llvm.org GIT mirror llvm / testing include / llvm / IR / Type.h
testing

Tree @testing (Download .tar.gz)

Type.h @testingraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
//===- llvm/Type.h - Classes for handling data types ------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the declaration of the Type class.  For more "Type"
// stuff, look in DerivedTypes.h.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_IR_TYPE_H
#define LLVM_IR_TYPE_H

#include "llvm/ADT/APFloat.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Support/CBindingWrapping.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstdint>
#include <iterator>

namespace llvm {

template<class GraphType> struct GraphTraits;
class IntegerType;
class LLVMContext;
class PointerType;
class raw_ostream;
class StringRef;

/// The instances of the Type class are immutable: once they are created,
/// they are never changed.  Also note that only one instance of a particular
/// type is ever created.  Thus seeing if two types are equal is a matter of
/// doing a trivial pointer comparison. To enforce that no two equal instances
/// are created, Type instances can only be created via static factory methods
/// in class Type and in derived classes.  Once allocated, Types are never
/// free'd.
///
class Type {
public:
  //===--------------------------------------------------------------------===//
  /// Definitions of all of the base types for the Type system.  Based on this
  /// value, you can cast to a class defined in DerivedTypes.h.
  /// Note: If you add an element to this, you need to add an element to the
  /// Type::getPrimitiveType function, or else things will break!
  /// Also update LLVMTypeKind and LLVMGetTypeKind () in the C binding.
  ///
  enum TypeID {
    // PrimitiveTypes - make sure LastPrimitiveTyID stays up to date.
    VoidTyID = 0,    ///<  0: type with no size
    HalfTyID,        ///<  1: 16-bit floating point type
    FloatTyID,       ///<  2: 32-bit floating point type
    DoubleTyID,      ///<  3: 64-bit floating point type
    X86_FP80TyID,    ///<  4: 80-bit floating point type (X87)
    FP128TyID,       ///<  5: 128-bit floating point type (112-bit mantissa)
    PPC_FP128TyID,   ///<  6: 128-bit floating point type (two 64-bits, PowerPC)
    LabelTyID,       ///<  7: Labels
    MetadataTyID,    ///<  8: Metadata
    X86_MMXTyID,     ///<  9: MMX vectors (64 bits, X86 specific)
    TokenTyID,       ///< 10: Tokens

    // Derived types... see DerivedTypes.h file.
    // Make sure FirstDerivedTyID stays up to date!
    IntegerTyID,     ///< 11: Arbitrary bit width integers
    FunctionTyID,    ///< 12: Functions
    StructTyID,      ///< 13: Structures
    ArrayTyID,       ///< 14: Arrays
    PointerTyID,     ///< 15: Pointers
    VectorTyID       ///< 16: SIMD 'packed' format, or other vector type
  };

private:
  /// This refers to the LLVMContext in which this type was uniqued.
  LLVMContext &Context;

  TypeID   ID : 8;            // The current base type of this type.
  unsigned SubclassData : 24; // Space for subclasses to store data.
                              // Note that this should be synchronized with
                              // MAX_INT_BITS value in IntegerType class.

protected:
  friend class LLVMContextImpl;

  explicit Type(LLVMContext &C, TypeID tid)
    : Context(C), ID(tid), SubclassData(0) {}
  ~Type() = default;

  unsigned getSubclassData() const { return SubclassData; }

  void setSubclassData(unsigned val) {
    SubclassData = val;
    // Ensure we don't have any accidental truncation.
    assert(getSubclassData() == val && "Subclass data too large for field");
  }

  /// Keeps track of how many Type*'s there are in the ContainedTys list.
  unsigned NumContainedTys = 0;

  /// A pointer to the array of Types contained by this Type. For example, this
  /// includes the arguments of a function type, the elements of a structure,
  /// the pointee of a pointer, the element type of an array, etc. This pointer
  /// may be 0 for types that don't contain other types (Integer, Double,
  /// Float).
  Type * const *ContainedTys = nullptr;

  static bool isSequentialType(TypeID TyID) {
    return TyID == ArrayTyID || TyID == VectorTyID;
  }

public:
  /// Print the current type.
  /// Omit the type details if \p NoDetails == true.
  /// E.g., let %st = type { i32, i16 }
  /// When \p NoDetails is true, we only print %st.
  /// Put differently, \p NoDetails prints the type as if
  /// inlined with the operands when printing an instruction.
  void print(raw_ostream &O, bool IsForDebug = false,
             bool NoDetails = false) const;

  void dump() const;

  /// Return the LLVMContext in which this type was uniqued.
  LLVMContext &getContext() const { return Context; }

  //===--------------------------------------------------------------------===//
  // Accessors for working with types.
  //

  /// Return the type id for the type. This will return one of the TypeID enum
  /// elements defined above.
  TypeID getTypeID() const { return ID; }

  /// Return true if this is 'void'.
  bool isVoidTy() const { return getTypeID() == VoidTyID; }

  /// Return true if this is 'half', a 16-bit IEEE fp type.
  bool isHalfTy() const { return getTypeID() == HalfTyID; }

  /// Return true if this is 'float', a 32-bit IEEE fp type.
  bool isFloatTy() const { return getTypeID() == FloatTyID; }

  /// Return true if this is 'double', a 64-bit IEEE fp type.
  bool isDoubleTy() const { return getTypeID() == DoubleTyID; }

  /// Return true if this is x86 long double.
  bool isX86_FP80Ty() const { return getTypeID() == X86_FP80TyID; }

  /// Return true if this is 'fp128'.
  bool isFP128Ty() const { return getTypeID() == FP128TyID; }

  /// Return true if this is powerpc long double.
  bool isPPC_FP128Ty() const { return getTypeID() == PPC_FP128TyID; }

  /// Return true if this is one of the six floating-point types
  bool isFloatingPointTy() const {
    return getTypeID() == HalfTyID || getTypeID() == FloatTyID ||
           getTypeID() == DoubleTyID ||
           getTypeID() == X86_FP80TyID || getTypeID() == FP128TyID ||
           getTypeID() == PPC_FP128TyID;
  }

  const fltSemantics &getFltSemantics() const {
    switch (getTypeID()) {
    case HalfTyID: return APFloat::IEEEhalf();
    case FloatTyID: return APFloat::IEEEsingle();
    case DoubleTyID: return APFloat::IEEEdouble();
    case X86_FP80TyID: return APFloat::x87DoubleExtended();
    case FP128TyID: return APFloat::IEEEquad();
    case PPC_FP128TyID: return APFloat::PPCDoubleDouble();
    default: llvm_unreachable("Invalid floating type");
    }
  }

  /// Return true if this is X86 MMX.
  bool isX86_MMXTy() const { return getTypeID() == X86_MMXTyID; }

  /// Return true if this is a FP type or a vector of FP.
  bool isFPOrFPVectorTy() const { return getScalarType()->isFloatingPointTy(); }

  /// Return true if this is 'label'.
  bool isLabelTy() const { return getTypeID() == LabelTyID; }

  /// Return true if this is 'metadata'.
  bool isMetadataTy() const { return getTypeID() == MetadataTyID; }

  /// Return true if this is 'token'.
  bool isTokenTy() const { return getTypeID() == TokenTyID; }

  /// True if this is an instance of IntegerType.
  bool isIntegerTy() const { return getTypeID() == IntegerTyID; }

  /// Return true if this is an IntegerType of the given width.
  bool isIntegerTy(unsigned Bitwidth) const;

  /// Return true if this is an integer type or a vector of integer types.
  bool isIntOrIntVectorTy() const { return getScalarType()->isIntegerTy(); }

  /// Return true if this is an integer type or a vector of integer types of
  /// the given width.
  bool isIntOrIntVectorTy(unsigned BitWidth) const {
    return getScalarType()->isIntegerTy(BitWidth);
  }

  /// True if this is an instance of FunctionType.
  bool isFunctionTy() const { return getTypeID() == FunctionTyID; }

  /// True if this is an instance of StructType.
  bool isStructTy() const { return getTypeID() == StructTyID; }

  /// True if this is an instance of ArrayType.
  bool isArrayTy() const { return getTypeID() == ArrayTyID; }

  /// True if this is an instance of PointerType.
  bool isPointerTy() const { return getTypeID() == PointerTyID; }

  /// Return true if this is a pointer type or a vector of pointer types.
  bool isPtrOrPtrVectorTy() const { return getScalarType()->isPointerTy(); }

  /// True if this is an instance of VectorType.
  bool isVectorTy() const { return getTypeID() == VectorTyID; }

  /// Return true if this type could be converted with a lossless BitCast to
  /// type 'Ty'. For example, i8* to i32*. BitCasts are valid for types of the
  /// same size only where no re-interpretation of the bits is done.
  /// @brief Determine if this type could be losslessly bitcast to Ty
  bool canLosslesslyBitCastTo(Type *Ty) const;

  /// Return true if this type is empty, that is, it has no elements or all of
  /// its elements are empty.
  bool isEmptyTy() const;

  /// Return true if the type is "first class", meaning it is a valid type for a
  /// Value.
  bool isFirstClassType() const {
    return getTypeID() != FunctionTyID && getTypeID() != VoidTyID;
  }

  /// Return true if the type is a valid type for a register in codegen. This
  /// includes all first-class types except struct and array types.
  bool isSingleValueType() const {
    return isFloatingPointTy() || isX86_MMXTy() || isIntegerTy() ||
           isPointerTy() || isVectorTy();
  }

  /// Return true if the type is an aggregate type. This means it is valid as
  /// the first operand of an insertvalue or extractvalue instruction. This
  /// includes struct and array types, but does not include vector types.
  bool isAggregateType() const {
    return getTypeID() == StructTyID || getTypeID() == ArrayTyID;
  }

  /// Return true if it makes sense to take the size of this type. To get the
  /// actual size for a particular target, it is reasonable to use the
  /// DataLayout subsystem to do this.
  bool isSized(SmallPtrSetImpl<Type*> *Visited = nullptr) const {
    // If it's a primitive, it is always sized.
    if (getTypeID() == IntegerTyID || isFloatingPointTy() ||
        getTypeID() == PointerTyID ||
        getTypeID() == X86_MMXTyID)
      return true;
    // If it is not something that can have a size (e.g. a function or label),
    // it doesn't have a size.
    if (getTypeID() != StructTyID && getTypeID() != ArrayTyID &&
        getTypeID() != VectorTyID)
      return false;
    // Otherwise we have to try harder to decide.
    return isSizedDerivedType(Visited);
  }

  /// Return the basic size of this type if it is a primitive type. These are
  /// fixed by LLVM and are not target-dependent.
  /// This will return zero if the type does not have a size or is not a
  /// primitive type.
  ///
  /// Note that this may not reflect the size of memory allocated for an
  /// instance of the type or the number of bytes that are written when an
  /// instance of the type is stored to memory. The DataLayout class provides
  /// additional query functions to provide this information.
  ///
  unsigned getPrimitiveSizeInBits() const LLVM_READONLY;

  /// If this is a vector type, return the getPrimitiveSizeInBits value for the
  /// element type. Otherwise return the getPrimitiveSizeInBits value for this
  /// type.
  unsigned getScalarSizeInBits() const LLVM_READONLY;

  /// Return the width of the mantissa of this type. This is only valid on
  /// floating-point types. If the FP type does not have a stable mantissa (e.g.
  /// ppc long double), this method returns -1.
  int getFPMantissaWidth() const;

  /// If this is a vector type, return the element type, otherwise return
  /// 'this'.
  Type *getScalarType() const {
    if (isVectorTy())
      return getVectorElementType();
    return const_cast<Type*>(this);
  }

  //===--------------------------------------------------------------------===//
  // Type Iteration support.
  //
  using subtype_iterator = Type * const *;

  subtype_iterator subtype_begin() const { return ContainedTys; }
  subtype_iterator subtype_end() const { return &ContainedTys[NumContainedTys];}
  ArrayRef<Type*> subtypes() const {
    return makeArrayRef(subtype_begin(), subtype_end());
  }

  using subtype_reverse_iterator = std::reverse_iterator<subtype_iterator>;

  subtype_reverse_iterator subtype_rbegin() const {
    return subtype_reverse_iterator(subtype_end());
  }
  subtype_reverse_iterator subtype_rend() const {
    return subtype_reverse_iterator(subtype_begin());
  }

  /// This method is used to implement the type iterator (defined at the end of
  /// the file). For derived types, this returns the types 'contained' in the
  /// derived type.
  Type *getContainedType(unsigned i) const {
    assert(i < NumContainedTys && "Index out of range!");
    return ContainedTys[i];
  }

  /// Return the number of types in the derived type.
  unsigned getNumContainedTypes() const { return NumContainedTys; }

  //===--------------------------------------------------------------------===//
  // Helper methods corresponding to subclass methods.  This forces a cast to
  // the specified subclass and calls its accessor.  "getVectorNumElements" (for
  // example) is shorthand for cast<VectorType>(Ty)->getNumElements().  This is
  // only intended to cover the core methods that are frequently used, helper
  // methods should not be added here.

  inline unsigned getIntegerBitWidth() const;

  inline Type *getFunctionParamType(unsigned i) const;
  inline unsigned getFunctionNumParams() const;
  inline bool isFunctionVarArg() const;

  inline StringRef getStructName() const;
  inline unsigned getStructNumElements() const;
  inline Type *getStructElementType(unsigned N) const;

  inline Type *getSequentialElementType() const {
    assert(isSequentialType(getTypeID()) && "Not a sequential type!");
    return ContainedTys[0];
  }

  inline uint64_t getArrayNumElements() const;

  Type *getArrayElementType() const {
    assert(getTypeID() == ArrayTyID);
    return ContainedTys[0];
  }

  inline unsigned getVectorNumElements() const;
  Type *getVectorElementType() const {
    assert(getTypeID() == VectorTyID);
    return ContainedTys[0];
  }

  Type *getPointerElementType() const {
    assert(getTypeID() == PointerTyID);
    return ContainedTys[0];
  }

  /// Get the address space of this pointer or pointer vector type.
  inline unsigned getPointerAddressSpace() const;

  //===--------------------------------------------------------------------===//
  // Static members exported by the Type class itself.  Useful for getting
  // instances of Type.
  //

  /// Return a type based on an identifier.
  static Type *getPrimitiveType(LLVMContext &C, TypeID IDNumber);

  //===--------------------------------------------------------------------===//
  // These are the builtin types that are always available.
  //
  static Type *getVoidTy(LLVMContext &C);
  static Type *getLabelTy(LLVMContext &C);
  static Type *getHalfTy(LLVMContext &C);
  static Type *getFloatTy(LLVMContext &C);
  static Type *getDoubleTy(LLVMContext &C);
  static Type *getMetadataTy(LLVMContext &C);
  static Type *getX86_FP80Ty(LLVMContext &C);
  static Type *getFP128Ty(LLVMContext &C);
  static Type *getPPC_FP128Ty(LLVMContext &C);
  static Type *getX86_MMXTy(LLVMContext &C);
  static Type *getTokenTy(LLVMContext &C);
  static IntegerType *getIntNTy(LLVMContext &C, unsigned N);
  static IntegerType *getInt1Ty(LLVMContext &C);
  static IntegerType *getInt8Ty(LLVMContext &C);
  static IntegerType *getInt16Ty(LLVMContext &C);
  static IntegerType *getInt32Ty(LLVMContext &C);
  static IntegerType *getInt64Ty(LLVMContext &C);
  static IntegerType *getInt128Ty(LLVMContext &C);

  //===--------------------------------------------------------------------===//
  // Convenience methods for getting pointer types with one of the above builtin
  // types as pointee.
  //
  static PointerType *getHalfPtrTy(LLVMContext &C, unsigned AS = 0);
  static PointerType *getFloatPtrTy(LLVMContext &C, unsigned AS = 0);
  static PointerType *getDoublePtrTy(LLVMContext &C, unsigned AS = 0);
  static PointerType *getX86_FP80PtrTy(LLVMContext &C, unsigned AS = 0);
  static PointerType *getFP128PtrTy(LLVMContext &C, unsigned AS = 0);
  static PointerType *getPPC_FP128PtrTy(LLVMContext &C, unsigned AS = 0);
  static PointerType *getX86_MMXPtrTy(LLVMContext &C, unsigned AS = 0);
  static PointerType *getIntNPtrTy(LLVMContext &C, unsigned N, unsigned AS = 0);
  static PointerType *getInt1PtrTy(LLVMContext &C, unsigned AS = 0);
  static PointerType *getInt8PtrTy(LLVMContext &C, unsigned AS = 0);
  static PointerType *getInt16PtrTy(LLVMContext &C, unsigned AS = 0);
  static PointerType *getInt32PtrTy(LLVMContext &C, unsigned AS = 0);
  static PointerType *getInt64PtrTy(LLVMContext &C, unsigned AS = 0);

  /// Return a pointer to the current type. This is equivalent to
  /// PointerType::get(Foo, AddrSpace).
  PointerType *getPointerTo(unsigned AddrSpace = 0) const;

private:
  /// Derived types like structures and arrays are sized iff all of the members
  /// of the type are sized as well. Since asking for their size is relatively
  /// uncommon, move this operation out-of-line.
  bool isSizedDerivedType(SmallPtrSetImpl<Type*> *Visited = nullptr) const;
};

// Printing of types.
inline raw_ostream &operator<<(raw_ostream &OS, const Type &T) {
  T.print(OS);
  return OS;
}

// allow isa<PointerType>(x) to work without DerivedTypes.h included.
template <> struct isa_impl<PointerType, Type> {
  static inline bool doit(const Type &Ty) {
    return Ty.getTypeID() == Type::PointerTyID;
  }
};

//===----------------------------------------------------------------------===//
// Provide specializations of GraphTraits to be able to treat a type as a
// graph of sub types.

template <> struct GraphTraits<Type *> {
  using NodeRef = Type *;
  using ChildIteratorType = Type::subtype_iterator;

  static NodeRef getEntryNode(Type *T) { return T; }
  static ChildIteratorType child_begin(NodeRef N) { return N->subtype_begin(); }
  static ChildIteratorType child_end(NodeRef N) { return N->subtype_end(); }
};

template <> struct GraphTraits<const Type*> {
  using NodeRef = const Type *;
  using ChildIteratorType = Type::subtype_iterator;

  static NodeRef getEntryNode(NodeRef T) { return T; }
  static ChildIteratorType child_begin(NodeRef N) { return N->subtype_begin(); }
  static ChildIteratorType child_end(NodeRef N) { return N->subtype_end(); }
};

// Create wrappers for C Binding types (see CBindingWrapping.h).
DEFINE_ISA_CONVERSION_FUNCTIONS(Type, LLVMTypeRef)

/* Specialized opaque type conversions.
 */
inline Type **unwrap(LLVMTypeRef* Tys) {
  return reinterpret_cast<Type**>(Tys);
}

inline LLVMTypeRef *wrap(Type **Tys) {
  return reinterpret_cast<LLVMTypeRef*>(const_cast<Type**>(Tys));
}

} // end namespace llvm

#endif // LLVM_IR_TYPE_H