llvm.org GIT mirror llvm / stable lib / Target / X86 / InstPrinter / X86IntelInstPrinter.cpp
stable

Tree @stable (Download .tar.gz)

X86IntelInstPrinter.cpp @stableraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
//===-- X86IntelInstPrinter.cpp - Intel assembly instruction printing -----===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file includes code for rendering MCInst instances as Intel-style
// assembly.
//
//===----------------------------------------------------------------------===//

#include "X86IntelInstPrinter.h"
#include "MCTargetDesc/X86BaseInfo.h"
#include "X86InstComments.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include <cassert>
#include <cstdint>

using namespace llvm;

#define DEBUG_TYPE "asm-printer"

// Include the auto-generated portion of the assembly writer.
#define PRINT_ALIAS_INSTR
#include "X86GenAsmWriter1.inc"

void X86IntelInstPrinter::printRegName(raw_ostream &OS, unsigned RegNo) const {
  OS << getRegisterName(RegNo);
}

void X86IntelInstPrinter::printInst(const MCInst *MI, raw_ostream &OS,
                                    StringRef Annot,
                                    const MCSubtargetInfo &STI) {
  printInstFlags(MI, OS);

  // In 16-bit mode, print data16 as data32.
  if (MI->getOpcode() == X86::DATA16_PREFIX &&
      STI.getFeatureBits()[X86::Mode16Bit]) {
    OS << "\tdata32";
  } else if (!printAliasInstr(MI, OS) &&
             !printVecCompareInstr(MI, OS))
    printInstruction(MI, OS);

  // Next always print the annotation.
  printAnnotation(OS, Annot);

  // If verbose assembly is enabled, we can print some informative comments.
  if (CommentStream)
    EmitAnyX86InstComments(MI, *CommentStream, MII);
}

bool X86IntelInstPrinter::printVecCompareInstr(const MCInst *MI, raw_ostream &OS) {
  if (MI->getNumOperands() == 0 ||
      !MI->getOperand(MI->getNumOperands() - 1).isImm())
    return false;

  int64_t Imm = MI->getOperand(MI->getNumOperands() - 1).getImm();

  const MCInstrDesc &Desc = MII.get(MI->getOpcode());

  // Custom print the vector compare instructions to get the immediate
  // translated into the mnemonic.
  switch (MI->getOpcode()) {
  case X86::CMPPDrmi:    case X86::CMPPDrri:
  case X86::CMPPSrmi:    case X86::CMPPSrri:
  case X86::CMPSDrm:     case X86::CMPSDrr:
  case X86::CMPSDrm_Int: case X86::CMPSDrr_Int:
  case X86::CMPSSrm:     case X86::CMPSSrr:
  case X86::CMPSSrm_Int: case X86::CMPSSrr_Int:
    if (Imm >= 0 && Imm <= 7) {
      OS << '\t';
      printCMPMnemonic(MI, /*IsVCMP*/false, OS);
      printOperand(MI, 0, OS);
      OS << ", ";
      // Skip operand 1 as its tied to the dest.

      if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem) {
        if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XS)
          printdwordmem(MI, 2, OS);
        else if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XD)
          printqwordmem(MI, 2, OS);
        else
          printxmmwordmem(MI, 2, OS);
      } else
        printOperand(MI, 2, OS);

      return true;
    }
    break;

  case X86::VCMPPDrmi:      case X86::VCMPPDrri:
  case X86::VCMPPDYrmi:     case X86::VCMPPDYrri:
  case X86::VCMPPDZ128rmi:  case X86::VCMPPDZ128rri:
  case X86::VCMPPDZ256rmi:  case X86::VCMPPDZ256rri:
  case X86::VCMPPDZrmi:     case X86::VCMPPDZrri:
  case X86::VCMPPSrmi:      case X86::VCMPPSrri:
  case X86::VCMPPSYrmi:     case X86::VCMPPSYrri:
  case X86::VCMPPSZ128rmi:  case X86::VCMPPSZ128rri:
  case X86::VCMPPSZ256rmi:  case X86::VCMPPSZ256rri:
  case X86::VCMPPSZrmi:     case X86::VCMPPSZrri:
  case X86::VCMPSDrm:       case X86::VCMPSDrr:
  case X86::VCMPSDZrm:      case X86::VCMPSDZrr:
  case X86::VCMPSDrm_Int:   case X86::VCMPSDrr_Int:
  case X86::VCMPSDZrm_Int:  case X86::VCMPSDZrr_Int:
  case X86::VCMPSSrm:       case X86::VCMPSSrr:
  case X86::VCMPSSZrm:      case X86::VCMPSSZrr:
  case X86::VCMPSSrm_Int:   case X86::VCMPSSrr_Int:
  case X86::VCMPSSZrm_Int:  case X86::VCMPSSZrr_Int:
  case X86::VCMPPDZ128rmik: case X86::VCMPPDZ128rrik:
  case X86::VCMPPDZ256rmik: case X86::VCMPPDZ256rrik:
  case X86::VCMPPDZrmik:    case X86::VCMPPDZrrik:
  case X86::VCMPPSZ128rmik: case X86::VCMPPSZ128rrik:
  case X86::VCMPPSZ256rmik: case X86::VCMPPSZ256rrik:
  case X86::VCMPPSZrmik:    case X86::VCMPPSZrrik:
  case X86::VCMPSDZrm_Intk: case X86::VCMPSDZrr_Intk:
  case X86::VCMPSSZrm_Intk: case X86::VCMPSSZrr_Intk:
  case X86::VCMPPDZ128rmbi: case X86::VCMPPDZ128rmbik:
  case X86::VCMPPDZ256rmbi: case X86::VCMPPDZ256rmbik:
  case X86::VCMPPDZrmbi:    case X86::VCMPPDZrmbik:
  case X86::VCMPPSZ128rmbi: case X86::VCMPPSZ128rmbik:
  case X86::VCMPPSZ256rmbi: case X86::VCMPPSZ256rmbik:
  case X86::VCMPPSZrmbi:    case X86::VCMPPSZrmbik:
  case X86::VCMPPDZrrib:    case X86::VCMPPDZrribk:
  case X86::VCMPPSZrrib:    case X86::VCMPPSZrribk:
  case X86::VCMPSDZrrb_Int: case X86::VCMPSDZrrb_Intk:
  case X86::VCMPSSZrrb_Int: case X86::VCMPSSZrrb_Intk:
    if (Imm >= 0 && Imm <= 31) {
      OS << '\t';
      printCMPMnemonic(MI, /*IsVCMP*/true, OS);

      unsigned CurOp = 0;
      printOperand(MI, CurOp++, OS);

      if (Desc.TSFlags & X86II::EVEX_K) {
        // Print mask operand.
        OS << " {";
        printOperand(MI, CurOp++, OS);
        OS << "}";
      }
      OS << ", ";
      printOperand(MI, CurOp++, OS);
      OS << ", ";

      if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem) {
        if (Desc.TSFlags & X86II::EVEX_B) {
          // Broadcast form.
          // Load size is based on W-bit.
          if (Desc.TSFlags & X86II::VEX_W)
            printqwordmem(MI, CurOp++, OS);
          else
            printdwordmem(MI, CurOp++, OS);

          // Print the number of elements broadcasted.
          unsigned NumElts;
          if (Desc.TSFlags & X86II::EVEX_L2)
            NumElts = (Desc.TSFlags & X86II::VEX_W) ? 8 : 16;
          else if (Desc.TSFlags & X86II::VEX_L)
            NumElts = (Desc.TSFlags & X86II::VEX_W) ? 4 : 8;
          else
            NumElts = (Desc.TSFlags & X86II::VEX_W) ? 2 : 4;
          OS << "{1to" << NumElts << "}";
        } else {
          if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XS)
            printdwordmem(MI, CurOp++, OS);
          else if ((Desc.TSFlags & X86II::OpPrefixMask) == X86II::XD)
            printqwordmem(MI, CurOp++, OS);
          else if (Desc.TSFlags & X86II::EVEX_L2)
            printzmmwordmem(MI, CurOp++, OS);
          else if (Desc.TSFlags & X86II::VEX_L)
            printymmwordmem(MI, CurOp++, OS);
          else
            printxmmwordmem(MI, CurOp++, OS);
        }
      } else {
        printOperand(MI, CurOp++, OS);
        if (Desc.TSFlags & X86II::EVEX_B)
          OS << ", {sae}";
      }

      return true;
    }
    break;

  case X86::VPCOMBmi:  case X86::VPCOMBri:
  case X86::VPCOMDmi:  case X86::VPCOMDri:
  case X86::VPCOMQmi:  case X86::VPCOMQri:
  case X86::VPCOMUBmi: case X86::VPCOMUBri:
  case X86::VPCOMUDmi: case X86::VPCOMUDri:
  case X86::VPCOMUQmi: case X86::VPCOMUQri:
  case X86::VPCOMUWmi: case X86::VPCOMUWri:
  case X86::VPCOMWmi:  case X86::VPCOMWri:
    if (Imm >= 0 && Imm <= 7) {
      OS << '\t';
      printVPCOMMnemonic(MI, OS);
      printOperand(MI, 0, OS);
      OS << ", ";
      printOperand(MI, 1, OS);
      OS << ", ";
      if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem)
        printxmmwordmem(MI, 2, OS);
      else
        printOperand(MI, 2, OS);
      return true;
    }
    break;

  case X86::VPCMPBZ128rmi:   case X86::VPCMPBZ128rri:
  case X86::VPCMPBZ256rmi:   case X86::VPCMPBZ256rri:
  case X86::VPCMPBZrmi:      case X86::VPCMPBZrri:
  case X86::VPCMPDZ128rmi:   case X86::VPCMPDZ128rri:
  case X86::VPCMPDZ256rmi:   case X86::VPCMPDZ256rri:
  case X86::VPCMPDZrmi:      case X86::VPCMPDZrri:
  case X86::VPCMPQZ128rmi:   case X86::VPCMPQZ128rri:
  case X86::VPCMPQZ256rmi:   case X86::VPCMPQZ256rri:
  case X86::VPCMPQZrmi:      case X86::VPCMPQZrri:
  case X86::VPCMPUBZ128rmi:  case X86::VPCMPUBZ128rri:
  case X86::VPCMPUBZ256rmi:  case X86::VPCMPUBZ256rri:
  case X86::VPCMPUBZrmi:     case X86::VPCMPUBZrri:
  case X86::VPCMPUDZ128rmi:  case X86::VPCMPUDZ128rri:
  case X86::VPCMPUDZ256rmi:  case X86::VPCMPUDZ256rri:
  case X86::VPCMPUDZrmi:     case X86::VPCMPUDZrri:
  case X86::VPCMPUQZ128rmi:  case X86::VPCMPUQZ128rri:
  case X86::VPCMPUQZ256rmi:  case X86::VPCMPUQZ256rri:
  case X86::VPCMPUQZrmi:     case X86::VPCMPUQZrri:
  case X86::VPCMPUWZ128rmi:  case X86::VPCMPUWZ128rri:
  case X86::VPCMPUWZ256rmi:  case X86::VPCMPUWZ256rri:
  case X86::VPCMPUWZrmi:     case X86::VPCMPUWZrri:
  case X86::VPCMPWZ128rmi:   case X86::VPCMPWZ128rri:
  case X86::VPCMPWZ256rmi:   case X86::VPCMPWZ256rri:
  case X86::VPCMPWZrmi:      case X86::VPCMPWZrri:
  case X86::VPCMPBZ128rmik:  case X86::VPCMPBZ128rrik:
  case X86::VPCMPBZ256rmik:  case X86::VPCMPBZ256rrik:
  case X86::VPCMPBZrmik:     case X86::VPCMPBZrrik:
  case X86::VPCMPDZ128rmik:  case X86::VPCMPDZ128rrik:
  case X86::VPCMPDZ256rmik:  case X86::VPCMPDZ256rrik:
  case X86::VPCMPDZrmik:     case X86::VPCMPDZrrik:
  case X86::VPCMPQZ128rmik:  case X86::VPCMPQZ128rrik:
  case X86::VPCMPQZ256rmik:  case X86::VPCMPQZ256rrik:
  case X86::VPCMPQZrmik:     case X86::VPCMPQZrrik:
  case X86::VPCMPUBZ128rmik: case X86::VPCMPUBZ128rrik:
  case X86::VPCMPUBZ256rmik: case X86::VPCMPUBZ256rrik:
  case X86::VPCMPUBZrmik:    case X86::VPCMPUBZrrik:
  case X86::VPCMPUDZ128rmik: case X86::VPCMPUDZ128rrik:
  case X86::VPCMPUDZ256rmik: case X86::VPCMPUDZ256rrik:
  case X86::VPCMPUDZrmik:    case X86::VPCMPUDZrrik:
  case X86::VPCMPUQZ128rmik: case X86::VPCMPUQZ128rrik:
  case X86::VPCMPUQZ256rmik: case X86::VPCMPUQZ256rrik:
  case X86::VPCMPUQZrmik:    case X86::VPCMPUQZrrik:
  case X86::VPCMPUWZ128rmik: case X86::VPCMPUWZ128rrik:
  case X86::VPCMPUWZ256rmik: case X86::VPCMPUWZ256rrik:
  case X86::VPCMPUWZrmik:    case X86::VPCMPUWZrrik:
  case X86::VPCMPWZ128rmik:  case X86::VPCMPWZ128rrik:
  case X86::VPCMPWZ256rmik:  case X86::VPCMPWZ256rrik:
  case X86::VPCMPWZrmik:     case X86::VPCMPWZrrik:
  case X86::VPCMPDZ128rmib:  case X86::VPCMPDZ128rmibk:
  case X86::VPCMPDZ256rmib:  case X86::VPCMPDZ256rmibk:
  case X86::VPCMPDZrmib:     case X86::VPCMPDZrmibk:
  case X86::VPCMPQZ128rmib:  case X86::VPCMPQZ128rmibk:
  case X86::VPCMPQZ256rmib:  case X86::VPCMPQZ256rmibk:
  case X86::VPCMPQZrmib:     case X86::VPCMPQZrmibk:
  case X86::VPCMPUDZ128rmib: case X86::VPCMPUDZ128rmibk:
  case X86::VPCMPUDZ256rmib: case X86::VPCMPUDZ256rmibk:
  case X86::VPCMPUDZrmib:    case X86::VPCMPUDZrmibk:
  case X86::VPCMPUQZ128rmib: case X86::VPCMPUQZ128rmibk:
  case X86::VPCMPUQZ256rmib: case X86::VPCMPUQZ256rmibk:
  case X86::VPCMPUQZrmib:    case X86::VPCMPUQZrmibk:
    if ((Imm >= 0 && Imm <= 2) || (Imm >= 4 && Imm <= 6)) {
      OS << '\t';
      printVPCMPMnemonic(MI, OS);

      unsigned CurOp = 0;
      printOperand(MI, CurOp++, OS);

      if (Desc.TSFlags & X86II::EVEX_K) {
        // Print mask operand.
        OS << " {";
        printOperand(MI, CurOp++, OS);
        OS << "}";
      }
      OS << ", ";
      printOperand(MI, CurOp++, OS);
      OS << ", ";

      if ((Desc.TSFlags & X86II::FormMask) == X86II::MRMSrcMem) {
        if (Desc.TSFlags & X86II::EVEX_B) {
          // Broadcast form.
          // Load size is based on W-bit as only D and Q are supported.
          if (Desc.TSFlags & X86II::VEX_W)
            printqwordmem(MI, CurOp++, OS);
          else
            printdwordmem(MI, CurOp++, OS);

          // Print the number of elements broadcasted.
          unsigned NumElts;
          if (Desc.TSFlags & X86II::EVEX_L2)
            NumElts = (Desc.TSFlags & X86II::VEX_W) ? 8 : 16;
          else if (Desc.TSFlags & X86II::VEX_L)
            NumElts = (Desc.TSFlags & X86II::VEX_W) ? 4 : 8;
          else
            NumElts = (Desc.TSFlags & X86II::VEX_W) ? 2 : 4;
          OS << "{1to" << NumElts << "}";
        } else {
          if (Desc.TSFlags & X86II::EVEX_L2)
            printzmmwordmem(MI, CurOp++, OS);
          else if (Desc.TSFlags & X86II::VEX_L)
            printymmwordmem(MI, CurOp++, OS);
          else
            printxmmwordmem(MI, CurOp++, OS);
        }
      } else {
        printOperand(MI, CurOp++, OS);
      }

      return true;
    }
    break;
  }

  return false;
}

void X86IntelInstPrinter::printOperand(const MCInst *MI, unsigned OpNo,
                                       raw_ostream &O) {
  const MCOperand &Op = MI->getOperand(OpNo);
  if (Op.isReg()) {
    printRegName(O, Op.getReg());
  } else if (Op.isImm()) {
    O << formatImm((int64_t)Op.getImm());
  } else {
    assert(Op.isExpr() && "unknown operand kind in printOperand");
    O << "offset ";
    Op.getExpr()->print(O, &MAI);
  }
}

void X86IntelInstPrinter::printMemReference(const MCInst *MI, unsigned Op,
                                            raw_ostream &O) {
  const MCOperand &BaseReg  = MI->getOperand(Op+X86::AddrBaseReg);
  unsigned ScaleVal         = MI->getOperand(Op+X86::AddrScaleAmt).getImm();
  const MCOperand &IndexReg = MI->getOperand(Op+X86::AddrIndexReg);
  const MCOperand &DispSpec = MI->getOperand(Op+X86::AddrDisp);

  // If this has a segment register, print it.
  printOptionalSegReg(MI, Op + X86::AddrSegmentReg, O);

  O << '[';

  bool NeedPlus = false;
  if (BaseReg.getReg()) {
    printOperand(MI, Op+X86::AddrBaseReg, O);
    NeedPlus = true;
  }

  if (IndexReg.getReg()) {
    if (NeedPlus) O << " + ";
    if (ScaleVal != 1)
      O << ScaleVal << '*';
    printOperand(MI, Op+X86::AddrIndexReg, O);
    NeedPlus = true;
  }

  if (!DispSpec.isImm()) {
    if (NeedPlus) O << " + ";
    assert(DispSpec.isExpr() && "non-immediate displacement for LEA?");
    DispSpec.getExpr()->print(O, &MAI);
  } else {
    int64_t DispVal = DispSpec.getImm();
    if (DispVal || (!IndexReg.getReg() && !BaseReg.getReg())) {
      if (NeedPlus) {
        if (DispVal > 0)
          O << " + ";
        else {
          O << " - ";
          DispVal = -DispVal;
        }
      }
      O << formatImm(DispVal);
    }
  }

  O << ']';
}

void X86IntelInstPrinter::printSrcIdx(const MCInst *MI, unsigned Op,
                                      raw_ostream &O) {
  // If this has a segment register, print it.
  printOptionalSegReg(MI, Op + 1, O);
  O << '[';
  printOperand(MI, Op, O);
  O << ']';
}

void X86IntelInstPrinter::printDstIdx(const MCInst *MI, unsigned Op,
                                      raw_ostream &O) {
  // DI accesses are always ES-based.
  O << "es:[";
  printOperand(MI, Op, O);
  O << ']';
}

void X86IntelInstPrinter::printMemOffset(const MCInst *MI, unsigned Op,
                                         raw_ostream &O) {
  const MCOperand &DispSpec = MI->getOperand(Op);

  // If this has a segment register, print it.
  printOptionalSegReg(MI, Op + 1, O);

  O << '[';

  if (DispSpec.isImm()) {
    O << formatImm(DispSpec.getImm());
  } else {
    assert(DispSpec.isExpr() && "non-immediate displacement?");
    DispSpec.getExpr()->print(O, &MAI);
  }

  O << ']';
}

void X86IntelInstPrinter::printU8Imm(const MCInst *MI, unsigned Op,
                                     raw_ostream &O) {
  if (MI->getOperand(Op).isExpr())
    return MI->getOperand(Op).getExpr()->print(O, &MAI);

  O << formatImm(MI->getOperand(Op).getImm() & 0xff);
}

void X86IntelInstPrinter::printSTiRegOperand(const MCInst *MI, unsigned OpNo,
                                            raw_ostream &OS) {
  const MCOperand &Op = MI->getOperand(OpNo);
  unsigned Reg = Op.getReg();
  // Override the default printing to print st(0) instead st.
  if (Reg == X86::ST0)
    OS << "st(0)";
  else
    printRegName(OS, Reg);
}