llvm.org GIT mirror llvm / stable lib / Target / AVR / AVRISelDAGToDAG.cpp
stable

Tree @stable (Download .tar.gz)

AVRISelDAGToDAG.cpp @stableraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
//===-- AVRISelDAGToDAG.cpp - A dag to dag inst selector for AVR ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines an instruction selector for the AVR target.
//
//===----------------------------------------------------------------------===//

#include "AVR.h"
#include "AVRTargetMachine.h"
#include "MCTargetDesc/AVRMCTargetDesc.h"

#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

#define DEBUG_TYPE "avr-isel"

namespace llvm {

/// Lowers LLVM IR (in DAG form) to AVR MC instructions (in DAG form).
class AVRDAGToDAGISel : public SelectionDAGISel {
public:
  AVRDAGToDAGISel(AVRTargetMachine &TM, CodeGenOpt::Level OptLevel)
      : SelectionDAGISel(TM, OptLevel), Subtarget(nullptr) {}

  StringRef getPassName() const override {
    return "AVR DAG->DAG Instruction Selection";
  }

  bool runOnMachineFunction(MachineFunction &MF) override;

  bool SelectAddr(SDNode *Op, SDValue N, SDValue &Base, SDValue &Disp);

  bool selectIndexedLoad(SDNode *N);
  unsigned selectIndexedProgMemLoad(const LoadSDNode *LD, MVT VT);

  bool SelectInlineAsmMemoryOperand(const SDValue &Op, unsigned ConstraintCode,
                                    std::vector<SDValue> &OutOps) override;

// Include the pieces autogenerated from the target description.
#include "AVRGenDAGISel.inc"

private:
  void Select(SDNode *N) override;
  bool trySelect(SDNode *N);

  template <unsigned NodeType> bool select(SDNode *N);
  bool selectMultiplication(SDNode *N);

  const AVRSubtarget *Subtarget;
};

bool AVRDAGToDAGISel::runOnMachineFunction(MachineFunction &MF) {
  Subtarget = &MF.getSubtarget<AVRSubtarget>();
  return SelectionDAGISel::runOnMachineFunction(MF);
}

bool AVRDAGToDAGISel::SelectAddr(SDNode *Op, SDValue N, SDValue &Base,
                                 SDValue &Disp) {
  SDLoc dl(Op);
  auto DL = CurDAG->getDataLayout();
  MVT PtrVT = getTargetLowering()->getPointerTy(DL);

  // if the address is a frame index get the TargetFrameIndex.
  if (const FrameIndexSDNode *FIN = dyn_cast<FrameIndexSDNode>(N)) {
    Base = CurDAG->getTargetFrameIndex(FIN->getIndex(), PtrVT);
    Disp = CurDAG->getTargetConstant(0, dl, MVT::i8);

    return true;
  }

  // Match simple Reg + uimm6 operands.
  if (N.getOpcode() != ISD::ADD && N.getOpcode() != ISD::SUB &&
      !CurDAG->isBaseWithConstantOffset(N)) {
    return false;
  }

  if (const ConstantSDNode *RHS = dyn_cast<ConstantSDNode>(N.getOperand(1))) {
    int RHSC = (int)RHS->getZExtValue();

    // Convert negative offsets into positives ones.
    if (N.getOpcode() == ISD::SUB) {
      RHSC = -RHSC;
    }

    // <#Frame index + const>
    // Allow folding offsets bigger than 63 so the frame pointer can be used
    // directly instead of copying it around by adjusting and restoring it for
    // each access.
    if (N.getOperand(0).getOpcode() == ISD::FrameIndex) {
      int FI = cast<FrameIndexSDNode>(N.getOperand(0))->getIndex();

      Base = CurDAG->getTargetFrameIndex(FI, PtrVT);
      Disp = CurDAG->getTargetConstant(RHSC, dl, MVT::i16);

      return true;
    }

    // The value type of the memory instruction determines what is the maximum
    // offset allowed.
    MVT VT = cast<MemSDNode>(Op)->getMemoryVT().getSimpleVT();

    // We only accept offsets that fit in 6 bits (unsigned).
    if (isUInt<6>(RHSC) && (VT == MVT::i8 || VT == MVT::i16)) {
      Base = N.getOperand(0);
      Disp = CurDAG->getTargetConstant(RHSC, dl, MVT::i8);

      return true;
    }
  }

  return false;
}

bool AVRDAGToDAGISel::selectIndexedLoad(SDNode *N) {
  const LoadSDNode *LD = cast<LoadSDNode>(N);
  ISD::MemIndexedMode AM = LD->getAddressingMode();
  MVT VT = LD->getMemoryVT().getSimpleVT();
  auto PtrVT = getTargetLowering()->getPointerTy(CurDAG->getDataLayout());

  // We only care if this load uses a POSTINC or PREDEC mode.
  if ((LD->getExtensionType() != ISD::NON_EXTLOAD) ||
      (AM != ISD::POST_INC && AM != ISD::PRE_DEC)) {

    return false;
  }

  unsigned Opcode = 0;
  bool isPre = (AM == ISD::PRE_DEC);
  int Offs = cast<ConstantSDNode>(LD->getOffset())->getSExtValue();

  switch (VT.SimpleTy) {
  case MVT::i8: {
    if ((!isPre && Offs != 1) || (isPre && Offs != -1)) {
      return false;
    }

    Opcode = (isPre) ? AVR::LDRdPtrPd : AVR::LDRdPtrPi;
    break;
  }
  case MVT::i16: {
    if ((!isPre && Offs != 2) || (isPre && Offs != -2)) {
      return false;
    }

    Opcode = (isPre) ? AVR::LDWRdPtrPd : AVR::LDWRdPtrPi;
    break;
  }
  default:
    return false;
  }

  SDNode *ResNode = CurDAG->getMachineNode(Opcode, SDLoc(N), VT,
                                           PtrVT, MVT::Other,
                                           LD->getBasePtr(), LD->getChain());
  ReplaceUses(N, ResNode);
  CurDAG->RemoveDeadNode(N);

  return true;
}

unsigned AVRDAGToDAGISel::selectIndexedProgMemLoad(const LoadSDNode *LD,
                                                   MVT VT) {
  ISD::MemIndexedMode AM = LD->getAddressingMode();

  // Progmem indexed loads only work in POSTINC mode.
  if (LD->getExtensionType() != ISD::NON_EXTLOAD || AM != ISD::POST_INC) {
    return 0;
  }

  unsigned Opcode = 0;
  int Offs = cast<ConstantSDNode>(LD->getOffset())->getSExtValue();

  switch (VT.SimpleTy) {
  case MVT::i8: {
    if (Offs != 1) {
      return 0;
    }
    Opcode = AVR::LPMRdZPi;
    break;
  }
  case MVT::i16: {
    if (Offs != 2) {
      return 0;
    }
    Opcode = AVR::LPMWRdZPi;
    break;
  }
  default:
    return 0;
  }

  return Opcode;
}

bool AVRDAGToDAGISel::SelectInlineAsmMemoryOperand(const SDValue &Op,
                                                   unsigned ConstraintCode,
                                                   std::vector<SDValue> &OutOps) {
  assert((ConstraintCode == InlineAsm::Constraint_m ||
         ConstraintCode == InlineAsm::Constraint_Q) &&
      "Unexpected asm memory constraint");

  MachineRegisterInfo &RI = MF->getRegInfo();
  const AVRSubtarget &STI = MF->getSubtarget<AVRSubtarget>();
  const TargetLowering &TL = *STI.getTargetLowering();
  SDLoc dl(Op);
  auto DL = CurDAG->getDataLayout();

  const RegisterSDNode *RegNode = dyn_cast<RegisterSDNode>(Op);

  // If address operand is of PTRDISPREGS class, all is OK, then.
  if (RegNode &&
      RI.getRegClass(RegNode->getReg()) == &AVR::PTRDISPREGSRegClass) {
    OutOps.push_back(Op);
    return false;
  }

  if (Op->getOpcode() == ISD::FrameIndex) {
    SDValue Base, Disp;

    if (SelectAddr(Op.getNode(), Op, Base, Disp)) {
      OutOps.push_back(Base);
      OutOps.push_back(Disp);

      return false;
    }

    return true;
  }

  // If Op is add 'register, immediate' and
  // register is either virtual register or register of PTRDISPREGSRegClass
  if (Op->getOpcode() == ISD::ADD || Op->getOpcode() == ISD::SUB) {
    SDValue CopyFromRegOp = Op->getOperand(0);
    SDValue ImmOp = Op->getOperand(1);
    ConstantSDNode *ImmNode = dyn_cast<ConstantSDNode>(ImmOp);

    unsigned Reg;
    bool CanHandleRegImmOpt = true;

    CanHandleRegImmOpt &= ImmNode != 0;
    CanHandleRegImmOpt &= ImmNode->getAPIntValue().getZExtValue() < 64;

    if (CopyFromRegOp->getOpcode() == ISD::CopyFromReg) {
      RegisterSDNode *RegNode =
          cast<RegisterSDNode>(CopyFromRegOp->getOperand(1));
      Reg = RegNode->getReg();
      CanHandleRegImmOpt &= (TargetRegisterInfo::isVirtualRegister(Reg) ||
                             AVR::PTRDISPREGSRegClass.contains(Reg));
    } else {
      CanHandleRegImmOpt = false;
    }

    // If we detect proper case - correct virtual register class
    // if needed and go to another inlineasm operand.
    if (CanHandleRegImmOpt) {
      SDValue Base, Disp;

      if (RI.getRegClass(Reg) != &AVR::PTRDISPREGSRegClass) {
        SDLoc dl(CopyFromRegOp);

        unsigned VReg = RI.createVirtualRegister(&AVR::PTRDISPREGSRegClass);

        SDValue CopyToReg =
            CurDAG->getCopyToReg(CopyFromRegOp, dl, VReg, CopyFromRegOp);

        SDValue NewCopyFromRegOp =
            CurDAG->getCopyFromReg(CopyToReg, dl, VReg, TL.getPointerTy(DL));

        Base = NewCopyFromRegOp;
      } else {
        Base = CopyFromRegOp;
      }

      if (ImmNode->getValueType(0) != MVT::i8) {
        Disp = CurDAG->getTargetConstant(ImmNode->getAPIntValue().getZExtValue(), dl, MVT::i8);
      } else {
        Disp = ImmOp;
      }

      OutOps.push_back(Base);
      OutOps.push_back(Disp);

      return false;
    }
  }

  // More generic case.
  // Create chain that puts Op into pointer register
  // and return that register.
  unsigned VReg = RI.createVirtualRegister(&AVR::PTRDISPREGSRegClass);

  SDValue CopyToReg = CurDAG->getCopyToReg(Op, dl, VReg, Op);
  SDValue CopyFromReg =
      CurDAG->getCopyFromReg(CopyToReg, dl, VReg, TL.getPointerTy(DL));

  OutOps.push_back(CopyFromReg);

  return false;
}

template <> bool AVRDAGToDAGISel::select<ISD::FrameIndex>(SDNode *N) {
  auto DL = CurDAG->getDataLayout();

  // Convert the frameindex into a temp instruction that will hold the
  // effective address of the final stack slot.
  int FI = cast<FrameIndexSDNode>(N)->getIndex();
  SDValue TFI =
    CurDAG->getTargetFrameIndex(FI, getTargetLowering()->getPointerTy(DL));

  CurDAG->SelectNodeTo(N, AVR::FRMIDX,
                       getTargetLowering()->getPointerTy(DL), TFI,
                       CurDAG->getTargetConstant(0, SDLoc(N), MVT::i16));
  return true;
}

template <> bool AVRDAGToDAGISel::select<ISD::STORE>(SDNode *N) {
  // Use the STD{W}SPQRr pseudo instruction when passing arguments through
  // the stack on function calls for further expansion during the PEI phase.
  const StoreSDNode *ST = cast<StoreSDNode>(N);
  SDValue BasePtr = ST->getBasePtr();

  // Early exit when the base pointer is a frame index node or a constant.
  if (isa<FrameIndexSDNode>(BasePtr) || isa<ConstantSDNode>(BasePtr) ||
      BasePtr.isUndef()) {
    return false;
  }

  const RegisterSDNode *RN = dyn_cast<RegisterSDNode>(BasePtr.getOperand(0));
  // Only stores where SP is the base pointer are valid.
  if (!RN || (RN->getReg() != AVR::SP)) {
    return false;
  }

  int CST = (int)cast<ConstantSDNode>(BasePtr.getOperand(1))->getZExtValue();
  SDValue Chain = ST->getChain();
  EVT VT = ST->getValue().getValueType();
  SDLoc DL(N);
  SDValue Offset = CurDAG->getTargetConstant(CST, DL, MVT::i16);
  SDValue Ops[] = {BasePtr.getOperand(0), Offset, ST->getValue(), Chain};
  unsigned Opc = (VT == MVT::i16) ? AVR::STDWSPQRr : AVR::STDSPQRr;

  SDNode *ResNode = CurDAG->getMachineNode(Opc, DL, MVT::Other, Ops);

  // Transfer memory operands.
  CurDAG->setNodeMemRefs(cast<MachineSDNode>(ResNode), {ST->getMemOperand()});

  ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
  CurDAG->RemoveDeadNode(N);

  return true;
}

template <> bool AVRDAGToDAGISel::select<ISD::LOAD>(SDNode *N) {
  const LoadSDNode *LD = cast<LoadSDNode>(N);
  if (!AVR::isProgramMemoryAccess(LD)) {
    // Check if the opcode can be converted into an indexed load.
    return selectIndexedLoad(N);
  }

  assert(Subtarget->hasLPM() && "cannot load from program memory on this mcu");

  // This is a flash memory load, move the pointer into R31R30 and emit
  // the lpm instruction.
  MVT VT = LD->getMemoryVT().getSimpleVT();
  SDValue Chain = LD->getChain();
  SDValue Ptr = LD->getBasePtr();
  SDNode *ResNode;
  SDLoc DL(N);

  Chain = CurDAG->getCopyToReg(Chain, DL, AVR::R31R30, Ptr, SDValue());
  Ptr = CurDAG->getCopyFromReg(Chain, DL, AVR::R31R30, MVT::i16,
                               Chain.getValue(1));

  SDValue RegZ = CurDAG->getRegister(AVR::R31R30, MVT::i16);

  // Check if the opcode can be converted into an indexed load.
  if (unsigned LPMOpc = selectIndexedProgMemLoad(LD, VT)) {
    // It is legal to fold the load into an indexed load.
    ResNode = CurDAG->getMachineNode(LPMOpc, DL, VT, MVT::i16, MVT::Other, Ptr,
                                     RegZ);
    ReplaceUses(SDValue(N, 1), SDValue(ResNode, 1));
  } else {
    // Selecting an indexed load is not legal, fallback to a normal load.
    switch (VT.SimpleTy) {
    case MVT::i8:
      ResNode = CurDAG->getMachineNode(AVR::LPMRdZ, DL, MVT::i8, MVT::Other,
                                       Ptr, RegZ);
      break;
    case MVT::i16:
      ResNode = CurDAG->getMachineNode(AVR::LPMWRdZ, DL, MVT::i16,
                                       MVT::Other, Ptr, RegZ);
      ReplaceUses(SDValue(N, 1), SDValue(ResNode, 1));
      break;
    default:
      llvm_unreachable("Unsupported VT!");
    }
  }

  // Transfer memory operands.
  CurDAG->setNodeMemRefs(cast<MachineSDNode>(ResNode), {LD->getMemOperand()});

  ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
  ReplaceUses(SDValue(N, 1), SDValue(ResNode, 1));
  CurDAG->RemoveDeadNode(N);

  return true;
}

template <> bool AVRDAGToDAGISel::select<AVRISD::CALL>(SDNode *N) {
  SDValue InFlag;
  SDValue Chain = N->getOperand(0);
  SDValue Callee = N->getOperand(1);
  unsigned LastOpNum = N->getNumOperands() - 1;

  // Direct calls are autogenerated.
  unsigned Op = Callee.getOpcode();
  if (Op == ISD::TargetGlobalAddress || Op == ISD::TargetExternalSymbol) {
    return false;
  }

  // Skip the incoming flag if present
  if (N->getOperand(LastOpNum).getValueType() == MVT::Glue) {
    --LastOpNum;
  }

  SDLoc DL(N);
  Chain = CurDAG->getCopyToReg(Chain, DL, AVR::R31R30, Callee, InFlag);
  SmallVector<SDValue, 8> Ops;
  Ops.push_back(CurDAG->getRegister(AVR::R31R30, MVT::i16));

  // Map all operands into the new node.
  for (unsigned i = 2, e = LastOpNum + 1; i != e; ++i) {
    Ops.push_back(N->getOperand(i));
  }

  Ops.push_back(Chain);
  Ops.push_back(Chain.getValue(1));

  SDNode *ResNode =
    CurDAG->getMachineNode(AVR::ICALL, DL, MVT::Other, MVT::Glue, Ops);

  ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
  ReplaceUses(SDValue(N, 1), SDValue(ResNode, 1));
  CurDAG->RemoveDeadNode(N);

  return true;
}

template <> bool AVRDAGToDAGISel::select<ISD::BRIND>(SDNode *N) {
  SDValue Chain = N->getOperand(0);
  SDValue JmpAddr = N->getOperand(1);

  SDLoc DL(N);
  // Move the destination address of the indirect branch into R31R30.
  Chain = CurDAG->getCopyToReg(Chain, DL, AVR::R31R30, JmpAddr);
  SDNode *ResNode = CurDAG->getMachineNode(AVR::IJMP, DL, MVT::Other, Chain);

  ReplaceUses(SDValue(N, 0), SDValue(ResNode, 0));
  CurDAG->RemoveDeadNode(N);

  return true;
}

bool AVRDAGToDAGISel::selectMultiplication(llvm::SDNode *N) {
  SDLoc DL(N);
  MVT Type = N->getSimpleValueType(0);

  assert(Type == MVT::i8 && "unexpected value type");

  bool isSigned = N->getOpcode() == ISD::SMUL_LOHI;
  unsigned MachineOp = isSigned ? AVR::MULSRdRr : AVR::MULRdRr;

  SDValue Lhs = N->getOperand(0);
  SDValue Rhs = N->getOperand(1);
  SDNode *Mul = CurDAG->getMachineNode(MachineOp, DL, MVT::Glue, Lhs, Rhs);
  SDValue InChain = CurDAG->getEntryNode();
  SDValue InGlue = SDValue(Mul, 0);

  // Copy the low half of the result, if it is needed.
  if (N->hasAnyUseOfValue(0)) {
    SDValue CopyFromLo =
        CurDAG->getCopyFromReg(InChain, DL, AVR::R0, Type, InGlue);

    ReplaceUses(SDValue(N, 0), CopyFromLo);

    InChain = CopyFromLo.getValue(1);
    InGlue = CopyFromLo.getValue(2);
  }

  // Copy the high half of the result, if it is needed.
  if (N->hasAnyUseOfValue(1)) {
    SDValue CopyFromHi =
        CurDAG->getCopyFromReg(InChain, DL, AVR::R1, Type, InGlue);

    ReplaceUses(SDValue(N, 1), CopyFromHi);

    InChain = CopyFromHi.getValue(1);
    InGlue = CopyFromHi.getValue(2);
  }

  CurDAG->RemoveDeadNode(N);

  // We need to clear R1. This is currently done (dirtily)
  // using a custom inserter.

  return true;
}

void AVRDAGToDAGISel::Select(SDNode *N) {
  // If we have a custom node, we already have selected!
  if (N->isMachineOpcode()) {
    LLVM_DEBUG(errs() << "== "; N->dump(CurDAG); errs() << "\n");
    N->setNodeId(-1);
    return;
  }

  // See if subclasses can handle this node.
  if (trySelect(N))
    return;

  // Select the default instruction
  SelectCode(N);
}

bool AVRDAGToDAGISel::trySelect(SDNode *N) {
  unsigned Opcode = N->getOpcode();
  SDLoc DL(N);

  switch (Opcode) {
  // Nodes we fully handle.
  case ISD::FrameIndex: return select<ISD::FrameIndex>(N);
  case ISD::BRIND:      return select<ISD::BRIND>(N);
  case ISD::UMUL_LOHI:
  case ISD::SMUL_LOHI:  return selectMultiplication(N);

  // Nodes we handle partially. Other cases are autogenerated
  case ISD::STORE:   return select<ISD::STORE>(N);
  case ISD::LOAD:    return select<ISD::LOAD>(N);
  case AVRISD::CALL: return select<AVRISD::CALL>(N);
  default:           return false;
  }
}

FunctionPass *createAVRISelDag(AVRTargetMachine &TM,
                               CodeGenOpt::Level OptLevel) {
  return new AVRDAGToDAGISel(TM, OptLevel);
}

} // end of namespace llvm