llvm.org GIT mirror llvm / stable lib / Target / AVR / AVRInstrInfo.cpp
stable

Tree @stable (Download .tar.gz)

AVRInstrInfo.cpp @stableraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
//===-- AVRInstrInfo.cpp - AVR Instruction Information --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains the AVR implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//

#include "AVRInstrInfo.h"

#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/MC/MCContext.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/TargetRegistry.h"

#include "AVR.h"
#include "AVRMachineFunctionInfo.h"
#include "AVRRegisterInfo.h"
#include "AVRTargetMachine.h"
#include "MCTargetDesc/AVRMCTargetDesc.h"

#define GET_INSTRINFO_CTOR_DTOR
#include "AVRGenInstrInfo.inc"

namespace llvm {

AVRInstrInfo::AVRInstrInfo()
    : AVRGenInstrInfo(AVR::ADJCALLSTACKDOWN, AVR::ADJCALLSTACKUP), RI() {}

void AVRInstrInfo::copyPhysReg(MachineBasicBlock &MBB,
                               MachineBasicBlock::iterator MI,
                               const DebugLoc &DL, unsigned DestReg,
                               unsigned SrcReg, bool KillSrc) const {
  const AVRSubtarget &STI = MBB.getParent()->getSubtarget<AVRSubtarget>();
  const AVRRegisterInfo &TRI = *STI.getRegisterInfo();
  unsigned Opc;

  // Not all AVR devices support the 16-bit `MOVW` instruction.
  if (AVR::DREGSRegClass.contains(DestReg, SrcReg)) {
    if (STI.hasMOVW()) {
      BuildMI(MBB, MI, DL, get(AVR::MOVWRdRr), DestReg)
          .addReg(SrcReg, getKillRegState(KillSrc));
    } else {
      unsigned DestLo, DestHi, SrcLo, SrcHi;

      TRI.splitReg(DestReg, DestLo, DestHi);
      TRI.splitReg(SrcReg,  SrcLo,  SrcHi);

      // Copy each individual register with the `MOV` instruction.
      BuildMI(MBB, MI, DL, get(AVR::MOVRdRr), DestLo)
        .addReg(SrcLo, getKillRegState(KillSrc));
      BuildMI(MBB, MI, DL, get(AVR::MOVRdRr), DestHi)
        .addReg(SrcHi, getKillRegState(KillSrc));
    }
  } else {
    if (AVR::GPR8RegClass.contains(DestReg, SrcReg)) {
      Opc = AVR::MOVRdRr;
    } else if (SrcReg == AVR::SP && AVR::DREGSRegClass.contains(DestReg)) {
      Opc = AVR::SPREAD;
    } else if (DestReg == AVR::SP && AVR::DREGSRegClass.contains(SrcReg)) {
      Opc = AVR::SPWRITE;
    } else {
      llvm_unreachable("Impossible reg-to-reg copy");
    }

    BuildMI(MBB, MI, DL, get(Opc), DestReg)
        .addReg(SrcReg, getKillRegState(KillSrc));
  }
}

unsigned AVRInstrInfo::isLoadFromStackSlot(const MachineInstr &MI,
                                           int &FrameIndex) const {
  switch (MI.getOpcode()) {
  case AVR::LDDRdPtrQ:
  case AVR::LDDWRdYQ: { //:FIXME: remove this once PR13375 gets fixed
    if (MI.getOperand(1).isFI() && MI.getOperand(2).isImm() &&
        MI.getOperand(2).getImm() == 0) {
      FrameIndex = MI.getOperand(1).getIndex();
      return MI.getOperand(0).getReg();
    }
    break;
  }
  default:
    break;
  }

  return 0;
}

unsigned AVRInstrInfo::isStoreToStackSlot(const MachineInstr &MI,
                                          int &FrameIndex) const {
  switch (MI.getOpcode()) {
  case AVR::STDPtrQRr:
  case AVR::STDWPtrQRr: {
    if (MI.getOperand(0).isFI() && MI.getOperand(1).isImm() &&
        MI.getOperand(1).getImm() == 0) {
      FrameIndex = MI.getOperand(0).getIndex();
      return MI.getOperand(2).getReg();
    }
    break;
  }
  default:
    break;
  }

  return 0;
}

void AVRInstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
                                       MachineBasicBlock::iterator MI,
                                       unsigned SrcReg, bool isKill,
                                       int FrameIndex,
                                       const TargetRegisterClass *RC,
                                       const TargetRegisterInfo *TRI) const {
  MachineFunction &MF = *MBB.getParent();
  AVRMachineFunctionInfo *AFI = MF.getInfo<AVRMachineFunctionInfo>();

  AFI->setHasSpills(true);

  DebugLoc DL;
  if (MI != MBB.end()) {
    DL = MI->getDebugLoc();
  }

  const MachineFrameInfo &MFI = MF.getFrameInfo();

  MachineMemOperand *MMO = MF.getMachineMemOperand(
      MachinePointerInfo::getFixedStack(MF, FrameIndex),
      MachineMemOperand::MOStore, MFI.getObjectSize(FrameIndex),
      MFI.getObjectAlignment(FrameIndex));

  unsigned Opcode = 0;
  if (TRI->isTypeLegalForClass(*RC, MVT::i8)) {
    Opcode = AVR::STDPtrQRr;
  } else if (TRI->isTypeLegalForClass(*RC, MVT::i16)) {
    Opcode = AVR::STDWPtrQRr;
  } else {
    llvm_unreachable("Cannot store this register into a stack slot!");
  }

  BuildMI(MBB, MI, DL, get(Opcode))
      .addFrameIndex(FrameIndex)
      .addImm(0)
      .addReg(SrcReg, getKillRegState(isKill))
      .addMemOperand(MMO);
}

void AVRInstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
                                        MachineBasicBlock::iterator MI,
                                        unsigned DestReg, int FrameIndex,
                                        const TargetRegisterClass *RC,
                                        const TargetRegisterInfo *TRI) const {
  DebugLoc DL;
  if (MI != MBB.end()) {
    DL = MI->getDebugLoc();
  }

  MachineFunction &MF = *MBB.getParent();
  const MachineFrameInfo &MFI = MF.getFrameInfo();

  MachineMemOperand *MMO = MF.getMachineMemOperand(
      MachinePointerInfo::getFixedStack(MF, FrameIndex),
      MachineMemOperand::MOLoad, MFI.getObjectSize(FrameIndex),
      MFI.getObjectAlignment(FrameIndex));

  unsigned Opcode = 0;
  if (TRI->isTypeLegalForClass(*RC, MVT::i8)) {
    Opcode = AVR::LDDRdPtrQ;
  } else if (TRI->isTypeLegalForClass(*RC, MVT::i16)) {
    // Opcode = AVR::LDDWRdPtrQ;
    //:FIXME: remove this once PR13375 gets fixed
    Opcode = AVR::LDDWRdYQ;
  } else {
    llvm_unreachable("Cannot load this register from a stack slot!");
  }

  BuildMI(MBB, MI, DL, get(Opcode), DestReg)
      .addFrameIndex(FrameIndex)
      .addImm(0)
      .addMemOperand(MMO);
}

const MCInstrDesc &AVRInstrInfo::getBrCond(AVRCC::CondCodes CC) const {
  switch (CC) {
  default:
    llvm_unreachable("Unknown condition code!");
  case AVRCC::COND_EQ:
    return get(AVR::BREQk);
  case AVRCC::COND_NE:
    return get(AVR::BRNEk);
  case AVRCC::COND_GE:
    return get(AVR::BRGEk);
  case AVRCC::COND_LT:
    return get(AVR::BRLTk);
  case AVRCC::COND_SH:
    return get(AVR::BRSHk);
  case AVRCC::COND_LO:
    return get(AVR::BRLOk);
  case AVRCC::COND_MI:
    return get(AVR::BRMIk);
  case AVRCC::COND_PL:
    return get(AVR::BRPLk);
  }
}

AVRCC::CondCodes AVRInstrInfo::getCondFromBranchOpc(unsigned Opc) const {
  switch (Opc) {
  default:
    return AVRCC::COND_INVALID;
  case AVR::BREQk:
    return AVRCC::COND_EQ;
  case AVR::BRNEk:
    return AVRCC::COND_NE;
  case AVR::BRSHk:
    return AVRCC::COND_SH;
  case AVR::BRLOk:
    return AVRCC::COND_LO;
  case AVR::BRMIk:
    return AVRCC::COND_MI;
  case AVR::BRPLk:
    return AVRCC::COND_PL;
  case AVR::BRGEk:
    return AVRCC::COND_GE;
  case AVR::BRLTk:
    return AVRCC::COND_LT;
  }
}

AVRCC::CondCodes AVRInstrInfo::getOppositeCondition(AVRCC::CondCodes CC) const {
  switch (CC) {
  default:
    llvm_unreachable("Invalid condition!");
  case AVRCC::COND_EQ:
    return AVRCC::COND_NE;
  case AVRCC::COND_NE:
    return AVRCC::COND_EQ;
  case AVRCC::COND_SH:
    return AVRCC::COND_LO;
  case AVRCC::COND_LO:
    return AVRCC::COND_SH;
  case AVRCC::COND_GE:
    return AVRCC::COND_LT;
  case AVRCC::COND_LT:
    return AVRCC::COND_GE;
  case AVRCC::COND_MI:
    return AVRCC::COND_PL;
  case AVRCC::COND_PL:
    return AVRCC::COND_MI;
  }
}

bool AVRInstrInfo::analyzeBranch(MachineBasicBlock &MBB,
                                 MachineBasicBlock *&TBB,
                                 MachineBasicBlock *&FBB,
                                 SmallVectorImpl<MachineOperand> &Cond,
                                 bool AllowModify) const {
  // Start from the bottom of the block and work up, examining the
  // terminator instructions.
  MachineBasicBlock::iterator I = MBB.end();
  MachineBasicBlock::iterator UnCondBrIter = MBB.end();

  while (I != MBB.begin()) {
    --I;
    if (I->isDebugInstr()) {
      continue;
    }

    // Working from the bottom, when we see a non-terminator
    // instruction, we're done.
    if (!isUnpredicatedTerminator(*I)) {
      break;
    }

    // A terminator that isn't a branch can't easily be handled
    // by this analysis.
    if (!I->getDesc().isBranch()) {
      return true;
    }

    // Handle unconditional branches.
    //:TODO: add here jmp
    if (I->getOpcode() == AVR::RJMPk) {
      UnCondBrIter = I;

      if (!AllowModify) {
        TBB = I->getOperand(0).getMBB();
        continue;
      }

      // If the block has any instructions after a JMP, delete them.
      while (std::next(I) != MBB.end()) {
        std::next(I)->eraseFromParent();
      }

      Cond.clear();
      FBB = 0;

      // Delete the JMP if it's equivalent to a fall-through.
      if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
        TBB = 0;
        I->eraseFromParent();
        I = MBB.end();
        UnCondBrIter = MBB.end();
        continue;
      }

      // TBB is used to indicate the unconditinal destination.
      TBB = I->getOperand(0).getMBB();
      continue;
    }

    // Handle conditional branches.
    AVRCC::CondCodes BranchCode = getCondFromBranchOpc(I->getOpcode());
    if (BranchCode == AVRCC::COND_INVALID) {
      return true; // Can't handle indirect branch.
    }

    // Working from the bottom, handle the first conditional branch.
    if (Cond.empty()) {
      MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
      if (AllowModify && UnCondBrIter != MBB.end() &&
          MBB.isLayoutSuccessor(TargetBB)) {
        // If we can modify the code and it ends in something like:
        //
        //     jCC L1
        //     jmp L2
        //   L1:
        //     ...
        //   L2:
        //
        // Then we can change this to:
        //
        //     jnCC L2
        //   L1:
        //     ...
        //   L2:
        //
        // Which is a bit more efficient.
        // We conditionally jump to the fall-through block.
        BranchCode = getOppositeCondition(BranchCode);
        unsigned JNCC = getBrCond(BranchCode).getOpcode();
        MachineBasicBlock::iterator OldInst = I;

        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
            .addMBB(UnCondBrIter->getOperand(0).getMBB());
        BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(AVR::RJMPk))
            .addMBB(TargetBB);

        OldInst->eraseFromParent();
        UnCondBrIter->eraseFromParent();

        // Restart the analysis.
        UnCondBrIter = MBB.end();
        I = MBB.end();
        continue;
      }

      FBB = TBB;
      TBB = I->getOperand(0).getMBB();
      Cond.push_back(MachineOperand::CreateImm(BranchCode));
      continue;
    }

    // Handle subsequent conditional branches. Only handle the case where all
    // conditional branches branch to the same destination.
    assert(Cond.size() == 1);
    assert(TBB);

    // Only handle the case where all conditional branches branch to
    // the same destination.
    if (TBB != I->getOperand(0).getMBB()) {
      return true;
    }

    AVRCC::CondCodes OldBranchCode = (AVRCC::CondCodes)Cond[0].getImm();
    // If the conditions are the same, we can leave them alone.
    if (OldBranchCode == BranchCode) {
      continue;
    }

    return true;
  }

  return false;
}

unsigned AVRInstrInfo::insertBranch(MachineBasicBlock &MBB,
                                    MachineBasicBlock *TBB,
                                    MachineBasicBlock *FBB,
                                    ArrayRef<MachineOperand> Cond,
                                    const DebugLoc &DL,
                                    int *BytesAdded) const {
  if (BytesAdded) *BytesAdded = 0;

  // Shouldn't be a fall through.
  assert(TBB && "insertBranch must not be told to insert a fallthrough");
  assert((Cond.size() == 1 || Cond.size() == 0) &&
         "AVR branch conditions have one component!");

  if (Cond.empty()) {
    assert(!FBB && "Unconditional branch with multiple successors!");
    auto &MI = *BuildMI(&MBB, DL, get(AVR::RJMPk)).addMBB(TBB);
    if (BytesAdded)
      *BytesAdded += getInstSizeInBytes(MI);
    return 1;
  }

  // Conditional branch.
  unsigned Count = 0;
  AVRCC::CondCodes CC = (AVRCC::CondCodes)Cond[0].getImm();
  auto &CondMI = *BuildMI(&MBB, DL, getBrCond(CC)).addMBB(TBB);

  if (BytesAdded) *BytesAdded += getInstSizeInBytes(CondMI);
  ++Count;

  if (FBB) {
    // Two-way Conditional branch. Insert the second branch.
    auto &MI = *BuildMI(&MBB, DL, get(AVR::RJMPk)).addMBB(FBB);
    if (BytesAdded) *BytesAdded += getInstSizeInBytes(MI);
    ++Count;
  }

  return Count;
}

unsigned AVRInstrInfo::removeBranch(MachineBasicBlock &MBB,
                                    int *BytesRemoved) const {
  if (BytesRemoved) *BytesRemoved = 0;

  MachineBasicBlock::iterator I = MBB.end();
  unsigned Count = 0;

  while (I != MBB.begin()) {
    --I;
    if (I->isDebugInstr()) {
      continue;
    }
    //:TODO: add here the missing jmp instructions once they are implemented
    // like jmp, {e}ijmp, and other cond branches, ...
    if (I->getOpcode() != AVR::RJMPk &&
        getCondFromBranchOpc(I->getOpcode()) == AVRCC::COND_INVALID) {
      break;
    }

    // Remove the branch.
    if (BytesRemoved) *BytesRemoved += getInstSizeInBytes(*I);
    I->eraseFromParent();
    I = MBB.end();
    ++Count;
  }

  return Count;
}

bool AVRInstrInfo::reverseBranchCondition(
    SmallVectorImpl<MachineOperand> &Cond) const {
  assert(Cond.size() == 1 && "Invalid AVR branch condition!");

  AVRCC::CondCodes CC = static_cast<AVRCC::CondCodes>(Cond[0].getImm());
  Cond[0].setImm(getOppositeCondition(CC));

  return false;
}

unsigned AVRInstrInfo::getInstSizeInBytes(const MachineInstr &MI) const {
  unsigned Opcode = MI.getOpcode();

  switch (Opcode) {
  // A regular instruction
  default: {
    const MCInstrDesc &Desc = get(Opcode);
    return Desc.getSize();
  }
  case TargetOpcode::EH_LABEL:
  case TargetOpcode::IMPLICIT_DEF:
  case TargetOpcode::KILL:
  case TargetOpcode::DBG_VALUE:
    return 0;
  case TargetOpcode::INLINEASM:
  case TargetOpcode::INLINEASM_BR: {
    const MachineFunction &MF = *MI.getParent()->getParent();
    const AVRTargetMachine &TM = static_cast<const AVRTargetMachine&>(MF.getTarget());
    const AVRSubtarget &STI = MF.getSubtarget<AVRSubtarget>();
    const TargetInstrInfo &TII = *STI.getInstrInfo();

    return TII.getInlineAsmLength(MI.getOperand(0).getSymbolName(),
                                  *TM.getMCAsmInfo());
  }
  }
}

MachineBasicBlock *
AVRInstrInfo::getBranchDestBlock(const MachineInstr &MI) const {
  switch (MI.getOpcode()) {
  default:
    llvm_unreachable("unexpected opcode!");
  case AVR::JMPk:
  case AVR::CALLk:
  case AVR::RCALLk:
  case AVR::RJMPk:
  case AVR::BREQk:
  case AVR::BRNEk:
  case AVR::BRSHk:
  case AVR::BRLOk:
  case AVR::BRMIk:
  case AVR::BRPLk:
  case AVR::BRGEk:
  case AVR::BRLTk:
    return MI.getOperand(0).getMBB();
  case AVR::BRBSsk:
  case AVR::BRBCsk:
    return MI.getOperand(1).getMBB();
  case AVR::SBRCRrB:
  case AVR::SBRSRrB:
  case AVR::SBICAb:
  case AVR::SBISAb:
    llvm_unreachable("unimplemented branch instructions");
  }
}

bool AVRInstrInfo::isBranchOffsetInRange(unsigned BranchOp,
                                         int64_t BrOffset) const {

  switch (BranchOp) {
  default:
    llvm_unreachable("unexpected opcode!");
  case AVR::JMPk:
  case AVR::CALLk:
    return true;
  case AVR::RCALLk:
  case AVR::RJMPk:
    return isIntN(13, BrOffset);
  case AVR::BRBSsk:
  case AVR::BRBCsk:
  case AVR::BREQk:
  case AVR::BRNEk:
  case AVR::BRSHk:
  case AVR::BRLOk:
  case AVR::BRMIk:
  case AVR::BRPLk:
  case AVR::BRGEk:
  case AVR::BRLTk:
    return isIntN(7, BrOffset);
  }
}

unsigned AVRInstrInfo::insertIndirectBranch(MachineBasicBlock &MBB,
                                            MachineBasicBlock &NewDestBB,
                                            const DebugLoc &DL,
                                            int64_t BrOffset,
                                            RegScavenger *RS) const {
    // This method inserts a *direct* branch (JMP), despite its name.
    // LLVM calls this method to fixup unconditional branches; it never calls
    // insertBranch or some hypothetical "insertDirectBranch".
    // See lib/CodeGen/RegisterRelaxation.cpp for details.
    // We end up here when a jump is too long for a RJMP instruction.
    auto &MI = *BuildMI(&MBB, DL, get(AVR::JMPk)).addMBB(&NewDestBB);

    return getInstSizeInBytes(MI);
}

} // end of namespace llvm