbx, %%rsi\n\t"
569 : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
570 : "a"(value));
571 return false;
572#elif defined(__i386__)
573 __asm__("movl\t%%ebx, %%esi\n\t"
574 "cpuid\n\t"
575 "xchgl\t%%ebx, %%esi\n\t"
576 : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
577 : "a"(value));
578 return false;
579#else
580 return true;
581#endif
582#elif defined(_MSC_VER)
583 // The MSVC intrinsic is portable across x86 and x64.
584 int registers[4];
585 __cpuid(registers, value);
586 *rEAX = registers[0];
587 *rEBX = registers[1];
588 *rECX = registers[2];
589 *rEDX = registers[3];
590 return false;
591#else
592 return true;
593#endif
594}
595
596namespace llvm {
597namespace sys {
598namespace detail {
599namespace x86 {
600
601VendorSignatures getVendorSignature(unsigned *MaxLeaf) {
602 unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
603 if (MaxLeaf == nullptr)
604 MaxLeaf = &EAX;
605 else
606 *MaxLeaf = 0;
607
608 if (!isCpuIdSupported())
609 return VendorSignatures::UNKNOWN;
610
611 if (getX86CpuIDAndInfo(0, MaxLeaf, &EBX, &ECX, &EDX) || *MaxLeaf < 1)
612 return VendorSignatures::UNKNOWN;
613
614 // "Genu ineI ntel"
615 if (EBX == 0x756e6547 && EDX == 0x49656e69 && ECX == 0x6c65746e)
616 return VendorSignatures::GENUINE_INTEL;
617
618 // "Auth enti cAMD"
619 if (EBX == 0x68747541 && EDX == 0x69746e65 && ECX == 0x444d4163)
620 return VendorSignatures::AUTHENTIC_AMD;
621
622 return VendorSignatures::UNKNOWN;
623}
624
625} // namespace x86
626} // namespace detail
627} // namespace sys
628} // namespace llvm
629
630using namespace llvm::sys::detail::x86;
631
632/// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
633/// the 4 values in the specified arguments. If we can't run cpuid on the host,
634/// return true.
635static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
636 unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
637 unsigned *rEDX) {
638#if defined(__GNUC__) || defined(__clang__)
639#if defined(__x86_64__)
640 // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
641 // FIXME: should we save this for Clang?
642 __asm__("movq\t%%rbx, %%rsi\n\t"
643 "cpuid\n\t"
644 "xchgq\t%%rbx, %%rsi\n\t"
645 : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
646 : "a"(value), "c"(subleaf));
647 return false;
648#elif defined(__i386__)
649 __asm__("movl\t%%ebx, %%esi\n\t"
650 "cpuid\n\t"
651 "xchgl\t%%ebx, %%esi\n\t"
652 : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
653 : "a"(value), "c"(subleaf));
654 return false;
655#else
656 return true;
657#endif
658#elif defined(_MSC_VER)
659 int registers[4];
660 __cpuidex(registers, value, subleaf);
661 *rEAX = registers[0];
662 *rEBX = registers[1];
663 *rECX = registers[2];
664 *rEDX = registers[3];
665 return false;
666#else
667 return true;
668#endif
669}
670
671// Read control register 0 (XCR0). Used to detect features such as AVX.
672static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
673#if defined(__GNUC__) || defined(__clang__)
674 // Check xgetbv; this uses a .byte sequence instead of the instruction
675 // directly because older assemblers do not include support for xgetbv and
676 // there is no easy way to conditionally compile based on the assembler used.
677 __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
678 return false;
679#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
680 unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
681 *rEAX = Result;
682 *rEDX = Result >> 32;
683 return false;
684#else
685 return true;
686#endif
687}
688
689static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
690 unsigned *Model) {
691 *Family = (EAX >> 8) & 0xf; // Bits 8 - 11
692 *Model = (EAX >> 4) & 0xf; // Bits 4 - 7
693 if (*Family == 6 || *Family == 0xf) {
694 if (*Family == 0xf)
695 // Examine extended family ID if family ID is F.
696 *Family += (EAX >> 20) & 0xff; // Bits 20 - 27
697 // Examine extended model ID if family ID is 6 or F.
698 *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
699 }
700}
701
702static StringRef
703getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model,
704 const unsigned *Features,
705 unsigned *Type, unsigned *Subtype) {
706 auto testFeature = [&](unsigned F) {
707 return (Features[F / 32] & (1U << (F % 32))) != 0;
708 };
709
710 StringRef CPU;
711
712 switch (Family) {
713 case 3:
714 CPU = "i386";
715 break;
716 case 4:
717 CPU = "i486";
718 break;
719 case 5:
720 if (testFeature(X86::FEATURE_MMX)) {
721 CPU = "pentium-mmx";
722 break;
723 }
724 CPU = "pentium";
725 break;
726 case 6:
727 switch (Model) {
728 case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
729 // processor, Intel Core 2 Quad processor, Intel Core 2 Quad
730 // mobile processor, Intel Core 2 Extreme processor, Intel
731 // Pentium Dual-Core processor, Intel Xeon processor, model
732 // 0Fh. All processors are manufactured using the 65 nm process.
733 case 0x16: // Intel Celeron processor model 16h. All processors are
734 // manufactured using the 65 nm process
735 CPU = "core2";
736 *Type = X86::INTEL_CORE2;
737 break;
738 case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
739 // 17h. All processors are manufactured using the 45 nm process.
740 //
741 // 45nm: Penryn , Wolfdale, Yorkfield (XE)
742 case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
743 // the 45 nm process.
744 CPU = "penryn";
745 *Type = X86::INTEL_CORE2;
746 break;
747 case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
748 // processors are manufactured using the 45 nm process.
749 case 0x1e: // Intel(R) Core(TM) i7 CPU 870 @ 2.93GHz.
750 // As found in a Summer 2010 model iMac.
751 case 0x1f:
752 case 0x2e: // Nehalem EX
753 CPU = "nehalem";
754 *Type = X86::INTEL_COREI7;
755 *Subtype = X86::INTEL_COREI7_NEHALEM;
756 break;
757 case 0x25: // Intel Core i7, laptop version.
758 case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
759 // processors are manufactured using the 32 nm process.
760 case 0x2f: // Westmere EX
761 CPU = "westmere";
762 *Type = X86::INTEL_COREI7;
763 *Subtype = X86::INTEL_COREI7_WESTMERE;
764 break;
765 case 0x2a: // Intel Core i7 processor. All processors are manufactured
766 // using the 32 nm process.
767 case 0x2d:
768 CPU = "sandybridge";
769 *Type = X86::INTEL_COREI7;
770 *Subtype = X86::INTEL_COREI7_SANDYBRIDGE;
771 break;
772 case 0x3a:
773 case 0x3e: // Ivy Bridge EP
774 CPU = "ivybridge";
775 *Type = X86::INTEL_COREI7;
776 *Subtype = X86::INTEL_COREI7_IVYBRIDGE;
777 break;
778
779 // Haswell:
780 case 0x3c:
781 case 0x3f:
782 case 0x45:
783 case 0x46:
784 CPU = "haswell";
785 *Type = X86::INTEL_COREI7;
786 *Subtype = X86::INTEL_COREI7_HASWELL;
787 break;
788
789 // Broadwell:
790 case 0x3d:
791 case 0x47:
792 case 0x4f:
793 case 0x56:
794 CPU = "broadwell";
795 *Type = X86::INTEL_COREI7;
796 *Subtype = X86::INTEL_COREI7_BROADWELL;
797 break;
798
799 // Skylake:
800 case 0x4e: // Skylake mobile
801 case 0x5e: // Skylake desktop
802 case 0x8e: // Kaby Lake mobile
803 case 0x9e: // Kaby Lake desktop
804 case 0xa5: // Comet Lake-H/S
805 case 0xa6: // Comet Lake-U
806 CPU = "skylake";
807 *Type = X86::INTEL_COREI7;
808 *Subtype = X86::INTEL_COREI7_SKYLAKE;
809 break;
810
811 // Rocketlake:
812 case 0xa7:
813 CPU = "rocketlake";
814 *Type = X86::INTEL_COREI7;
815 *Subtype = X86::INTEL_COREI7_ROCKETLAKE;
816 break;
817
818 // Skylake Xeon:
819 case 0x55:
820 *Type = X86::INTEL_COREI7;
821 if (testFeature(X86::FEATURE_AVX512BF16)) {
822 CPU = "cooperlake";
823 *Subtype = X86::INTEL_COREI7_COOPERLAKE;
824 } else if (testFeature(X86::FEATURE_AVX512VNNI)) {
825 CPU = "cascadelake";
826 *Subtype = X86::INTEL_COREI7_CASCADELAKE;
827 } else {
828 CPU = "skylake-avx512";
829 *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512;
830 }
831 break;
832
833 // Cannonlake:
834 case 0x66:
835 CPU = "cannonlake";
836 *Type = X86::INTEL_COREI7;
837 *Subtype = X86::INTEL_COREI7_CANNONLAKE;
838 break;
839
840 // Icelake:
841 case 0x7d:
842 case 0x7e:
843 CPU = "icelake-client";
844 *Type = X86::INTEL_COREI7;
845 *Subtype = X86::INTEL_COREI7_ICELAKE_CLIENT;
846 break;
847
848 // Tigerlake:
849 case 0x8c:
850 case 0x8d:
851 CPU = "tigerlake";
852 *Type = X86::INTEL_COREI7;
853 *Subtype = X86::INTEL_COREI7_TIGERLAKE;
854 break;
855
856 // Alderlake:
857 case 0x97:
858 case 0x9a:
859 // Gracemont
860 case 0xbe:
861 // Raptorlake:
862 case 0xb7:
863 case 0xba:
864 case 0xbf:
865 // Meteorlake:
866 case 0xaa:
867 case 0xac:
868 CPU = "alderlake";
869 *Type = X86::INTEL_COREI7;
870 *Subtype = X86::INTEL_COREI7_ALDERLAKE;
871 break;
872
873 // Arrowlake:
874 case 0xc5:
875 CPU = "arrowlake";
876 *Type = X86::INTEL_COREI7;
877 *Subtype = X86::INTEL_COREI7_ARROWLAKE;
878 break;
879
880 // Arrowlake S:
881 case 0xc6:
882 // Lunarlake:
883 case 0xbd:
884 CPU = "arrowlake-s";
885 *Type = X86::INTEL_COREI7;
886 *Subtype = X86::INTEL_COREI7_ARROWLAKE_S;
887 break;
888
889 // Pantherlake:
890 case 0xcc:
891 CPU = "pantherlake";
892 *Type = X86::INTEL_COREI7;
893 *Subtype = X86::INTEL_COREI7_PANTHERLAKE;
894 break;
895
896 // Graniterapids:
897 case 0xad:
898 CPU = "graniterapids";
899 *Type = X86::INTEL_COREI7;
900 *Subtype = X86::INTEL_COREI7_GRANITERAPIDS;
901 break;
902
903 // Granite Rapids D:
904 case 0xae:
905 CPU = "graniterapids-d";
906 *Type = X86::INTEL_COREI7;
907 *Subtype = X86::INTEL_COREI7_GRANITERAPIDS_D;
908 break;
909
910 // Icelake Xeon:
911 case 0x6a:
912 case 0x6c:
913 CPU = "icelake-server";
914 *Type = X86::INTEL_COREI7;
915 *Subtype = X86::INTEL_COREI7_ICELAKE_SERVER;
916 break;
917
918 // Emerald Rapids:
919 case 0xcf:
920 // Sapphire Rapids:
921 case 0x8f:
922 CPU = "sapphirerapids";
923 *Type = X86::INTEL_COREI7;
924 *Subtype = X86::INTEL_COREI7_SAPPHIRERAPIDS;
925 break;
926
927 case 0x1c: // Most 45 nm Intel Atom processors
928 case 0x26: // 45 nm Atom Lincroft
929 case 0x27: // 32 nm Atom Medfield
930 case 0x35: // 32 nm Atom Midview
931 case 0x36: // 32 nm Atom Midview
932 CPU = "bonnell";
933 *Type = X86::INTEL_BONNELL;
934 break;
935
936 // Atom Silvermont codes from the Intel software optimization guide.
937 case 0x37:
938 case 0x4a:
939 case 0x4d:
940 case 0x5a:
941 case 0x5d:
942 case 0x4c: // really airmont
943 CPU = "silvermont";
944 *Type = X86::INTEL_SILVERMONT;
945 break;
946 // Goldmont:
947 case 0x5c: // Apollo Lake
948 case 0x5f: // Denverton
949 CPU = "goldmont";
950 *Type = X86::INTEL_GOLDMONT;
951 break;
952 case 0x7a:
953 CPU = "goldmont-plus";
954 *Type = X86::INTEL_GOLDMONT_PLUS;
955 break;
956 case 0x86:
957 case 0x8a: // Lakefield
958 case 0x96: // Elkhart Lake
959 case 0x9c: // Jasper Lake
960 CPU = "tremont";
961 *Type = X86::INTEL_TREMONT;
962 break;
963
964 // Sierraforest:
965 case 0xaf:
966 CPU = "sierraforest";
967 *Type = X86::INTEL_SIERRAFOREST;
968 break;
969
970 // Grandridge:
971 case 0xb6:
972 CPU = "grandridge";
973 *Type = X86::INTEL_GRANDRIDGE;
974 break;
975
976 // Clearwaterforest:
977 case 0xdd:
978 CPU = "clearwaterforest";
979 *Type = X86::INTEL_CLEARWATERFOREST;
980 break;
981
982 // Xeon Phi (Knights Landing + Knights Mill):
983 case 0x57:
984 CPU = "knl";
985 *Type = X86::INTEL_KNL;
986 break;
987 case 0x85:
988 CPU = "knm";
989 *Type = X86::INTEL_KNM;
990 break;
991
992 default: // Unknown family 6 CPU, try to guess.
993 // Don't both with Type/Subtype here, they aren't used by the caller.
994 // They're used above to keep the code in sync with compiler-rt.
995 // TODO detect tigerlake host from model
996 if (testFeature(X86::FEATURE_AVX512VP2INTERSECT)) {
997 CPU = "tigerlake";
998 } else if (testFeature(X86::FEATURE_AVX512VBMI2)) {
999 CPU = "icelake-client";
1000 } else if (testFeature(X86::FEATURE_AVX512VBMI)) {
1001 CPU = "cannonlake";
1002 } else if (testFeature(X86::FEATURE_AVX512BF16)) {
1003 CPU = "cooperlake";
1004 } else if (testFeature(X86::FEATURE_AVX512VNNI)) {
1005 CPU = "cascadelake";
1006 } else if (testFeature(X86::FEATURE_AVX512VL)) {
1007 CPU = "skylake-avx512";
1008 } else if (testFeature(X86::FEATURE_CLFLUSHOPT)) {
1009 if (testFeature(X86::FEATURE_SHA))
1010 CPU = "goldmont";
1011 else
1012 CPU = "skylake";
1013 } else if (testFeature(X86::FEATURE_ADX)) {
1014 CPU = "broadwell";
1015 } else if (testFeature(X86::FEATURE_AVX2)) {
1016 CPU = "haswell";
1017 } else if (testFeature(X86::FEATURE_AVX)) {
1018 CPU = "sandybridge";
1019 } else if (testFeature(X86::FEATURE_SSE4_2)) {
1020 if (testFeature(X86::FEATURE_MOVBE))
1021 CPU = "silvermont";
1022 else
1023 CPU = "nehalem";
1024 } else if (testFeature(X86::FEATURE_SSE4_1)) {
1025 CPU = "penryn";
1026 } else if (testFeature(X86::FEATURE_SSSE3)) {
1027 if (testFeature(X86::FEATURE_MOVBE))
1028 CPU = "bonnell";
1029 else
1030 CPU = "core2";
1031 } else if (testFeature(X86::FEATURE_64BIT)) {
1032 CPU = "core2";
1033 } else if (testFeature(X86::FEATURE_SSE3)) {
1034 CPU = "yonah";
1035 } else if (testFeature(X86::FEATURE_SSE2)) {
1036 CPU = "pentium-m";
1037 } else if (testFeature(X86::FEATURE_SSE)) {
1038 CPU = "pentium3";
1039 } else if (testFeature(X86::FEATURE_MMX)) {
1040 CPU = "pentium2";
1041 } else {
1042 CPU = "pentiumpro";
1043 }
1044 break;
1045 }
1046 break;
1047 case 15: {
1048 if (testFeature(X86::FEATURE_64BIT)) {
1049 CPU = "nocona";
1050 break;
1051 }
1052 if (testFeature(X86::FEATURE_SSE3)) {
1053 CPU = "prescott";
1054 break;
1055 }
1056 CPU = "pentium4";
1057 break;
1058 }
1059 default:
1060 break; // Unknown.
1061 }
1062
1063 return CPU;
1064}
1065
1066static StringRef
1067getAMDProcessorTypeAndSubtype(unsigned Family, unsigned Model,
1068 const unsigned *Features,
1069 unsigned *Type, unsigned *Subtype) {
1070 auto testFeature = [&](unsigned F) {
1071 return (Features[F / 32] & (1U << (F % 32))) != 0;
1072 };
1073
1074 StringRef CPU;
1075
1076 switch (Family) {
1077 case 4:
1078 CPU = "i486";
1079 break;
1080 case 5:
1081 CPU = "pentium";
1082 switch (Model) {
1083 case 6:
1084 case 7:
1085 CPU = "k6";
1086 break;
1087 case 8:
1088 CPU = "k6-2";
1089 break;
1090 case 9:
1091 case 13:
1092 CPU = "k6-3";
1093 break;
1094 case 10:
1095 CPU = "geode";
1096 break;
1097 }
1098 break;
1099 case 6:
1100 if (testFeature(X86::FEATURE_SSE)) {
1101 CPU = "athlon-xp";
1102 break;
1103 }
1104 CPU = "athlon";
1105 break;
1106 case 15:
1107 if (testFeature(X86::FEATURE_SSE3)) {
1108 CPU = "k8-sse3";
1109 break;
1110 }
1111 CPU = "k8";
1112 break;
1113 case 16:
1114 CPU = "amdfam10";
1115 *Type = X86::AMDFAM10H; // "amdfam10"
1116 switch (Model) {
1117 case 2:
1118 *Subtype = X86::AMDFAM10H_BARCELONA;
1119 break;
1120 case 4:
1121 *Subtype = X86::AMDFAM10H_SHANGHAI;
1122 break;
1123 case 8:
1124 *Subtype = X86::AMDFAM10H_ISTANBUL;
1125 break;
1126 }
1127 break;
1128 case 20:
1129 CPU = "btver1";
1130 *Type = X86::AMD_BTVER1;
1131 break;
1132 case 21:
1133 CPU = "bdver1";
1134 *Type = X86::AMDFAM15H;
1135 if (Model >= 0x60 && Model <= 0x7f) {
1136 CPU = "bdver4";
1137 *Subtype = X86::AMDFAM15H_BDVER4;
1138 break; // 60h-7Fh: Excavator
1139 }
1140 if (Model >= 0x30 && Model <= 0x3f) {
1141 CPU = "bdver3";
1142 *Subtype = X86::AMDFAM15H_BDVER3;
1143 break; // 30h-3Fh: Steamroller
1144 }
1145 if ((Model >= 0x10 && Model <= 0x1f) || Model == 0x02) {
1146 CPU = "bdver2";
1147 *Subtype = X86::AMDFAM15H_BDVER2;
1148 break; // 02h, 10h-1Fh: Piledriver
1149 }
1150 if (Model <= 0x0f) {
1151 *Subtype = X86::AMDFAM15H_BDVER1;
1152 break; // 00h-0Fh: Bulldozer
1153 }
1154 break;
1155 case 22:
1156 CPU = "btver2";
1157 *Type = X86::AMD_BTVER2;
1158 break;
1159 case 23:
1160 CPU = "znver1";
1161 *Type = X86::AMDFAM17H;
1162 if ((Model >= 0x30 && Model <= 0x3f) || (Model == 0x47) ||
1163 (Model >= 0x60 && Model <= 0x67) || (Model >= 0x68 && Model <= 0x6f) ||
1164 (Model >= 0x70 && Model <= 0x7f) || (Model >= 0x84 && Model <= 0x87) ||
1165 (Model >= 0x90 && Model <= 0x97) || (Model >= 0x98 && Model <= 0x9f) ||
1166 (Model >= 0xa0 && Model <= 0xaf)) {
1167 // Family 17h Models 30h-3Fh (Starship) Zen 2
1168 // Family 17h Models 47h (Cardinal) Zen 2
1169 // Family 17h Models 60h-67h (Renoir) Zen 2
1170 // Family 17h Models 68h-6Fh (Lucienne) Zen 2
1171 // Family 17h Models 70h-7Fh (Matisse) Zen 2
1172 // Family 17h Models 84h-87h (ProjectX) Zen 2
1173 // Family 17h Models 90h-97h (VanGogh) Zen 2
1174 // Family 17h Models 98h-9Fh (Mero) Zen 2
1175 // Family 17h Models A0h-AFh (Mendocino) Zen 2
1176 CPU = "znver2";
1177 *Subtype = X86::AMDFAM17H_ZNVER2;
1178 break;
1179 }
1180 if ((Model >= 0x10 && Model <= 0x1f) || (Model >= 0x20 && Model <= 0x2f)) {
1181 // Family 17h Models 10h-1Fh (Raven1) Zen
1182 // Family 17h Models 10h-1Fh (Picasso) Zen+
1183 // Family 17h Models 20h-2Fh (Raven2 x86) Zen
1184 *Subtype = X86::AMDFAM17H_ZNVER1;
1185 break;
1186 }
1187 break;
1188 case 25:
1189 CPU = "znver3";
1190 *Type = X86::AMDFAM19H;
1191 if (Model <= 0x0f || (Model >= 0x20 && Model <= 0x2f) ||
1192 (Model >= 0x30 && Model <= 0x3f) || (Model >= 0x40 && Model <= 0x4f) ||
1193 (Model >= 0x50 && Model <= 0x5f)) {
1194 // Family 19h Models 00h-0Fh (Genesis, Chagall) Zen 3
1195 // Family 19h Models 20h-2Fh (Vermeer) Zen 3
1196 // Family 19h Models 30h-3Fh (Badami) Zen 3
1197 // Family 19h Models 40h-4Fh (Rembrandt) Zen 3+
1198 // Family 19h Models 50h-5Fh (Cezanne) Zen 3
1199 *Subtype = X86::AMDFAM19H_ZNVER3;
1200 break;
1201 }
1202 if ((Model >= 0x10 && Model <= 0x1f) || (Model >= 0x60 && Model <= 0x6f) ||
1203 (Model >= 0x70 && Model <= 0x77) || (Model >= 0x78 && Model <= 0x7f) ||
1204 (Model >= 0xa0 && Model <= 0xaf)) {
1205 // Family 19h Models 10h-1Fh (Stones; Storm Peak) Zen 4
1206 // Family 19h Models 60h-6Fh (Raphael) Zen 4
1207 // Family 19h Models 70h-77h (Phoenix, Hawkpoint1) Zen 4
1208 // Family 19h Models 78h-7Fh (Phoenix 2, Hawkpoint2) Zen 4
1209 // Family 19h Models A0h-AFh (Stones-Dense) Zen 4
1210 CPU = "znver4";
1211 *Subtype = X86::AMDFAM19H_ZNVER4;
1212 break; // "znver4"
1213 }
1214 break;
1215 default:
1216 break; // Unknown AMD CPU.
1217 }
1218
1219 return CPU;
1220}
1221
1222static void getAvailableFeatures(unsigned ECX, unsigned EDX, unsigned MaxLeaf,
1223 unsigned *Features) {
1224 unsigned EAX, EBX;
1225
1226 auto setFeature = [&](unsigned F) {
1227 Features[F / 32] |= 1U << (F % 32);
1228 };
1229
1230 if ((EDX >> 15) & 1)
1231 setFeature(X86::FEATURE_CMOV);
1232 if ((EDX >> 23) & 1)
1233 setFeature(X86::FEATURE_MMX);
1234 if ((EDX >> 25) & 1)
1235 setFeature(X86::FEATURE_SSE);
1236 if ((EDX >> 26) & 1)
1237 setFeature(X86::FEATURE_SSE2);
1238
1239 if ((ECX >> 0) & 1)
1240 setFeature(X86::FEATURE_SSE3);
1241 if ((ECX >> 1) & 1)
1242 setFeature(X86::FEATURE_PCLMUL);
1243 if ((ECX >> 9) & 1)
1244 setFeature(X86::FEATURE_SSSE3);
1245 if ((ECX >> 12) & 1)
1246 setFeature(X86::FEATURE_FMA);
1247 if ((ECX >> 19) & 1)
1248 setFeature(X86::FEATURE_SSE4_1);
1249 if ((ECX >> 20) & 1) {
1250 setFeature(X86::FEATURE_SSE4_2);
1251 setFeature(X86::FEATURE_CRC32);
1252 }
1253 if ((ECX >> 23) & 1)
1254 setFeature(X86::FEATURE_POPCNT);
1255 if ((ECX >> 25) & 1)
1256 setFeature(X86::FEATURE_AES);
1257
1258 if ((ECX >> 22) & 1)
1259 setFeature(X86::FEATURE_MOVBE);
1260
1261 // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
1262 // indicates that the AVX registers will be saved and restored on context
1263 // switch, then we have full AVX support.
1264 const unsigned AVXBits = (1 << 27) | (1 << 28);
1265 bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
1266 ((EAX & 0x6) == 0x6);
1267#if defined(__APPLE__)
1268 // Darwin lazily saves the AVX512 context on first use: trust that the OS will
1269 // save the AVX512 context if we use AVX512 instructions, even the bit is not
1270 // set right now.
1271 bool HasAVX512Save = true;
1272#else
1273 // AVX512 requires additional context to be saved by the OS.
1274 bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);
1275#endif
1276
1277 if (HasAVX)
1278 setFeature(X86::FEATURE_AVX);
1279
1280 bool HasLeaf7 =
1281 MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
1282
1283 if (HasLeaf7 && ((EBX >> 3) & 1))
1284 setFeature(X86::FEATURE_BMI);
1285 if (HasLeaf7 && ((EBX >> 5) & 1) && HasAVX)
1286 setFeature(X86::FEATURE_AVX2);
1287 if (HasLeaf7 && ((EBX >> 8) & 1))
1288 setFeature(X86::FEATURE_BMI2);
1289 if (HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save) {
1290 setFeature(X86::FEATURE_AVX512F);
1291 setFeature(X86::FEATURE_EVEX512);
1292 }
1293 if (HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save)
1294 setFeature(X86::FEATURE_AVX512DQ);
1295 if (HasLeaf7 && ((EBX >> 19) & 1))
1296 setFeature(X86::FEATURE_ADX);
1297 if (HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save)
1298 setFeature(X86::FEATURE_AVX512IFMA);
1299 if (HasLeaf7 && ((EBX >> 23) & 1))
1300 setFeature(X86::FEATURE_CLFLUSHOPT);
1301 if (HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save)
1302 setFeature(X86::FEATURE_AVX512CD);
1303 if (HasLeaf7 && ((EBX >> 29) & 1))
1304 setFeature(X86::FEATURE_SHA);
1305 if (HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save)
1306 setFeature(X86::FEATURE_AVX512BW);
1307 if (HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save)
1308 setFeature(X86::FEATURE_AVX512VL);
1309
1310 if (HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save)
1311 setFeature(X86::FEATURE_AVX512VBMI);
1312 if (HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save)
1313 setFeature(X86::FEATURE_AVX512VBMI2);
1314 if (HasLeaf7 && ((ECX >> 8) & 1))
1315 setFeature(X86::FEATURE_GFNI);
1316 if (HasLeaf7 && ((ECX >> 10) & 1) && HasAVX)
1317 setFeature(X86::FEATURE_VPCLMULQDQ);
1318 if (HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save)
1319 setFeature(X86::FEATURE_AVX512VNNI);
1320 if (HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save)
1321 setFeature(X86::FEATURE_AVX512BITALG);
1322 if (HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save)
1323 setFeature(X86::FEATURE_AVX512VPOPCNTDQ);
1324
1325 if (HasLeaf7 && ((EDX >> 2) & 1) && HasAVX512Save)
1326 setFeature(X86::FEATURE_AVX5124VNNIW);
1327 if (HasLeaf7 && ((EDX >> 3) & 1) && HasAVX512Save)
1328 setFeature(X86::FEATURE_AVX5124FMAPS);
1329 if (HasLeaf7 && ((EDX >> 8) & 1) && HasAVX512Save)
1330 setFeature(X86::FEATURE_AVX512VP2INTERSECT);
1331
1332 // EAX from subleaf 0 is the maximum subleaf supported. Some CPUs don't
1333 // return all 0s for invalid subleaves so check the limit.
1334 bool HasLeaf7Subleaf1 =
1335 HasLeaf7 && EAX >= 1 &&
1336 !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX);
1337 if (HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save)
1338 setFeature(X86::FEATURE_AVX512BF16);
1339
1340 unsigned MaxExtLevel;
1341 getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
1342
1343 bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
1344 !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
1345 if (HasExtLeaf1 && ((ECX >> 6) & 1))
1346 setFeature(X86::FEATURE_SSE4_A);
1347 if (HasExtLeaf1 && ((ECX >> 11) & 1))
1348 setFeature(X86::FEATURE_XOP);
1349 if (HasExtLeaf1 && ((ECX >> 16) & 1))
1350 setFeature(X86::FEATURE_FMA4);
1351
1352 if (HasExtLeaf1 && ((EDX >> 29) & 1))
1353 setFeature(X86::FEATURE_64BIT);
1354}
1355
1357 unsigned MaxLeaf = 0;
1358 const VendorSignatures Vendor = getVendorSignature(&MaxLeaf);
1359 if (Vendor == VendorSignatures::UNKNOWN)
1360 return "generic";
1361
1362 unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
1363 getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);
1364
1365 unsigned Family = 0, Model = 0;
1366 unsigned Features[(X86::CPU_FEATURE_MAX + 31) / 32] = {0};
1367 detectX86FamilyModel(EAX, &Family, &Model);
1368 getAvailableFeatures(ECX, EDX, MaxLeaf, Features);
1369
1370 // These aren't consumed in this file, but we try to keep some source code the
1371 // same or similar to compiler-rt.
1372 unsigned Type = 0;
1373 unsigned Subtype = 0;
1374
1375 StringRef CPU;
1376
1377 if (Vendor == VendorSignatures::GENUINE_INTEL) {
1378 CPU = getIntelProcessorTypeAndSubtype(Family, Model, Features, &Type,
1379 &Subtype);
1380 } else if (Vendor == VendorSignatures::AUTHENTIC_AMD) {
1381 CPU = getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type,
1382 &Subtype);
1383 }
1384
1385 if (!CPU.empty())
1386 return CPU;
1387
1388 return "generic";
1389}
1390
1391#elif defined(__APPLE__) && defined(__powerpc__)
1393 host_basic_info_data_t hostInfo;
1394 mach_msg_type_number_t infoCount;
1395
1396 infoCount = HOST_BASIC_INFO_COUNT;
1397 mach_port_t hostPort = mach_host_self();
1398 host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&hostInfo,
1399 &infoCount);
1400 mach_port_deallocate(mach_task_self(), hostPort);
1401
1402 if (hostInfo.cpu_type != CPU_TYPE_POWERPC)
1403 return "generic";
1404
1405 switch (hostInfo.cpu_subtype) {
1407 return "601";
1409 return "602";
1411 return "603";
1413 return "603e";
1415 return "603ev";
1417 return "604";
1419 return "604e";
1421 return "620";
1423 return "750";
1425 return "7400";
1427 return "7450";
1429 return "970";
1430 default:;
1431 }
1432
1433 return "generic";
1434}
1435#elif defined(__linux__) && defined(__powerpc__)
1437 std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1438 StringRef Content = P ? P->getBuffer() : "";
1439 return detail::getHostCPUNameForPowerPC(Content);
1440}
1441#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
1443 std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1444 StringRef Content = P ? P->getBuffer() : "";
1445 return detail::getHostCPUNameForARM(Content);
1446}
1447#elif defined(__linux__) && defined(__s390x__)
1449 std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1450 StringRef Content = P ? P->getBuffer() : "";
1451 return detail::getHostCPUNameForS390x(Content);
1452}
1453#elif defined(__MVS__)
1455 // Get pointer to Communications Vector Table (CVT).
1456 // The pointer is located at offset 16 of the Prefixed Save Area (PSA).
1457 // It is stored as 31 bit pointer and will be zero-extended to 64 bit.
1458 int *StartToCVTOffset = reinterpret_cast<int *>(0x10);
1459 // Since its stored as a 31-bit pointer, get the 4 bytes from the start
1460 // of address.
1461 int ReadValue = *StartToCVTOffset;
1462 // Explicitly clear the high order bit.
1463 ReadValue = (ReadValue & 0x7FFFFFFF);
1464 char *CVT = reinterpret_cast<char *>(ReadValue);
1465 // The model number is located in the CVT prefix at offset -6 and stored as
1466 // signless packed decimal.
1467 uint16_t Id = *(uint16_t *)&CVT[-6];
1468 // Convert number to integer.
1469 Id = decodePackedBCD<uint16_t>(Id, false);
1470 // Check for vector support. It's stored in field CVTFLAG5 (offset 244),
1471 // bit CVTVEF (X'80'). The facilities list is part of the PSA but the vector
1472 // extension can only be used if bit CVTVEF is on.
1473 bool HaveVectorSupport = CVT[244] & 0x80;
1474 return getCPUNameFromS390Model(Id, HaveVectorSupport);
1475}
1476#elif defined(__APPLE__) && (defined(__arm__) || defined(__aarch64__))
1477#define CPUFAMILY_ARM_SWIFT 0x1e2d6381
1478#define CPUFAMILY_ARM_CYCLONE 0x37a09642
1479#define CPUFAMILY_ARM_TYPHOON 0x2c91a47e
1480#define CPUFAMILY_ARM_TWISTER 0x92fb37c8
1481#define CPUFAMILY_ARM_HURRICANE 0x67ceee93
1482#define CPUFAMILY_ARM_MONSOON_MISTRAL 0xe81e7ef6
1483#define CPUFAMILY_ARM_VORTEX_TEMPEST 0x07d34b9f
1484#define CPUFAMILY_ARM_LIGHTNING_THUNDER 0x462504d2
1485#define CPUFAMILY_ARM_FIRESTORM_ICESTORM 0x1b588bb3
1486#define CPUFAMILY_ARM_BLIZZARD_AVALANCHE 0xda33d83d
1487#define CPUFAMILY_ARM_EVEREST_SAWTOOTH 0x8765edea
1488
1490 uint32_t Family;
1491 size_t Length = sizeof(Family);
1492 sysctlbyname("hw.cpufamily", &Family, &Length, NULL, 0);
1493
1494 switch (Family) {
1495 case CPUFAMILY_ARM_SWIFT:
1496 return "swift";
1497 case CPUFAMILY_ARM_CYCLONE:
1498 return "apple-a7";
1499 case CPUFAMILY_ARM_TYPHOON:
1500 return "apple-a8";
1501 case CPUFAMILY_ARM_TWISTER:
1502 return "apple-a9";
1503 case CPUFAMILY_ARM_HURRICANE:
1504 return "apple-a10";
1505 case CPUFAMILY_ARM_MONSOON_MISTRAL:
1506 return "apple-a11";
1507 case CPUFAMILY_ARM_VORTEX_TEMPEST:
1508 return "apple-a12";
1509 case CPUFAMILY_ARM_LIGHTNING_THUNDER:
1510 return "apple-a13";
1511 case CPUFAMILY_ARM_FIRESTORM_ICESTORM:
1512 return "apple-m1";
1513 case CPUFAMILY_ARM_BLIZZARD_AVALANCHE:
1514 return "apple-m2";
1515 case CPUFAMILY_ARM_EVEREST_SAWTOOTH:
1516 return "apple-m3";
1517 default:
1518 // Default to the newest CPU we know about.
1519 return "apple-m3";
1520 }
1521}
1522#elif defined(_AIX)
1524 switch (_system_configuration.implementation) {
1525 case POWER_4:
1526 if (_system_configuration.version == PV_4_3)
1527 return "970";
1528 return "pwr4";
1529 case POWER_5:
1530 if (_system_configuration.version == PV_5)
1531 return "pwr5";
1532 return "pwr5x";
1533 case POWER_6:
1534 if (_system_configuration.version == PV_6_Compat)
1535 return "pwr6";
1536 return "pwr6x";
1537 case POWER_7:
1538 return "pwr7";
1539 case POWER_8:
1540 return "pwr8";
1541 case POWER_9:
1542 return "pwr9";
1543// TODO: simplify this once the macro is available in all OS levels.
1544#ifdef POWER_10
1545 case POWER_10:
1546#else
1547 case 0x40000:
1548#endif
1549 return "pwr10";
1550 default:
1551 return "generic";
1552 }
1553}
1554#elif defined(__loongarch__)
1556 // Use processor id to detect cpu name.
1557 uint32_t processor_id;
1558 __asm__("cpucfg %[prid], $zero\n\t" : [prid] "=r"(processor_id));
1559 // Refer PRID_SERIES_MASK in linux kernel: arch/loongarch/include/asm/cpu.h.
1560 switch (processor_id & 0xf000) {
1561 case 0xc000: // Loongson 64bit, 4-issue
1562 return "la464";
1563 // TODO: Others.
1564 default:
1565 break;
1566 }
1567 return "generic";
1568}
1569#elif defined(__riscv)
1571#if defined(__linux__)
1572 std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1573 StringRef Content = P ? P->getBuffer() : "";
1574 return detail::getHostCPUNameForRISCV(Content);
1575#else
1576#if __riscv_xlen == 64
1577 return "generic-rv64";
1578#elif __riscv_xlen == 32
1579 return "generic-rv32";
1580#else
1581#error "Unhandled value of __riscv_xlen"
1582#endif
1583#endif
1584}
1585#elif defined(__sparc__)
1586#if defined(__linux__)
1589 ProcCpuinfoContent.split(Lines, "\n");
1590
1591 // Look for cpu line to determine cpu name
1592 StringRef Cpu;
1593 for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
1594 if (Lines[I].starts_with("cpu")) {
1595 Cpu = Lines[I].substr(5).ltrim("\t :");
1596 break;
1597 }
1598 }
1599
1600 return StringSwitch<const char *>(Cpu)
1601 .StartsWith("SuperSparc", "supersparc")
1602 .StartsWith("HyperSparc", "hypersparc")
1603 .StartsWith("SpitFire", "ultrasparc")
1604 .StartsWith("BlackBird", "ultrasparc")
1605 .StartsWith("Sabre", " ultrasparc")
1606 .StartsWith("Hummingbird", "ultrasparc")
1607 .StartsWith("Cheetah", "ultrasparc3")
1608 .StartsWith("Jalapeno", "ultrasparc3")
1609 .StartsWith("Jaguar", "ultrasparc3")
1610 .StartsWith("Panther", "ultrasparc3")
1611 .StartsWith("Serrano", "ultrasparc3")
1612 .StartsWith("UltraSparc T1", "niagara")
1613 .StartsWith("UltraSparc T2", "niagara2")
1614 .StartsWith("UltraSparc T3", "niagara3")
1615 .StartsWith("UltraSparc T4", "niagara4")
1616 .StartsWith("UltraSparc T5", "niagara4")
1617 .StartsWith("LEON", "leon3")
1618 // niagara7/m8 not supported by LLVM yet.
1619 .StartsWith("SPARC-M7", "niagara4" /* "niagara7" */)
1620 .StartsWith("SPARC-S7", "niagara4" /* "niagara7" */)
1621 .StartsWith("SPARC-M8", "niagara4" /* "m8" */)
1622 .Default("generic");
1623}
1624#endif
1625
1627#if defined(__linux__)
1628 std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1629 StringRef Content = P ? P->getBuffer() : "";
1630 return detail::getHostCPUNameForSPARC(Content);
1631#elif defined(__sun__) && defined(__svr4__)
1632 char *buf = NULL;
1633 kstat_ctl_t *kc;
1634 kstat_t *ksp;
1635 kstat_named_t *brand = NULL;
1636
1637 kc = kstat_open();
1638 if (kc != NULL) {
1639 ksp = kstat_lookup(kc, const_cast<char *>("cpu_info"), -1, NULL);
1640 if (ksp != NULL && kstat_read(kc, ksp, NULL) != -1 &&
1641 ksp->ks_type == KSTAT_TYPE_NAMED)
1642 brand =
1643 (kstat_named_t *)kstat_data_lookup(ksp, const_cast<char *>("brand"));
1644 if (brand != NULL && brand->data_type == KSTAT_DATA_STRING)
1645 buf = KSTAT_NAMED_STR_PTR(brand);
1646 }
1647 kstat_close(kc);
1648
1649 return StringSwitch<const char *>(buf)
1650 .Case("TMS390S10", "supersparc") // Texas Instruments microSPARC I
1651 .Case("TMS390Z50", "supersparc") // Texas Instruments SuperSPARC I
1652 .Case("TMS390Z55",
1653 "supersparc") // Texas Instruments SuperSPARC I with SuperCache
1654 .Case("MB86904", "supersparc") // Fujitsu microSPARC II
1655 .Case("MB86907", "supersparc") // Fujitsu TurboSPARC
1656 .Case("RT623", "hypersparc") // Ross hyperSPARC
1657 .Case("RT625", "hypersparc")
1658 .Case("RT626", "hypersparc")
1659 .Case("UltraSPARC-I", "ultrasparc")
1660 .Case("UltraSPARC-II", "ultrasparc")
1661 .Case("UltraSPARC-IIe", "ultrasparc")
1662 .Case("UltraSPARC-IIi", "ultrasparc")
1663 .Case("SPARC64-III", "ultrasparc")
1664 .Case("SPARC64-IV", "ultrasparc")
1665 .Case("UltraSPARC-III", "ultrasparc3")
1666 .Case("UltraSPARC-III+", "ultrasparc3")
1667 .Case("UltraSPARC-IIIi", "ultrasparc3")
1668 .Case("UltraSPARC-IIIi+", "ultrasparc3")
1669 .Case("UltraSPARC-IV", "ultrasparc3")
1670 .Case("UltraSPARC-IV+", "ultrasparc3")
1671 .Case("SPARC64-V", "ultrasparc3")
1672 .Case("SPARC64-VI", "ultrasparc3")
1673 .Case("SPARC64-VII", "ultrasparc3")
1674 .Case("UltraSPARC-T1", "niagara")
1675 .Case("UltraSPARC-T2", "niagara2")
1676 .Case("UltraSPARC-T2", "niagara2")
1677 .Case("UltraSPARC-T2+", "niagara2")
1678 .Case("SPARC-T3", "niagara3")
1679 .Case("SPARC-T4", "niagara4")
1680 .Case("SPARC-T5", "niagara4")
1681 // niagara7/m8 not supported by LLVM yet.
1682 .Case("SPARC-M7", "niagara4" /* "niagara7" */)
1683 .Case("SPARC-S7", "niagara4" /* "niagara7" */)
1684 .Case("SPARC-M8", "niagara4" /* "m8" */)
1685 .Default("generic");
1686#else
1687 return "generic";
1688#endif
1689}
1690#else
1691StringRef sys::getHostCPUName() { return "generic"; }
1692namespace llvm {
1693namespace sys {
1694namespace detail {
1695namespace x86 {
1696
1699}
1700
1701} // namespace x86
1702} // namespace detail
1703} // namespace sys
1704} // namespace llvm
1705#endif
1706
1707#if defined(__i386__) || defined(_M_IX86) || \
1708 defined(__x86_64__) || defined(_M_X64)
1710 unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
1711 unsigned MaxLevel;
1712
1713 if (getX86CpuIDAndInfo(0, &MaxLevel, &EBX, &ECX, &EDX) || MaxLevel < 1)
1714 return false;
1715
1716 getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);
1717
1718 Features["cx8"] = (EDX >> 8) & 1;
1719 Features["cmov"] = (EDX >> 15) & 1;
1720 Features["mmx"] = (EDX >> 23) & 1;
1721 Features["fxsr"] = (EDX >> 24) & 1;
1722 Features["sse"] = (EDX >> 25) & 1;
1723 Features["sse2"] = (EDX >> 26) & 1;
1724
1725 Features["sse3"] = (ECX >> 0) & 1;
1726 Features["pclmul"] = (ECX >> 1) & 1;
1727 Features["ssse3"] = (ECX >> 9) & 1;
1728 Features["cx16"] = (ECX >> 13) & 1;
1729 Features["sse4.1"] = (ECX >> 19) & 1;
1730 Features["sse4.2"] = (ECX >> 20) & 1;
1731 Features["crc32"] = Features["sse4.2"];
1732 Features["movbe"] = (ECX >> 22) & 1;
1733 Features["popcnt"] = (ECX >> 23) & 1;
1734 Features["aes"] = (ECX >> 25) & 1;
1735 Features["rdrnd"] = (ECX >> 30) & 1;
1736
1737 // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
1738 // indicates that the AVX registers will be saved and restored on context
1739 // switch, then we have full AVX support.
1740 bool HasXSave = ((ECX >> 27) & 1) && !getX86XCR0(&EAX, &EDX);
1741 bool HasAVXSave = HasXSave && ((ECX >> 28) & 1) && ((EAX & 0x6) == 0x6);
1742#if defined(__APPLE__)
1743 // Darwin lazily saves the AVX512 context on first use: trust that the OS will
1744 // save the AVX512 context if we use AVX512 instructions, even the bit is not
1745 // set right now.
1746 bool HasAVX512Save = true;
1747#else
1748 // AVX512 requires additional context to be saved by the OS.
1749 bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);
1750#endif
1751 // AMX requires additional context to be saved by the OS.
1752 const unsigned AMXBits = (1 << 17) | (1 << 18);
1753 bool HasAMXSave = HasXSave && ((EAX & AMXBits) == AMXBits);
1754
1755 Features["avx"] = HasAVXSave;
1756 Features["fma"] = ((ECX >> 12) & 1) && HasAVXSave;
1757 // Only enable XSAVE if OS has enabled support for saving YMM state.
1758 Features["xsave"] = ((ECX >> 26) & 1) && HasAVXSave;
1759 Features["f16c"] = ((ECX >> 29) & 1) && HasAVXSave;
1760
1761 unsigned MaxExtLevel;
1762 getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);
1763
1764 bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
1765 !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
1766 Features["sahf"] = HasExtLeaf1 && ((ECX >> 0) & 1);
1767 Features["lzcnt"] = HasExtLeaf1 && ((ECX >> 5) & 1);
1768 Features["sse4a"] = HasExtLeaf1 && ((ECX >> 6) & 1);
1769 Features["prfchw"] = HasExtLeaf1 && ((ECX >> 8) & 1);
1770 Features["xop"] = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;
1771 Features["lwp"] = HasExtLeaf1 && ((ECX >> 15) & 1);
1772 Features["fma4"] = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;
1773 Features["tbm"] = HasExtLeaf1 && ((ECX >> 21) & 1);
1774 Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1);
1775
1776 Features["64bit"] = HasExtLeaf1 && ((EDX >> 29) & 1);
1777
1778 // Miscellaneous memory related features, detected by
1779 // using the 0x80000008 leaf of the CPUID instruction
1780 bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 &&
1781 !getX86CpuIDAndInfo(0x80000008, &EAX, &EBX, &ECX, &EDX);
1782 Features["clzero"] = HasExtLeaf8 && ((EBX >> 0) & 1);
1783 Features["rdpru"] = HasExtLeaf8 && ((EBX >> 4) & 1);
1784 Features["wbnoinvd"] = HasExtLeaf8 && ((EBX >> 9) & 1);
1785
1786 bool HasLeaf7 =
1787 MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);
1788
1789 Features["fsgsbase"] = HasLeaf7 && ((EBX >> 0) & 1);
1790 Features["sgx"] = HasLeaf7 && ((EBX >> 2) & 1);
1791 Features["bmi"] = HasLeaf7 && ((EBX >> 3) & 1);
1792 // AVX2 is only supported if we have the OS save support from AVX.
1793 Features["avx2"] = HasLeaf7 && ((EBX >> 5) & 1) && HasAVXSave;
1794 Features["bmi2"] = HasLeaf7 && ((EBX >> 8) & 1);
1795 Features["invpcid"] = HasLeaf7 && ((EBX >> 10) & 1);
1796 Features["rtm"] = HasLeaf7 && ((EBX >> 11) & 1);
1797 // AVX512 is only supported if the OS supports the context save for it.
1798 Features["avx512f"] = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;
1799 if (Features["avx512f"])
1800 Features["evex512"] = true;
1801 Features["avx512dq"] = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;
1802 Features["rdseed"] = HasLeaf7 && ((EBX >> 18) & 1);
1803 Features["adx"] = HasLeaf7 && ((EBX >> 19) & 1);
1804 Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;
1805 Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);
1806 Features["clwb"] = HasLeaf7 && ((EBX >> 24) & 1);
1807 Features["avx512cd"] = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;
1808 Features["sha"] = HasLeaf7 && ((EBX >> 29) & 1);
1809 Features["avx512bw"] = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;
1810 Features["avx512vl"] = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;
1811
1812 Features["avx512vbmi"] = HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save;
1813 Features["pku"] = HasLeaf7 && ((ECX >> 4) & 1);
1814 Features["waitpkg"] = HasLeaf7 && ((ECX >> 5) & 1);
1815 Features["avx512vbmi2"] = HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save;
1816 Features["shstk"] = HasLeaf7 && ((ECX >> 7) & 1);
1817 Features["gfni"] = HasLeaf7 && ((ECX >> 8) & 1);
1818 Features["vaes"] = HasLeaf7 && ((ECX >> 9) & 1) && HasAVXSave;
1819 Features["vpclmulqdq"] = HasLeaf7 && ((ECX >> 10) & 1) && HasAVXSave;
1820 Features["avx512vnni"] = HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save;
1821 Features["avx512bitalg"] = HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save;
1822 Features["avx512vpopcntdq"] = HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save;
1823 Features["rdpid"] = HasLeaf7 && ((ECX >> 22) & 1);
1824 Features["kl"] = HasLeaf7 && ((ECX >> 23) & 1); // key locker
1825 Features["cldemote"] = HasLeaf7 && ((ECX >> 25) & 1);
1826 Features["movdiri"] = HasLeaf7 && ((ECX >> 27) & 1);
1827 Features["movdir64b"] = HasLeaf7 && ((ECX >> 28) & 1);
1828 Features["enqcmd"] = HasLeaf7 && ((ECX >> 29) & 1);
1829
1830 Features["uintr"] = HasLeaf7 && ((EDX >> 5) & 1);
1831 Features["avx512vp2intersect"] =
1832 HasLeaf7 && ((EDX >> 8) & 1) && HasAVX512Save;
1833 Features["serialize"] = HasLeaf7 && ((EDX >> 14) & 1);
1834 Features["tsxldtrk"] = HasLeaf7 && ((EDX >> 16) & 1);
1835 // There are two CPUID leafs which information associated with the pconfig
1836 // instruction:
1837 // EAX=0x7, ECX=0x0 indicates the availability of the instruction (via the 18th
1838 // bit of EDX), while the EAX=0x1b leaf returns information on the
1839 // availability of specific pconfig leafs.
1840 // The target feature here only refers to the the first of these two.
1841 // Users might need to check for the availability of specific pconfig
1842 // leaves using cpuid, since that information is ignored while
1843 // detecting features using the "-march=native" flag.
1844 // For more info, see X86 ISA docs.
1845 Features["pconfig"] = HasLeaf7 && ((EDX >> 18) & 1);
1846 Features["amx-bf16"] = HasLeaf7 && ((EDX >> 22) & 1) && HasAMXSave;
1847 Features["avx512fp16"] = HasLeaf7 && ((EDX >> 23) & 1) && HasAVX512Save;
1848 Features["amx-tile"] = HasLeaf7 && ((EDX >> 24) & 1) && HasAMXSave;
1849 Features["amx-int8"] = HasLeaf7 && ((EDX >> 25) & 1) && HasAMXSave;
1850 // EAX from subleaf 0 is the maximum subleaf supported. Some CPUs don't
1851 // return all 0s for invalid subleaves so check the limit.
1852 bool HasLeaf7Subleaf1 =
1853 HasLeaf7 && EAX >= 1 &&
1854 !getX86CpuIDAndInfoEx(0x7, 0x1, &EAX, &EBX, &ECX, &EDX);
1855 Features["sha512"] = HasLeaf7Subleaf1 && ((EAX >> 0) & 1);
1856 Features["sm3"] = HasLeaf7Subleaf1 && ((EAX >> 1) & 1);
1857 Features["sm4"] = HasLeaf7Subleaf1 && ((EAX >> 2) & 1);
1858 Features["raoint"] = HasLeaf7Subleaf1 && ((EAX >> 3) & 1);
1859 Features["avxvnni"] = HasLeaf7Subleaf1 && ((EAX >> 4) & 1) && HasAVXSave;
1860 Features["avx512bf16"] = HasLeaf7Subleaf1 && ((EAX >> 5) & 1) && HasAVX512Save;
1861 Features["amx-fp16"] = HasLeaf7Subleaf1 && ((EAX >> 21) & 1) && HasAMXSave;
1862 Features["cmpccxadd"] = HasLeaf7Subleaf1 && ((EAX >> 7) & 1);
1863 Features["hreset"] = HasLeaf7Subleaf1 && ((EAX >> 22) & 1);
1864 Features["avxifma"] = HasLeaf7Subleaf1 && ((EAX >> 23) & 1) && HasAVXSave;
1865 Features["avxvnniint8"] = HasLeaf7Subleaf1 && ((EDX >> 4) & 1) && HasAVXSave;
1866 Features["avxneconvert"] = HasLeaf7Subleaf1 && ((EDX >> 5) & 1) && HasAVXSave;
1867 Features["amx-complex"] = HasLeaf7Subleaf1 && ((EDX >> 8) & 1) && HasAMXSave;
1868 Features["avxvnniint16"] = HasLeaf7Subleaf1 && ((EDX >> 10) & 1) && HasAVXSave;
1869 Features["prefetchi"] = HasLeaf7Subleaf1 && ((EDX >> 14) & 1);
1870 Features["usermsr"] = HasLeaf7Subleaf1 && ((EDX >> 15) & 1);
1871 Features["avx10.1-256"] = HasLeaf7Subleaf1 && ((EDX >> 19) & 1);
1872 bool HasAPXF = HasLeaf7Subleaf1 && ((EDX >> 21) & 1);
1873 Features["egpr"] = HasAPXF;
1874 Features["push2pop2"] = HasAPXF;
1875 Features["ppx"] = HasAPXF;
1876 Features["ndd"] = HasAPXF;
1877 Features["ccmp"] = HasAPXF;
1878 Features["cf"] = HasAPXF;
1879
1880 bool HasLeafD = MaxLevel >= 0xd &&
1881 !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);
1882
1883 // Only enable XSAVE if OS has enabled support for saving YMM state.
1884 Features["xsaveopt"] = HasLeafD && ((EAX >> 0) & 1) && HasAVXSave;
1885 Features["xsavec"] = HasLeafD && ((EAX >> 1) & 1) && HasAVXSave;
1886 Features["xsaves"] = HasLeafD && ((EAX >> 3) & 1) && HasAVXSave;
1887
1888 bool HasLeaf14 = MaxLevel >= 0x14 &&
1889 !getX86CpuIDAndInfoEx(0x14, 0x0, &EAX, &EBX, &ECX, &EDX);
1890
1891 Features["ptwrite"] = HasLeaf14 && ((EBX >> 4) & 1);
1892
1893 bool HasLeaf19 =
1894 MaxLevel >= 0x19 && !getX86CpuIDAndInfo(0x19, &EAX, &EBX, &ECX, &EDX);
1895 Features["widekl"] = HasLeaf7 && HasLeaf19 && ((EBX >> 2) & 1);
1896
1897 bool HasLeaf24 =
1898 MaxLevel >= 0x24 && !getX86CpuIDAndInfo(0x24, &EAX, &EBX, &ECX, &EDX);
1899 Features["avx10.1-512"] =
1900 Features["avx10.1-256"] && HasLeaf24 && ((EBX >> 18) & 1);
1901
1902 return true;
1903}
1904#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
1906 std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
1907 if (!P)
1908 return false;
1909
1911 P->getBuffer().split(Lines, "\n");
1912
1914
1915 // Look for the CPU features.
1916 for (unsigned I = 0, E = Lines.size(); I != E; ++I)
1917 if (Lines[I].starts_with("Features")) {
1918 Lines[I].split(CPUFeatures, ' ');
1919 break;
1920 }
1921
1922#if defined(__aarch64__)
1923 // Keep track of which crypto features we have seen
1924 enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 };
1925 uint32_t crypto = 0;
1926#endif
1927
1928 for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
1929 StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
1930#if defined(__aarch64__)
1931 .Case("asimd", "neon")
1932 .Case("fp", "fp-armv8")
1933 .Case("crc32", "crc")
1934 .Case("atomics", "lse")
1935 .Case("sve", "sve")
1936 .Case("sve2", "sve2")
1937#else
1938 .Case("half", "fp16")
1939 .Case("neon", "neon")
1940 .Case("vfpv3", "vfp3")
1941 .Case("vfpv3d16", "vfp3d16")
1942 .Case("vfpv4", "vfp4")
1943 .Case("idiva", "hwdiv-arm")
1944 .Case("idivt", "hwdiv")
1945#endif
1946 .Default("");
1947
1948#if defined(__aarch64__)
1949 // We need to check crypto separately since we need all of the crypto
1950 // extensions to enable the subtarget feature
1951 if (CPUFeatures[I] == "aes")
1952 crypto |= CAP_AES;
1953 else if (CPUFeatures[I] == "pmull")
1954 crypto |= CAP_PMULL;
1955 else if (CPUFeatures[I] == "sha1")
1956 crypto |= CAP_SHA1;
1957 else if (CPUFeatures[I] == "sha2")
1958 crypto |= CAP_SHA2;
1959#endif
1960
1961 if (LLVMFeatureStr != "")
1962 Features[LLVMFeatureStr] = true;
1963 }
1964
1965#if defined(__aarch64__)
1966 // If we have all crypto bits we can add the feature
1967 if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
1968 Features["crypto"] = true;
1969#endif
1970
1971 return true;
1972}
1973#elif defined(_WIN32) && (defined(__aarch64__) || defined(_M_ARM64))
1975 if (IsProcessorFeaturePresent(PF_ARM_NEON_INSTRUCTIONS_AVAILABLE))
1976 Features["neon"] = true;
1977 if (IsProcessorFeaturePresent(PF_ARM_V8_CRC32_INSTRUCTIONS_AVAILABLE))
1978 Features["crc"] = true;
1979 if (IsProcessorFeaturePresent(PF_ARM_V8_CRYPTO_INSTRUCTIONS_AVAILABLE))
1980 Features["crypto"] = true;
1981
1982 return true;
1983}
1984#elif defined(__linux__) && defined(__loongarch__)
1985#include <sys/auxv.h>
1987 unsigned long hwcap = getauxval(AT_HWCAP);
1988 bool HasFPU = hwcap & (1UL << 3); // HWCAP_LOONGARCH_FPU
1989 uint32_t cpucfg2 = 0x2;
1990 __asm__("cpucfg %[cpucfg2], %[cpucfg2]\n\t" : [cpucfg2] "+r"(cpucfg2));
1991
1992 Features["f"] = HasFPU && (cpucfg2 & (1U << 1)); // CPUCFG.2.FP_SP
1993 Features["d"] = HasFPU && (cpucfg2 & (1U << 2)); // CPUCFG.2.FP_DP
1994
1995 Features["lsx"] = hwcap & (1UL << 4); // HWCAP_LOONGARCH_LSX
1996 Features["lasx"] = hwcap & (1UL << 5); // HWCAP_LOONGARCH_LASX
1997 Features["lvz"] = hwcap & (1UL << 9); // HWCAP_LOONGARCH_LVZ
1998
1999 return true;
2000}
2001#else
2002bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; }
2003#endif
2004
2005#if __APPLE__
2006/// \returns the \p triple, but with the Host's arch spliced in.
2007static Triple withHostArch(Triple T) {
2008#if defined(__arm__)
2009 T.setArch(Triple::arm);
2010 T.setArchName("arm");
2011#elif defined(__arm64e__)
2013 T.setArchName("arm64e");
2014#elif defined(__aarch64__)
2015 T.setArch(Triple::aarch64);
2016 T.setArchName("arm64");
2017#elif defined(__x86_64h__)
2018 T.setArch(Triple::x86_64);
2019 T.setArchName("x86_64h");
2020#elif defined(__x86_64__)
2021 T.setArch(Triple::x86_64);
2022 T.setArchName("x86_64");
2023#elif defined(__i386__)
2024 T.setArch(Triple::x86);
2025 T.setArchName("i386");
2026#elif defined(__powerpc__)
2027 T.setArch(Triple::ppc);
2028 T.setArchName("powerpc");
2029#else
2030# error "Unimplemented host arch fixup"
2031#endif
2032 return T;
2033}
2034#endif
2035
2037 std::string TargetTripleString = updateTripleOSVersion(LLVM_HOST_TRIPLE);
2038 Triple PT(Triple::normalize(TargetTripleString));
2039
2040#if __APPLE__
2041 /// In Universal builds, LLVM_HOST_TRIPLE will have the wrong arch in one of
2042 /// the slices. This fixes that up.
2043 PT = withHostArch(PT);
2044#endif
2045
2046 if (sizeof(void *) == 8 && PT.isArch32Bit())
2047 PT = PT.get64BitArchVariant();
2048 if (sizeof(void *) == 4 && PT.isArch64Bit())
2049 PT = PT.get32BitArchVariant();
2050
2051 return PT.str();
2052}
2053
2055#if LLVM_VERSION_PRINTER_SHOW_HOST_TARGET_INFO
2056 std::string CPU = std::string(sys::getHostCPUName());
2057 if (CPU == "generic")
2058 CPU = "(unknown)";
2059 OS << " Default target: " << sys::getDefaultTargetTriple() << '\n'
2060 << " Host CPU: " << CPU << '\n';
2061#endif
2062}
This file defines the StringMap class.
#define LLVM_ATTRIBUTE_UNUSED
Definition: Compiler.h:203
Given that RA is a live value
T Content
static std::unique_ptr< llvm::MemoryBuffer > LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent()
Definition: Host.cpp:65
#define F(x, y, z)
Definition: MD5.cpp:55
#define I(x, y, z)
Definition: MD5.cpp:58
#define P(N)
raw_pwrite_stream & OS
This file defines the SmallVector class.
This file implements the StringSwitch template, which mimics a switch() statement whose cases are str...
DEMANGLE_NAMESPACE_BEGIN bool starts_with(std::string_view self, char C) noexcept
Represents either an error or a value T.
Definition: ErrorOr.h:56
static ErrorOr< std::unique_ptr< MemoryBuffer > > getFileAsStream(const Twine &Filename)
Read all of the specified file into a MemoryBuffer as a stream (i.e.
This is a 'vector' (really, a variable-sized array), optimized for the case when the array is small.
Definition: SmallVector.h:1209
StringMap - This is an unconventional map that is specialized for handling keys that are "strings",...
Definition: StringMap.h:128
StringRef - Represent a constant reference to a string, i.e.
Definition: StringRef.h:50
std::pair< StringRef, StringRef > split(char Separator) const
Split into two substrings around the first occurrence of a separator character.
Definition: StringRef.h:693
constexpr bool empty() const
empty - Check if the string is empty.
Definition: StringRef.h:134
iterator begin() const
Definition: StringRef.h:111
iterator end() const
Definition: StringRef.h:113
bool ends_with(StringRef Suffix) const
Check if this string ends with the given Suffix.
Definition: StringRef.h:270
static constexpr size_t npos
Definition: StringRef.h:52
A switch()-like statement whose cases are string literals.
Definition: StringSwitch.h:44
StringSwitch & Case(StringLiteral S, T Value)
Definition: StringSwitch.h:69
R Default(T Value)
Definition: StringSwitch.h:182
StringSwitch & StartsWith(StringLiteral S, T Value)
Definition: StringSwitch.h:83
Triple - Helper class for working with autoconf configuration names.
Definition: Triple.h:44
llvm::Triple get32BitArchVariant() const
Form a triple with a 32-bit variant of the current architecture.
Definition: Triple.cpp:1673
std::string normalize() const
Return the normalized form of this triple's string.
Definition: Triple.h:366
llvm::Triple get64BitArchVariant() const
Form a triple with a 64-bit variant of the current architecture.
Definition: Triple.cpp:1754
const std::string & str() const
Definition: Triple.h:440
bool isArch64Bit() const
Test whether the architecture is 64-bit.
Definition: Triple.cpp:1661
@ AArch64SubArch_arm64e
Definition: Triple.h:149
bool isArch32Bit() const
Test whether the architecture is 32-bit.
Definition: Triple.cpp:1665
The instances of the Type class are immutable: once they are created, they are never changed.
Definition: Type.h:45
This class implements an extremely fast bulk output stream that can only output to a stream.
Definition: raw_ostream.h:52
@ CPU_SUBTYPE_POWERPC_970
Definition: MachO.h:1663
@ CPU_SUBTYPE_POWERPC_604e
Definition: MachO.h:1658
@ CPU_SUBTYPE_POWERPC_603e
Definition: MachO.h:1655
@ CPU_SUBTYPE_POWERPC_7400
Definition: MachO.h:1661
@ CPU_SUBTYPE_POWERPC_604
Definition: MachO.h:1657
@ CPU_SUBTYPE_POWERPC_750
Definition: MachO.h:1660
@ CPU_SUBTYPE_POWERPC_601
Definition: MachO.h:1652
@ CPU_SUBTYPE_POWERPC_620
Definition: MachO.h:1659
@ CPU_SUBTYPE_POWERPC_603ev
Definition: MachO.h:1656
@ CPU_SUBTYPE_POWERPC_603
Definition: MachO.h:1654
@ CPU_SUBTYPE_POWERPC_7450
Definition: MachO.h:1662
@ CPU_SUBTYPE_POWERPC_602
Definition: MachO.h:1653
Helper functions to extract CPU details from CPUID on x86.
Definition: Host.h:72
VendorSignatures getVendorSignature(unsigned *MaxLeaf=nullptr)
Returns the host CPU's vendor.
Definition: Host.cpp:1697
StringRef getHostCPUNameForS390x(StringRef ProcCpuinfoContent)
Definition: Host.cpp:389
StringRef getHostCPUNameForPowerPC(StringRef ProcCpuinfoContent)
Helper functions to extract HostCPUName from /proc/cpuinfo on linux.
Definition: Host.cpp:76
StringRef getHostCPUNameForBPF()
Definition: Host.cpp:454
StringRef getHostCPUNameForARM(StringRef ProcCpuinfoContent)
Definition: Host.cpp:159
StringRef getHostCPUNameForRISCV(StringRef ProcCpuinfoContent)
Definition: Host.cpp:434
StringRef getHostCPUNameForSPARC(StringRef ProcCpuinfoContent)
StringRef getHostCPUName()
getHostCPUName - Get the LLVM name for the host CPU.
Definition: Host.cpp:1691
void printDefaultTargetAndDetectedCPU(raw_ostream &OS)
This is a function compatible with cl::AddExtraVersionPrinter, which adds info about the current targ...
Definition: Host.cpp:2054
bool getHostCPUFeatures(StringMap< bool, MallocAllocator > &Features)
getHostCPUFeatures - Get the LLVM names for the host CPU features.
std::string getProcessTriple()
getProcessTriple() - Return an appropriate target triple for generating code to be loaded into the cu...
Definition: Host.cpp:2036
std::string getDefaultTargetTriple()
getDefaultTargetTriple() - Return the default target triple the compiler has been configured to produ...
This is an optimization pass for GlobalISel generic memory operations.
Definition: AddressRanges.h:18
@ Length
Definition: DWP.cpp:456
raw_fd_ostream & errs()
This returns a reference to a raw_ostream for standard error.