llvm.org GIT mirror llvm / stable lib / Transforms / Utils / PromoteMemoryToRegister.cpp
stable

Tree @stable (Download .tar.gz)

PromoteMemoryToRegister.cpp @stableraw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
//===- PromoteMemoryToRegister.cpp - Convert allocas to registers ---------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file promotes memory references to be register references.  It promotes
// alloca instructions which only have loads and stores as uses.  An alloca is
// transformed by using iterated dominator frontiers to place PHI nodes, then
// traversing the function in depth-first order to rewrite loads and stores as
// appropriate.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/TinyPtrVector.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/IteratedDominanceFrontier.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DIBuilder.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/Support/Casting.h"
#include "llvm/Transforms/Utils/PromoteMemToReg.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "mem2reg"

STATISTIC(NumLocalPromoted, "Number of alloca's promoted within one block");
STATISTIC(NumSingleStore,   "Number of alloca's promoted with a single store");
STATISTIC(NumDeadAlloca,    "Number of dead alloca's removed");
STATISTIC(NumPHIInsert,     "Number of PHI nodes inserted");

bool llvm::isAllocaPromotable(const AllocaInst *AI) {
  // FIXME: If the memory unit is of pointer or integer type, we can permit
  // assignments to subsections of the memory unit.
  unsigned AS = AI->getType()->getAddressSpace();

  // Only allow direct and non-volatile loads and stores...
  for (const User *U : AI->users()) {
    if (const LoadInst *LI = dyn_cast<LoadInst>(U)) {
      // Note that atomic loads can be transformed; atomic semantics do
      // not have any meaning for a local alloca.
      if (LI->isVolatile())
        return false;
    } else if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
      if (SI->getOperand(0) == AI)
        return false; // Don't allow a store OF the AI, only INTO the AI.
      // Note that atomic stores can be transformed; atomic semantics do
      // not have any meaning for a local alloca.
      if (SI->isVolatile())
        return false;
    } else if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(U)) {
      if (!II->isLifetimeStartOrEnd())
        return false;
    } else if (const BitCastInst *BCI = dyn_cast<BitCastInst>(U)) {
      if (BCI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
        return false;
      if (!onlyUsedByLifetimeMarkers(BCI))
        return false;
    } else if (const GetElementPtrInst *GEPI = dyn_cast<GetElementPtrInst>(U)) {
      if (GEPI->getType() != Type::getInt8PtrTy(U->getContext(), AS))
        return false;
      if (!GEPI->hasAllZeroIndices())
        return false;
      if (!onlyUsedByLifetimeMarkers(GEPI))
        return false;
    } else {
      return false;
    }
  }

  return true;
}

namespace {

struct AllocaInfo {
  SmallVector<BasicBlock *, 32> DefiningBlocks;
  SmallVector<BasicBlock *, 32> UsingBlocks;

  StoreInst *OnlyStore;
  BasicBlock *OnlyBlock;
  bool OnlyUsedInOneBlock;

  TinyPtrVector<DbgVariableIntrinsic *> DbgDeclares;

  void clear() {
    DefiningBlocks.clear();
    UsingBlocks.clear();
    OnlyStore = nullptr;
    OnlyBlock = nullptr;
    OnlyUsedInOneBlock = true;
    DbgDeclares.clear();
  }

  /// Scan the uses of the specified alloca, filling in the AllocaInfo used
  /// by the rest of the pass to reason about the uses of this alloca.
  void AnalyzeAlloca(AllocaInst *AI) {
    clear();

    // As we scan the uses of the alloca instruction, keep track of stores,
    // and decide whether all of the loads and stores to the alloca are within
    // the same basic block.
    for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
      Instruction *User = cast<Instruction>(*UI++);

      if (StoreInst *SI = dyn_cast<StoreInst>(User)) {
        // Remember the basic blocks which define new values for the alloca
        DefiningBlocks.push_back(SI->getParent());
        OnlyStore = SI;
      } else {
        LoadInst *LI = cast<LoadInst>(User);
        // Otherwise it must be a load instruction, keep track of variable
        // reads.
        UsingBlocks.push_back(LI->getParent());
      }

      if (OnlyUsedInOneBlock) {
        if (!OnlyBlock)
          OnlyBlock = User->getParent();
        else if (OnlyBlock != User->getParent())
          OnlyUsedInOneBlock = false;
      }
    }

    DbgDeclares = FindDbgAddrUses(AI);
  }
};

/// Data package used by RenamePass().
struct RenamePassData {
  using ValVector = std::vector<Value *>;
  using LocationVector = std::vector<DebugLoc>;

  RenamePassData(BasicBlock *B, BasicBlock *P, ValVector V, LocationVector L)
      : BB(B), Pred(P), Values(std::move(V)), Locations(std::move(L)) {}

  BasicBlock *BB;
  BasicBlock *Pred;
  ValVector Values;
  LocationVector Locations;
};

/// This assigns and keeps a per-bb relative ordering of load/store
/// instructions in the block that directly load or store an alloca.
///
/// This functionality is important because it avoids scanning large basic
/// blocks multiple times when promoting many allocas in the same block.
class LargeBlockInfo {
  /// For each instruction that we track, keep the index of the
  /// instruction.
  ///
  /// The index starts out as the number of the instruction from the start of
  /// the block.
  DenseMap<const Instruction *, unsigned> InstNumbers;

public:

  /// This code only looks at accesses to allocas.
  static bool isInterestingInstruction(const Instruction *I) {
    return (isa<LoadInst>(I) && isa<AllocaInst>(I->getOperand(0))) ||
           (isa<StoreInst>(I) && isa<AllocaInst>(I->getOperand(1)));
  }

  /// Get or calculate the index of the specified instruction.
  unsigned getInstructionIndex(const Instruction *I) {
    assert(isInterestingInstruction(I) &&
           "Not a load/store to/from an alloca?");

    // If we already have this instruction number, return it.
    DenseMap<const Instruction *, unsigned>::iterator It = InstNumbers.find(I);
    if (It != InstNumbers.end())
      return It->second;

    // Scan the whole block to get the instruction.  This accumulates
    // information for every interesting instruction in the block, in order to
    // avoid gratuitus rescans.
    const BasicBlock *BB = I->getParent();
    unsigned InstNo = 0;
    for (const Instruction &BBI : *BB)
      if (isInterestingInstruction(&BBI))
        InstNumbers[&BBI] = InstNo++;
    It = InstNumbers.find(I);

    assert(It != InstNumbers.end() && "Didn't insert instruction?");
    return It->second;
  }

  void deleteValue(const Instruction *I) { InstNumbers.erase(I); }

  void clear() { InstNumbers.clear(); }
};

struct PromoteMem2Reg {
  /// The alloca instructions being promoted.
  std::vector<AllocaInst *> Allocas;

  DominatorTree &DT;
  DIBuilder DIB;

  /// A cache of @llvm.assume intrinsics used by SimplifyInstruction.
  AssumptionCache *AC;

  const SimplifyQuery SQ;

  /// Reverse mapping of Allocas.
  DenseMap<AllocaInst *, unsigned> AllocaLookup;

  /// The PhiNodes we're adding.
  ///
  /// That map is used to simplify some Phi nodes as we iterate over it, so
  /// it should have deterministic iterators.  We could use a MapVector, but
  /// since we already maintain a map from BasicBlock* to a stable numbering
  /// (BBNumbers), the DenseMap is more efficient (also supports removal).
  DenseMap<std::pair<unsigned, unsigned>, PHINode *> NewPhiNodes;

  /// For each PHI node, keep track of which entry in Allocas it corresponds
  /// to.
  DenseMap<PHINode *, unsigned> PhiToAllocaMap;

  /// For each alloca, we keep track of the dbg.declare intrinsic that
  /// describes it, if any, so that we can convert it to a dbg.value
  /// intrinsic if the alloca gets promoted.
  SmallVector<TinyPtrVector<DbgVariableIntrinsic *>, 8> AllocaDbgDeclares;

  /// The set of basic blocks the renamer has already visited.
  SmallPtrSet<BasicBlock *, 16> Visited;

  /// Contains a stable numbering of basic blocks to avoid non-determinstic
  /// behavior.
  DenseMap<BasicBlock *, unsigned> BBNumbers;

  /// Lazily compute the number of predecessors a block has.
  DenseMap<const BasicBlock *, unsigned> BBNumPreds;

public:
  PromoteMem2Reg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
                 AssumptionCache *AC)
      : Allocas(Allocas.begin(), Allocas.end()), DT(DT),
        DIB(*DT.getRoot()->getParent()->getParent(), /*AllowUnresolved*/ false),
        AC(AC), SQ(DT.getRoot()->getParent()->getParent()->getDataLayout(),
                   nullptr, &DT, AC) {}

  void run();

private:
  void RemoveFromAllocasList(unsigned &AllocaIdx) {
    Allocas[AllocaIdx] = Allocas.back();
    Allocas.pop_back();
    --AllocaIdx;
  }

  unsigned getNumPreds(const BasicBlock *BB) {
    unsigned &NP = BBNumPreds[BB];
    if (NP == 0)
      NP = pred_size(BB) + 1;
    return NP - 1;
  }

  void ComputeLiveInBlocks(AllocaInst *AI, AllocaInfo &Info,
                           const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
                           SmallPtrSetImpl<BasicBlock *> &LiveInBlocks);
  void RenamePass(BasicBlock *BB, BasicBlock *Pred,
                  RenamePassData::ValVector &IncVals,
                  RenamePassData::LocationVector &IncLocs,
                  std::vector<RenamePassData> &Worklist);
  bool QueuePhiNode(BasicBlock *BB, unsigned AllocaIdx, unsigned &Version);
};

} // end anonymous namespace

/// Given a LoadInst LI this adds assume(LI != null) after it.
static void addAssumeNonNull(AssumptionCache *AC, LoadInst *LI) {
  Function *AssumeIntrinsic =
      Intrinsic::getDeclaration(LI->getModule(), Intrinsic::assume);
  ICmpInst *LoadNotNull = new ICmpInst(ICmpInst::ICMP_NE, LI,
                                       Constant::getNullValue(LI->getType()));
  LoadNotNull->insertAfter(LI);
  CallInst *CI = CallInst::Create(AssumeIntrinsic, {LoadNotNull});
  CI->insertAfter(LoadNotNull);
  AC->registerAssumption(CI);
}

static void removeLifetimeIntrinsicUsers(AllocaInst *AI) {
  // Knowing that this alloca is promotable, we know that it's safe to kill all
  // instructions except for load and store.

  for (auto UI = AI->user_begin(), UE = AI->user_end(); UI != UE;) {
    Instruction *I = cast<Instruction>(*UI);
    ++UI;
    if (isa<LoadInst>(I) || isa<StoreInst>(I))
      continue;

    if (!I->getType()->isVoidTy()) {
      // The only users of this bitcast/GEP instruction are lifetime intrinsics.
      // Follow the use/def chain to erase them now instead of leaving it for
      // dead code elimination later.
      for (auto UUI = I->user_begin(), UUE = I->user_end(); UUI != UUE;) {
        Instruction *Inst = cast<Instruction>(*UUI);
        ++UUI;
        Inst->eraseFromParent();
      }
    }
    I->eraseFromParent();
  }
}

/// Rewrite as many loads as possible given a single store.
///
/// When there is only a single store, we can use the domtree to trivially
/// replace all of the dominated loads with the stored value. Do so, and return
/// true if this has successfully promoted the alloca entirely. If this returns
/// false there were some loads which were not dominated by the single store
/// and thus must be phi-ed with undef. We fall back to the standard alloca
/// promotion algorithm in that case.
static bool rewriteSingleStoreAlloca(AllocaInst *AI, AllocaInfo &Info,
                                     LargeBlockInfo &LBI, const DataLayout &DL,
                                     DominatorTree &DT, AssumptionCache *AC) {
  StoreInst *OnlyStore = Info.OnlyStore;
  bool StoringGlobalVal = !isa<Instruction>(OnlyStore->getOperand(0));
  BasicBlock *StoreBB = OnlyStore->getParent();
  int StoreIndex = -1;

  // Clear out UsingBlocks.  We will reconstruct it here if needed.
  Info.UsingBlocks.clear();

  for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
    Instruction *UserInst = cast<Instruction>(*UI++);
    if (UserInst == OnlyStore)
      continue;
    LoadInst *LI = cast<LoadInst>(UserInst);

    // Okay, if we have a load from the alloca, we want to replace it with the
    // only value stored to the alloca.  We can do this if the value is
    // dominated by the store.  If not, we use the rest of the mem2reg machinery
    // to insert the phi nodes as needed.
    if (!StoringGlobalVal) { // Non-instructions are always dominated.
      if (LI->getParent() == StoreBB) {
        // If we have a use that is in the same block as the store, compare the
        // indices of the two instructions to see which one came first.  If the
        // load came before the store, we can't handle it.
        if (StoreIndex == -1)
          StoreIndex = LBI.getInstructionIndex(OnlyStore);

        if (unsigned(StoreIndex) > LBI.getInstructionIndex(LI)) {
          // Can't handle this load, bail out.
          Info.UsingBlocks.push_back(StoreBB);
          continue;
        }
      } else if (!DT.dominates(StoreBB, LI->getParent())) {
        // If the load and store are in different blocks, use BB dominance to
        // check their relationships.  If the store doesn't dom the use, bail
        // out.
        Info.UsingBlocks.push_back(LI->getParent());
        continue;
      }
    }

    // Otherwise, we *can* safely rewrite this load.
    Value *ReplVal = OnlyStore->getOperand(0);
    // If the replacement value is the load, this must occur in unreachable
    // code.
    if (ReplVal == LI)
      ReplVal = UndefValue::get(LI->getType());

    // If the load was marked as nonnull we don't want to lose
    // that information when we erase this Load. So we preserve
    // it with an assume.
    if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
        !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
      addAssumeNonNull(AC, LI);

    LI->replaceAllUsesWith(ReplVal);
    LI->eraseFromParent();
    LBI.deleteValue(LI);
  }

  // Finally, after the scan, check to see if the store is all that is left.
  if (!Info.UsingBlocks.empty())
    return false; // If not, we'll have to fall back for the remainder.

  // Record debuginfo for the store and remove the declaration's
  // debuginfo.
  for (DbgVariableIntrinsic *DII : Info.DbgDeclares) {
    DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
    ConvertDebugDeclareToDebugValue(DII, Info.OnlyStore, DIB);
    DII->eraseFromParent();
  }
  // Remove the (now dead) store and alloca.
  Info.OnlyStore->eraseFromParent();
  LBI.deleteValue(Info.OnlyStore);

  AI->eraseFromParent();
  return true;
}

/// Many allocas are only used within a single basic block.  If this is the
/// case, avoid traversing the CFG and inserting a lot of potentially useless
/// PHI nodes by just performing a single linear pass over the basic block
/// using the Alloca.
///
/// If we cannot promote this alloca (because it is read before it is written),
/// return false.  This is necessary in cases where, due to control flow, the
/// alloca is undefined only on some control flow paths.  e.g. code like
/// this is correct in LLVM IR:
///  // A is an alloca with no stores so far
///  for (...) {
///    int t = *A;
///    if (!first_iteration)
///      use(t);
///    *A = 42;
///  }
static bool promoteSingleBlockAlloca(AllocaInst *AI, const AllocaInfo &Info,
                                     LargeBlockInfo &LBI,
                                     const DataLayout &DL,
                                     DominatorTree &DT,
                                     AssumptionCache *AC) {
  // The trickiest case to handle is when we have large blocks. Because of this,
  // this code is optimized assuming that large blocks happen.  This does not
  // significantly pessimize the small block case.  This uses LargeBlockInfo to
  // make it efficient to get the index of various operations in the block.

  // Walk the use-def list of the alloca, getting the locations of all stores.
  using StoresByIndexTy = SmallVector<std::pair<unsigned, StoreInst *>, 64>;
  StoresByIndexTy StoresByIndex;

  for (User *U : AI->users())
    if (StoreInst *SI = dyn_cast<StoreInst>(U))
      StoresByIndex.push_back(std::make_pair(LBI.getInstructionIndex(SI), SI));

  // Sort the stores by their index, making it efficient to do a lookup with a
  // binary search.
  llvm::sort(StoresByIndex, less_first());

  // Walk all of the loads from this alloca, replacing them with the nearest
  // store above them, if any.
  for (auto UI = AI->user_begin(), E = AI->user_end(); UI != E;) {
    LoadInst *LI = dyn_cast<LoadInst>(*UI++);
    if (!LI)
      continue;

    unsigned LoadIdx = LBI.getInstructionIndex(LI);

    // Find the nearest store that has a lower index than this load.
    StoresByIndexTy::iterator I = llvm::lower_bound(
        StoresByIndex,
        std::make_pair(LoadIdx, static_cast<StoreInst *>(nullptr)),
        less_first());
    if (I == StoresByIndex.begin()) {
      if (StoresByIndex.empty())
        // If there are no stores, the load takes the undef value.
        LI->replaceAllUsesWith(UndefValue::get(LI->getType()));
      else
        // There is no store before this load, bail out (load may be affected
        // by the following stores - see main comment).
        return false;
    } else {
      // Otherwise, there was a store before this load, the load takes its value.
      // Note, if the load was marked as nonnull we don't want to lose that
      // information when we erase it. So we preserve it with an assume.
      Value *ReplVal = std::prev(I)->second->getOperand(0);
      if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
          !isKnownNonZero(ReplVal, DL, 0, AC, LI, &DT))
        addAssumeNonNull(AC, LI);

      // If the replacement value is the load, this must occur in unreachable
      // code.
      if (ReplVal == LI)
        ReplVal = UndefValue::get(LI->getType());

      LI->replaceAllUsesWith(ReplVal);
    }

    LI->eraseFromParent();
    LBI.deleteValue(LI);
  }

  // Remove the (now dead) stores and alloca.
  while (!AI->use_empty()) {
    StoreInst *SI = cast<StoreInst>(AI->user_back());
    // Record debuginfo for the store before removing it.
    for (DbgVariableIntrinsic *DII : Info.DbgDeclares) {
      DIBuilder DIB(*AI->getModule(), /*AllowUnresolved*/ false);
      ConvertDebugDeclareToDebugValue(DII, SI, DIB);
    }
    SI->eraseFromParent();
    LBI.deleteValue(SI);
  }

  AI->eraseFromParent();

  // The alloca's debuginfo can be removed as well.
  for (DbgVariableIntrinsic *DII : Info.DbgDeclares)
    DII->eraseFromParent();

  ++NumLocalPromoted;
  return true;
}

void PromoteMem2Reg::run() {
  Function &F = *DT.getRoot()->getParent();

  AllocaDbgDeclares.resize(Allocas.size());

  AllocaInfo Info;
  LargeBlockInfo LBI;
  ForwardIDFCalculator IDF(DT);

  for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
    AllocaInst *AI = Allocas[AllocaNum];

    assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
    assert(AI->getParent()->getParent() == &F &&
           "All allocas should be in the same function, which is same as DF!");

    removeLifetimeIntrinsicUsers(AI);

    if (AI->use_empty()) {
      // If there are no uses of the alloca, just delete it now.
      AI->eraseFromParent();

      // Remove the alloca from the Allocas list, since it has been processed
      RemoveFromAllocasList(AllocaNum);
      ++NumDeadAlloca;
      continue;
    }

    // Calculate the set of read and write-locations for each alloca.  This is
    // analogous to finding the 'uses' and 'definitions' of each variable.
    Info.AnalyzeAlloca(AI);

    // If there is only a single store to this value, replace any loads of
    // it that are directly dominated by the definition with the value stored.
    if (Info.DefiningBlocks.size() == 1) {
      if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
        // The alloca has been processed, move on.
        RemoveFromAllocasList(AllocaNum);
        ++NumSingleStore;
        continue;
      }
    }

    // If the alloca is only read and written in one basic block, just perform a
    // linear sweep over the block to eliminate it.
    if (Info.OnlyUsedInOneBlock &&
        promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
      // The alloca has been processed, move on.
      RemoveFromAllocasList(AllocaNum);
      continue;
    }

    // If we haven't computed a numbering for the BB's in the function, do so
    // now.
    if (BBNumbers.empty()) {
      unsigned ID = 0;
      for (auto &BB : F)
        BBNumbers[&BB] = ID++;
    }

    // Remember the dbg.declare intrinsic describing this alloca, if any.
    if (!Info.DbgDeclares.empty())
      AllocaDbgDeclares[AllocaNum] = Info.DbgDeclares;

    // Keep the reverse mapping of the 'Allocas' array for the rename pass.
    AllocaLookup[Allocas[AllocaNum]] = AllocaNum;

    // At this point, we're committed to promoting the alloca using IDF's, and
    // the standard SSA construction algorithm.  Determine which blocks need PHI
    // nodes and see if we can optimize out some work by avoiding insertion of
    // dead phi nodes.

    // Unique the set of defining blocks for efficient lookup.
    SmallPtrSet<BasicBlock *, 32> DefBlocks(Info.DefiningBlocks.begin(),
                                            Info.DefiningBlocks.end());

    // Determine which blocks the value is live in.  These are blocks which lead
    // to uses.
    SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
    ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);

    // At this point, we're committed to promoting the alloca using IDF's, and
    // the standard SSA construction algorithm.  Determine which blocks need phi
    // nodes and see if we can optimize out some work by avoiding insertion of
    // dead phi nodes.
    IDF.setLiveInBlocks(LiveInBlocks);
    IDF.setDefiningBlocks(DefBlocks);
    SmallVector<BasicBlock *, 32> PHIBlocks;
    IDF.calculate(PHIBlocks);
    llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) {
      return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
    });

    unsigned CurrentVersion = 0;
    for (BasicBlock *BB : PHIBlocks)
      QueuePhiNode(BB, AllocaNum, CurrentVersion);
  }

  if (Allocas.empty())
    return; // All of the allocas must have been trivial!

  LBI.clear();

  // Set the incoming values for the basic block to be null values for all of
  // the alloca's.  We do this in case there is a load of a value that has not
  // been stored yet.  In this case, it will get this null value.
  RenamePassData::ValVector Values(Allocas.size());
  for (unsigned i = 0, e = Allocas.size(); i != e; ++i)
    Values[i] = UndefValue::get(Allocas[i]->getAllocatedType());

  // When handling debug info, treat all incoming values as if they have unknown
  // locations until proven otherwise.
  RenamePassData::LocationVector Locations(Allocas.size());

  // Walks all basic blocks in the function performing the SSA rename algorithm
  // and inserting the phi nodes we marked as necessary
  std::vector<RenamePassData> RenamePassWorkList;
  RenamePassWorkList.emplace_back(&F.front(), nullptr, std::move(Values),
                                  std::move(Locations));
  do {
    RenamePassData RPD = std::move(RenamePassWorkList.back());
    RenamePassWorkList.pop_back();
    // RenamePass may add new worklist entries.
    RenamePass(RPD.BB, RPD.Pred, RPD.Values, RPD.Locations, RenamePassWorkList);
  } while (!RenamePassWorkList.empty());

  // The renamer uses the Visited set to avoid infinite loops.  Clear it now.
  Visited.clear();

  // Remove the allocas themselves from the function.
  for (Instruction *A : Allocas) {
    // If there are any uses of the alloca instructions left, they must be in
    // unreachable basic blocks that were not processed by walking the dominator
    // tree. Just delete the users now.
    if (!A->use_empty())
      A->replaceAllUsesWith(UndefValue::get(A->getType()));
    A->eraseFromParent();
  }

  // Remove alloca's dbg.declare instrinsics from the function.
  for (auto &Declares : AllocaDbgDeclares)
    for (auto *DII : Declares)
      DII->eraseFromParent();

  // Loop over all of the PHI nodes and see if there are any that we can get
  // rid of because they merge all of the same incoming values.  This can
  // happen due to undef values coming into the PHI nodes.  This process is
  // iterative, because eliminating one PHI node can cause others to be removed.
  bool EliminatedAPHI = true;
  while (EliminatedAPHI) {
    EliminatedAPHI = false;

    // Iterating over NewPhiNodes is deterministic, so it is safe to try to
    // simplify and RAUW them as we go.  If it was not, we could add uses to
    // the values we replace with in a non-deterministic order, thus creating
    // non-deterministic def->use chains.
    for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
             I = NewPhiNodes.begin(),
             E = NewPhiNodes.end();
         I != E;) {
      PHINode *PN = I->second;

      // If this PHI node merges one value and/or undefs, get the value.
      if (Value *V = SimplifyInstruction(PN, SQ)) {
        PN->replaceAllUsesWith(V);
        PN->eraseFromParent();
        NewPhiNodes.erase(I++);
        EliminatedAPHI = true;
        continue;
      }
      ++I;
    }
  }

  // At this point, the renamer has added entries to PHI nodes for all reachable
  // code.  Unfortunately, there may be unreachable blocks which the renamer
  // hasn't traversed.  If this is the case, the PHI nodes may not
  // have incoming values for all predecessors.  Loop over all PHI nodes we have
  // created, inserting undef values if they are missing any incoming values.
  for (DenseMap<std::pair<unsigned, unsigned>, PHINode *>::iterator
           I = NewPhiNodes.begin(),
           E = NewPhiNodes.end();
       I != E; ++I) {
    // We want to do this once per basic block.  As such, only process a block
    // when we find the PHI that is the first entry in the block.
    PHINode *SomePHI = I->second;
    BasicBlock *BB = SomePHI->getParent();
    if (&BB->front() != SomePHI)
      continue;

    // Only do work here if there the PHI nodes are missing incoming values.  We
    // know that all PHI nodes that were inserted in a block will have the same
    // number of incoming values, so we can just check any of them.
    if (SomePHI->getNumIncomingValues() == getNumPreds(BB))
      continue;

    // Get the preds for BB.
    SmallVector<BasicBlock *, 16> Preds(pred_begin(BB), pred_end(BB));

    // Ok, now we know that all of the PHI nodes are missing entries for some
    // basic blocks.  Start by sorting the incoming predecessors for efficient
    // access.
    auto CompareBBNumbers = [this](BasicBlock *A, BasicBlock *B) {
      return BBNumbers.find(A)->second < BBNumbers.find(B)->second;
    };
    llvm::sort(Preds, CompareBBNumbers);

    // Now we loop through all BB's which have entries in SomePHI and remove
    // them from the Preds list.
    for (unsigned i = 0, e = SomePHI->getNumIncomingValues(); i != e; ++i) {
      // Do a log(n) search of the Preds list for the entry we want.
      SmallVectorImpl<BasicBlock *>::iterator EntIt = llvm::lower_bound(
          Preds, SomePHI->getIncomingBlock(i), CompareBBNumbers);
      assert(EntIt != Preds.end() && *EntIt == SomePHI->getIncomingBlock(i) &&
             "PHI node has entry for a block which is not a predecessor!");

      // Remove the entry
      Preds.erase(EntIt);
    }

    // At this point, the blocks left in the preds list must have dummy
    // entries inserted into every PHI nodes for the block.  Update all the phi
    // nodes in this block that we are inserting (there could be phis before
    // mem2reg runs).
    unsigned NumBadPreds = SomePHI->getNumIncomingValues();
    BasicBlock::iterator BBI = BB->begin();
    while ((SomePHI = dyn_cast<PHINode>(BBI++)) &&
           SomePHI->getNumIncomingValues() == NumBadPreds) {
      Value *UndefVal = UndefValue::get(SomePHI->getType());
      for (BasicBlock *Pred : Preds)
        SomePHI->addIncoming(UndefVal, Pred);
    }
  }

  NewPhiNodes.clear();
}

/// Determine which blocks the value is live in.
///
/// These are blocks which lead to uses.  Knowing this allows us to avoid
/// inserting PHI nodes into blocks which don't lead to uses (thus, the
/// inserted phi nodes would be dead).
void PromoteMem2Reg::ComputeLiveInBlocks(
    AllocaInst *AI, AllocaInfo &Info,
    const SmallPtrSetImpl<BasicBlock *> &DefBlocks,
    SmallPtrSetImpl<BasicBlock *> &LiveInBlocks) {
  // To determine liveness, we must iterate through the predecessors of blocks
  // where the def is live.  Blocks are added to the worklist if we need to
  // check their predecessors.  Start with all the using blocks.
  SmallVector<BasicBlock *, 64> LiveInBlockWorklist(Info.UsingBlocks.begin(),
                                                    Info.UsingBlocks.end());

  // If any of the using blocks is also a definition block, check to see if the
  // definition occurs before or after the use.  If it happens before the use,
  // the value isn't really live-in.
  for (unsigned i = 0, e = LiveInBlockWorklist.size(); i != e; ++i) {
    BasicBlock *BB = LiveInBlockWorklist[i];
    if (!DefBlocks.count(BB))
      continue;

    // Okay, this is a block that both uses and defines the value.  If the first
    // reference to the alloca is a def (store), then we know it isn't live-in.
    for (BasicBlock::iterator I = BB->begin();; ++I) {
      if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
        if (SI->getOperand(1) != AI)
          continue;

        // We found a store to the alloca before a load.  The alloca is not
        // actually live-in here.
        LiveInBlockWorklist[i] = LiveInBlockWorklist.back();
        LiveInBlockWorklist.pop_back();
        --i;
        --e;
        break;
      }

      if (LoadInst *LI = dyn_cast<LoadInst>(I))
        // Okay, we found a load before a store to the alloca.  It is actually
        // live into this block.
        if (LI->getOperand(0) == AI)
          break;
    }
  }

  // Now that we have a set of blocks where the phi is live-in, recursively add
  // their predecessors until we find the full region the value is live.
  while (!LiveInBlockWorklist.empty()) {
    BasicBlock *BB = LiveInBlockWorklist.pop_back_val();

    // The block really is live in here, insert it into the set.  If already in
    // the set, then it has already been processed.
    if (!LiveInBlocks.insert(BB).second)
      continue;

    // Since the value is live into BB, it is either defined in a predecessor or
    // live into it to.  Add the preds to the worklist unless they are a
    // defining block.
    for (BasicBlock *P : predecessors(BB)) {
      // The value is not live into a predecessor if it defines the value.
      if (DefBlocks.count(P))
        continue;

      // Otherwise it is, add to the worklist.
      LiveInBlockWorklist.push_back(P);
    }
  }
}

/// Queue a phi-node to be added to a basic-block for a specific Alloca.
///
/// Returns true if there wasn't already a phi-node for that variable
bool PromoteMem2Reg::QueuePhiNode(BasicBlock *BB, unsigned AllocaNo,
                                  unsigned &Version) {
  // Look up the basic-block in question.
  PHINode *&PN = NewPhiNodes[std::make_pair(BBNumbers[BB], AllocaNo)];

  // If the BB already has a phi node added for the i'th alloca then we're done!
  if (PN)
    return false;

  // Create a PhiNode using the dereferenced type... and add the phi-node to the
  // BasicBlock.
  PN = PHINode::Create(Allocas[AllocaNo]->getAllocatedType(), getNumPreds(BB),
                       Allocas[AllocaNo]->getName() + "." + Twine(Version++),
                       &BB->front());
  ++NumPHIInsert;
  PhiToAllocaMap[PN] = AllocaNo;
  return true;
}

/// Update the debug location of a phi. \p ApplyMergedLoc indicates whether to
/// create a merged location incorporating \p DL, or to set \p DL directly.
static void updateForIncomingValueLocation(PHINode *PN, DebugLoc DL,
                                           bool ApplyMergedLoc) {
  if (ApplyMergedLoc)
    PN->applyMergedLocation(PN->getDebugLoc(), DL);
  else
    PN->setDebugLoc(DL);
}

/// Recursively traverse the CFG of the function, renaming loads and
/// stores to the allocas which we are promoting.
///
/// IncomingVals indicates what value each Alloca contains on exit from the
/// predecessor block Pred.
void PromoteMem2Reg::RenamePass(BasicBlock *BB, BasicBlock *Pred,
                                RenamePassData::ValVector &IncomingVals,
                                RenamePassData::LocationVector &IncomingLocs,
                                std::vector<RenamePassData> &Worklist) {
NextIteration:
  // If we are inserting any phi nodes into this BB, they will already be in the
  // block.
  if (PHINode *APN = dyn_cast<PHINode>(BB->begin())) {
    // If we have PHI nodes to update, compute the number of edges from Pred to
    // BB.
    if (PhiToAllocaMap.count(APN)) {
      // We want to be able to distinguish between PHI nodes being inserted by
      // this invocation of mem2reg from those phi nodes that already existed in
      // the IR before mem2reg was run.  We determine that APN is being inserted
      // because it is missing incoming edges.  All other PHI nodes being
      // inserted by this pass of mem2reg will have the same number of incoming
      // operands so far.  Remember this count.
      unsigned NewPHINumOperands = APN->getNumOperands();

      unsigned NumEdges = std::count(succ_begin(Pred), succ_end(Pred), BB);
      assert(NumEdges && "Must be at least one edge from Pred to BB!");

      // Add entries for all the phis.
      BasicBlock::iterator PNI = BB->begin();
      do {
        unsigned AllocaNo = PhiToAllocaMap[APN];

        // Update the location of the phi node.
        updateForIncomingValueLocation(APN, IncomingLocs[AllocaNo],
                                       APN->getNumIncomingValues() > 0);

        // Add N incoming values to the PHI node.
        for (unsigned i = 0; i != NumEdges; ++i)
          APN->addIncoming(IncomingVals[AllocaNo], Pred);

        // The currently active variable for this block is now the PHI.
        IncomingVals[AllocaNo] = APN;
        for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[AllocaNo])
          ConvertDebugDeclareToDebugValue(DII, APN, DIB);

        // Get the next phi node.
        ++PNI;
        APN = dyn_cast<PHINode>(PNI);
        if (!APN)
          break;

        // Verify that it is missing entries.  If not, it is not being inserted
        // by this mem2reg invocation so we want to ignore it.
      } while (APN->getNumOperands() == NewPHINumOperands);
    }
  }

  // Don't revisit blocks.
  if (!Visited.insert(BB).second)
    return;

  for (BasicBlock::iterator II = BB->begin(); !II->isTerminator();) {
    Instruction *I = &*II++; // get the instruction, increment iterator

    if (LoadInst *LI = dyn_cast<LoadInst>(I)) {
      AllocaInst *Src = dyn_cast<AllocaInst>(LI->getPointerOperand());
      if (!Src)
        continue;

      DenseMap<AllocaInst *, unsigned>::iterator AI = AllocaLookup.find(Src);
      if (AI == AllocaLookup.end())
        continue;

      Value *V = IncomingVals[AI->second];

      // If the load was marked as nonnull we don't want to lose
      // that information when we erase this Load. So we preserve
      // it with an assume.
      if (AC && LI->getMetadata(LLVMContext::MD_nonnull) &&
          !isKnownNonZero(V, SQ.DL, 0, AC, LI, &DT))
        addAssumeNonNull(AC, LI);

      // Anything using the load now uses the current value.
      LI->replaceAllUsesWith(V);
      BB->getInstList().erase(LI);
    } else if (StoreInst *SI = dyn_cast<StoreInst>(I)) {
      // Delete this instruction and mark the name as the current holder of the
      // value
      AllocaInst *Dest = dyn_cast<AllocaInst>(SI->getPointerOperand());
      if (!Dest)
        continue;

      DenseMap<AllocaInst *, unsigned>::iterator ai = AllocaLookup.find(Dest);
      if (ai == AllocaLookup.end())
        continue;

      // what value were we writing?
      unsigned AllocaNo = ai->second;
      IncomingVals[AllocaNo] = SI->getOperand(0);

      // Record debuginfo for the store before removing it.
      IncomingLocs[AllocaNo] = SI->getDebugLoc();
      for (DbgVariableIntrinsic *DII : AllocaDbgDeclares[ai->second])
        ConvertDebugDeclareToDebugValue(DII, SI, DIB);
      BB->getInstList().erase(SI);
    }
  }

  // 'Recurse' to our successors.
  succ_iterator I = succ_begin(BB), E = succ_end(BB);
  if (I == E)
    return;

  // Keep track of the successors so we don't visit the same successor twice
  SmallPtrSet<BasicBlock *, 8> VisitedSuccs;

  // Handle the first successor without using the worklist.
  VisitedSuccs.insert(*I);
  Pred = BB;
  BB = *I;
  ++I;

  for (; I != E; ++I)
    if (VisitedSuccs.insert(*I).second)
      Worklist.emplace_back(*I, Pred, IncomingVals, IncomingLocs);

  goto NextIteration;
}

void llvm::PromoteMemToReg(ArrayRef<AllocaInst *> Allocas, DominatorTree &DT,
                           AssumptionCache *AC) {
  // If there is nothing to do, bail out...
  if (Allocas.empty())
    return;

  PromoteMem2Reg(Allocas, DT, AC).run();
}