llvm.org GIT mirror llvm / stable lib / Target / AMDGPU / SIWholeQuadMode.cpp
stable

Tree @stable (Download .tar.gz)

SIWholeQuadMode.cpp @stableraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
//===-- SIWholeQuadMode.cpp - enter and suspend whole quad mode -----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This pass adds instructions to enable whole quad mode for pixel
/// shaders, and whole wavefront mode for all programs.
///
/// Whole quad mode is required for derivative computations, but it interferes
/// with shader side effects (stores and atomics). This pass is run on the
/// scheduled machine IR but before register coalescing, so that machine SSA is
/// available for analysis. It ensures that WQM is enabled when necessary, but
/// disabled around stores and atomics.
///
/// When necessary, this pass creates a function prolog
///
///   S_MOV_B64 LiveMask, EXEC
///   S_WQM_B64 EXEC, EXEC
///
/// to enter WQM at the top of the function and surrounds blocks of Exact
/// instructions by
///
///   S_AND_SAVEEXEC_B64 Tmp, LiveMask
///   ...
///   S_MOV_B64 EXEC, Tmp
///
/// We also compute when a sequence of instructions requires Whole Wavefront
/// Mode (WWM) and insert instructions to save and restore it:
///
/// S_OR_SAVEEXEC_B64 Tmp, -1
/// ...
/// S_MOV_B64 EXEC, Tmp
///
/// In order to avoid excessive switching during sequences of Exact
/// instructions, the pass first analyzes which instructions must be run in WQM
/// (aka which instructions produce values that lead to derivative
/// computations).
///
/// Basic blocks are always exited in WQM as long as some successor needs WQM.
///
/// There is room for improvement given better control flow analysis:
///
///  (1) at the top level (outside of control flow statements, and as long as
///      kill hasn't been used), one SGPR can be saved by recovering WQM from
///      the LiveMask (this is implemented for the entry block).
///
///  (2) when entire regions (e.g. if-else blocks or entire loops) only
///      consist of exact and don't-care instructions, the switch only has to
///      be done at the entry and exit points rather than potentially in each
///      block of the region.
///
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "si-wqm"

namespace {

enum {
  StateWQM = 0x1,
  StateWWM = 0x2,
  StateExact = 0x4,
};

struct PrintState {
public:
  int State;

  explicit PrintState(int State) : State(State) {}
};

#ifndef NDEBUG
static raw_ostream &operator<<(raw_ostream &OS, const PrintState &PS) {
  if (PS.State & StateWQM)
    OS << "WQM";
  if (PS.State & StateWWM) {
    if (PS.State & StateWQM)
      OS << '|';
    OS << "WWM";
  }
  if (PS.State & StateExact) {
    if (PS.State & (StateWQM | StateWWM))
      OS << '|';
    OS << "Exact";
  }

  return OS;
}
#endif

struct InstrInfo {
  char Needs = 0;
  char Disabled = 0;
  char OutNeeds = 0;
};

struct BlockInfo {
  char Needs = 0;
  char InNeeds = 0;
  char OutNeeds = 0;
};

struct WorkItem {
  MachineBasicBlock *MBB = nullptr;
  MachineInstr *MI = nullptr;

  WorkItem() = default;
  WorkItem(MachineBasicBlock *MBB) : MBB(MBB) {}
  WorkItem(MachineInstr *MI) : MI(MI) {}
};

class SIWholeQuadMode : public MachineFunctionPass {
private:
  CallingConv::ID CallingConv;
  const SIInstrInfo *TII;
  const SIRegisterInfo *TRI;
  MachineRegisterInfo *MRI;
  LiveIntervals *LIS;

  DenseMap<const MachineInstr *, InstrInfo> Instructions;
  DenseMap<MachineBasicBlock *, BlockInfo> Blocks;
  SmallVector<MachineInstr *, 1> LiveMaskQueries;
  SmallVector<MachineInstr *, 4> LowerToCopyInstrs;

  void printInfo();

  void markInstruction(MachineInstr &MI, char Flag,
                       std::vector<WorkItem> &Worklist);
  void markInstructionUses(const MachineInstr &MI, char Flag,
                           std::vector<WorkItem> &Worklist);
  char scanInstructions(MachineFunction &MF, std::vector<WorkItem> &Worklist);
  void propagateInstruction(MachineInstr &MI, std::vector<WorkItem> &Worklist);
  void propagateBlock(MachineBasicBlock &MBB, std::vector<WorkItem> &Worklist);
  char analyzeFunction(MachineFunction &MF);

  bool requiresCorrectState(const MachineInstr &MI) const;

  MachineBasicBlock::iterator saveSCC(MachineBasicBlock &MBB,
                                      MachineBasicBlock::iterator Before);
  MachineBasicBlock::iterator
  prepareInsertion(MachineBasicBlock &MBB, MachineBasicBlock::iterator First,
                   MachineBasicBlock::iterator Last, bool PreferLast,
                   bool SaveSCC);
  void toExact(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
               unsigned SaveWQM, unsigned LiveMaskReg);
  void toWQM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
             unsigned SavedWQM);
  void toWWM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
             unsigned SaveOrig);
  void fromWWM(MachineBasicBlock &MBB, MachineBasicBlock::iterator Before,
               unsigned SavedOrig);
  void processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg, bool isEntry);

  void lowerLiveMaskQueries(unsigned LiveMaskReg);
  void lowerCopyInstrs();

public:
  static char ID;

  SIWholeQuadMode() :
    MachineFunctionPass(ID) { }

  bool runOnMachineFunction(MachineFunction &MF) override;

  StringRef getPassName() const override { return "SI Whole Quad Mode"; }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<LiveIntervals>();
    AU.addPreserved<SlotIndexes>();
    AU.addPreserved<LiveIntervals>();
    AU.setPreservesCFG();
    MachineFunctionPass::getAnalysisUsage(AU);
  }
};

} // end anonymous namespace

char SIWholeQuadMode::ID = 0;

INITIALIZE_PASS_BEGIN(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false,
                      false)
INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
INITIALIZE_PASS_END(SIWholeQuadMode, DEBUG_TYPE, "SI Whole Quad Mode", false,
                    false)

char &llvm::SIWholeQuadModeID = SIWholeQuadMode::ID;

FunctionPass *llvm::createSIWholeQuadModePass() {
  return new SIWholeQuadMode;
}

#ifndef NDEBUG
LLVM_DUMP_METHOD void SIWholeQuadMode::printInfo() {
  for (const auto &BII : Blocks) {
    dbgs() << "\n"
           << printMBBReference(*BII.first) << ":\n"
           << "  InNeeds = " << PrintState(BII.second.InNeeds)
           << ", Needs = " << PrintState(BII.second.Needs)
           << ", OutNeeds = " << PrintState(BII.second.OutNeeds) << "\n\n";

    for (const MachineInstr &MI : *BII.first) {
      auto III = Instructions.find(&MI);
      if (III == Instructions.end())
        continue;

      dbgs() << "  " << MI << "    Needs = " << PrintState(III->second.Needs)
             << ", OutNeeds = " << PrintState(III->second.OutNeeds) << '\n';
    }
  }
}
#endif

void SIWholeQuadMode::markInstruction(MachineInstr &MI, char Flag,
                                      std::vector<WorkItem> &Worklist) {
  InstrInfo &II = Instructions[&MI];

  assert(!(Flag & StateExact) && Flag != 0);

  // Remove any disabled states from the flag. The user that required it gets
  // an undefined value in the helper lanes. For example, this can happen if
  // the result of an atomic is used by instruction that requires WQM, where
  // ignoring the request for WQM is correct as per the relevant specs.
  Flag &= ~II.Disabled;

  // Ignore if the flag is already encompassed by the existing needs, or we
  // just disabled everything.
  if ((II.Needs & Flag) == Flag)
    return;

  II.Needs |= Flag;
  Worklist.push_back(&MI);
}

/// Mark all instructions defining the uses in \p MI with \p Flag.
void SIWholeQuadMode::markInstructionUses(const MachineInstr &MI, char Flag,
                                          std::vector<WorkItem> &Worklist) {
  for (const MachineOperand &Use : MI.uses()) {
    if (!Use.isReg() || !Use.isUse())
      continue;

    unsigned Reg = Use.getReg();

    // Handle physical registers that we need to track; this is mostly relevant
    // for VCC, which can appear as the (implicit) input of a uniform branch,
    // e.g. when a loop counter is stored in a VGPR.
    if (!TargetRegisterInfo::isVirtualRegister(Reg)) {
      if (Reg == AMDGPU::EXEC)
        continue;

      for (MCRegUnitIterator RegUnit(Reg, TRI); RegUnit.isValid(); ++RegUnit) {
        LiveRange &LR = LIS->getRegUnit(*RegUnit);
        const VNInfo *Value = LR.Query(LIS->getInstructionIndex(MI)).valueIn();
        if (!Value)
          continue;

        // Since we're in machine SSA, we do not need to track physical
        // registers across basic blocks.
        if (Value->isPHIDef())
          continue;

        markInstruction(*LIS->getInstructionFromIndex(Value->def), Flag,
                        Worklist);
      }

      continue;
    }

    for (MachineInstr &DefMI : MRI->def_instructions(Use.getReg()))
      markInstruction(DefMI, Flag, Worklist);
  }
}

// Scan instructions to determine which ones require an Exact execmask and
// which ones seed WQM requirements.
char SIWholeQuadMode::scanInstructions(MachineFunction &MF,
                                       std::vector<WorkItem> &Worklist) {
  char GlobalFlags = 0;
  bool WQMOutputs = MF.getFunction().hasFnAttribute("amdgpu-ps-wqm-outputs");
  SmallVector<MachineInstr *, 4> SetInactiveInstrs;

  // We need to visit the basic blocks in reverse post-order so that we visit
  // defs before uses, in particular so that we don't accidentally mark an
  // instruction as needing e.g. WQM before visiting it and realizing it needs
  // WQM disabled.
  ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
  for (auto BI = RPOT.begin(), BE = RPOT.end(); BI != BE; ++BI) {
    MachineBasicBlock &MBB = **BI;
    BlockInfo &BBI = Blocks[&MBB];

    for (auto II = MBB.begin(), IE = MBB.end(); II != IE; ++II) {
      MachineInstr &MI = *II;
      InstrInfo &III = Instructions[&MI];
      unsigned Opcode = MI.getOpcode();
      char Flags = 0;

      if (TII->isWQM(Opcode)) {
        // Sampling instructions don't need to produce results for all pixels
        // in a quad, they just require all inputs of a quad to have been
        // computed for derivatives.
        markInstructionUses(MI, StateWQM, Worklist);
        GlobalFlags |= StateWQM;
        continue;
      } else if (Opcode == AMDGPU::WQM) {
        // The WQM intrinsic requires its output to have all the helper lanes
        // correct, so we need it to be in WQM.
        Flags = StateWQM;
        LowerToCopyInstrs.push_back(&MI);
      } else if (Opcode == AMDGPU::WWM) {
        // The WWM intrinsic doesn't make the same guarantee, and plus it needs
        // to be executed in WQM or Exact so that its copy doesn't clobber
        // inactive lanes.
        markInstructionUses(MI, StateWWM, Worklist);
        GlobalFlags |= StateWWM;
        LowerToCopyInstrs.push_back(&MI);
        continue;
      } else if (Opcode == AMDGPU::V_SET_INACTIVE_B32 ||
                 Opcode == AMDGPU::V_SET_INACTIVE_B64) {
        III.Disabled = StateWWM;
        MachineOperand &Inactive = MI.getOperand(2);
        if (Inactive.isReg()) {
          if (Inactive.isUndef()) {
            LowerToCopyInstrs.push_back(&MI);
          } else {
            unsigned Reg = Inactive.getReg();
            if (TargetRegisterInfo::isVirtualRegister(Reg)) {
              for (MachineInstr &DefMI : MRI->def_instructions(Reg))
                markInstruction(DefMI, StateWWM, Worklist);
            }
          }
        }
        SetInactiveInstrs.push_back(&MI);
        continue;
      } else if (TII->isDisableWQM(MI)) {
        BBI.Needs |= StateExact;
        if (!(BBI.InNeeds & StateExact)) {
          BBI.InNeeds |= StateExact;
          Worklist.push_back(&MBB);
        }
        GlobalFlags |= StateExact;
        III.Disabled = StateWQM | StateWWM;
        continue;
      } else {
        if (Opcode == AMDGPU::SI_PS_LIVE) {
          LiveMaskQueries.push_back(&MI);
        } else if (WQMOutputs) {
          // The function is in machine SSA form, which means that physical
          // VGPRs correspond to shader inputs and outputs. Inputs are
          // only used, outputs are only defined.
          for (const MachineOperand &MO : MI.defs()) {
            if (!MO.isReg())
              continue;

            unsigned Reg = MO.getReg();

            if (!TRI->isVirtualRegister(Reg) &&
                TRI->hasVGPRs(TRI->getPhysRegClass(Reg))) {
              Flags = StateWQM;
              break;
            }
          }
        }

        if (!Flags)
          continue;
      }

      markInstruction(MI, Flags, Worklist);
      GlobalFlags |= Flags;
    }
  }

  // Mark sure that any SET_INACTIVE instructions are computed in WQM if WQM is
  // ever used anywhere in the function. This implements the corresponding
  // semantics of @llvm.amdgcn.set.inactive.
  if (GlobalFlags & StateWQM) {
    for (MachineInstr *MI : SetInactiveInstrs)
      markInstruction(*MI, StateWQM, Worklist);
  }

  return GlobalFlags;
}

void SIWholeQuadMode::propagateInstruction(MachineInstr &MI,
                                           std::vector<WorkItem>& Worklist) {
  MachineBasicBlock *MBB = MI.getParent();
  InstrInfo II = Instructions[&MI]; // take a copy to prevent dangling references
  BlockInfo &BI = Blocks[MBB];

  // Control flow-type instructions and stores to temporary memory that are
  // followed by WQM computations must themselves be in WQM.
  if ((II.OutNeeds & StateWQM) && !(II.Disabled & StateWQM) &&
      (MI.isTerminator() || (TII->usesVM_CNT(MI) && MI.mayStore()))) {
    Instructions[&MI].Needs = StateWQM;
    II.Needs = StateWQM;
  }

  // Propagate to block level
  if (II.Needs & StateWQM) {
    BI.Needs |= StateWQM;
    if (!(BI.InNeeds & StateWQM)) {
      BI.InNeeds |= StateWQM;
      Worklist.push_back(MBB);
    }
  }

  // Propagate backwards within block
  if (MachineInstr *PrevMI = MI.getPrevNode()) {
    char InNeeds = (II.Needs & ~StateWWM) | II.OutNeeds;
    if (!PrevMI->isPHI()) {
      InstrInfo &PrevII = Instructions[PrevMI];
      if ((PrevII.OutNeeds | InNeeds) != PrevII.OutNeeds) {
        PrevII.OutNeeds |= InNeeds;
        Worklist.push_back(PrevMI);
      }
    }
  }

  // Propagate WQM flag to instruction inputs
  assert(!(II.Needs & StateExact));

  if (II.Needs != 0)
    markInstructionUses(MI, II.Needs, Worklist);

  // Ensure we process a block containing WWM, even if it does not require any
  // WQM transitions.
  if (II.Needs & StateWWM)
    BI.Needs |= StateWWM;
}

void SIWholeQuadMode::propagateBlock(MachineBasicBlock &MBB,
                                     std::vector<WorkItem>& Worklist) {
  BlockInfo BI = Blocks[&MBB]; // Make a copy to prevent dangling references.

  // Propagate through instructions
  if (!MBB.empty()) {
    MachineInstr *LastMI = &*MBB.rbegin();
    InstrInfo &LastII = Instructions[LastMI];
    if ((LastII.OutNeeds | BI.OutNeeds) != LastII.OutNeeds) {
      LastII.OutNeeds |= BI.OutNeeds;
      Worklist.push_back(LastMI);
    }
  }

  // Predecessor blocks must provide for our WQM/Exact needs.
  for (MachineBasicBlock *Pred : MBB.predecessors()) {
    BlockInfo &PredBI = Blocks[Pred];
    if ((PredBI.OutNeeds | BI.InNeeds) == PredBI.OutNeeds)
      continue;

    PredBI.OutNeeds |= BI.InNeeds;
    PredBI.InNeeds |= BI.InNeeds;
    Worklist.push_back(Pred);
  }

  // All successors must be prepared to accept the same set of WQM/Exact data.
  for (MachineBasicBlock *Succ : MBB.successors()) {
    BlockInfo &SuccBI = Blocks[Succ];
    if ((SuccBI.InNeeds | BI.OutNeeds) == SuccBI.InNeeds)
      continue;

    SuccBI.InNeeds |= BI.OutNeeds;
    Worklist.push_back(Succ);
  }
}

char SIWholeQuadMode::analyzeFunction(MachineFunction &MF) {
  std::vector<WorkItem> Worklist;
  char GlobalFlags = scanInstructions(MF, Worklist);

  while (!Worklist.empty()) {
    WorkItem WI = Worklist.back();
    Worklist.pop_back();

    if (WI.MI)
      propagateInstruction(*WI.MI, Worklist);
    else
      propagateBlock(*WI.MBB, Worklist);
  }

  return GlobalFlags;
}

/// Whether \p MI really requires the exec state computed during analysis.
///
/// Scalar instructions must occasionally be marked WQM for correct propagation
/// (e.g. thread masks leading up to branches), but when it comes to actual
/// execution, they don't care about EXEC.
bool SIWholeQuadMode::requiresCorrectState(const MachineInstr &MI) const {
  if (MI.isTerminator())
    return true;

  // Skip instructions that are not affected by EXEC
  if (TII->isScalarUnit(MI))
    return false;

  // Generic instructions such as COPY will either disappear by register
  // coalescing or be lowered to SALU or VALU instructions.
  if (MI.isTransient()) {
    if (MI.getNumExplicitOperands() >= 1) {
      const MachineOperand &Op = MI.getOperand(0);
      if (Op.isReg()) {
        if (TRI->isSGPRReg(*MRI, Op.getReg())) {
          // SGPR instructions are not affected by EXEC
          return false;
        }
      }
    }
  }

  return true;
}

MachineBasicBlock::iterator
SIWholeQuadMode::saveSCC(MachineBasicBlock &MBB,
                         MachineBasicBlock::iterator Before) {
  unsigned SaveReg = MRI->createVirtualRegister(&AMDGPU::SReg_32_XM0RegClass);

  MachineInstr *Save =
      BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), SaveReg)
          .addReg(AMDGPU::SCC);
  MachineInstr *Restore =
      BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::SCC)
          .addReg(SaveReg);

  LIS->InsertMachineInstrInMaps(*Save);
  LIS->InsertMachineInstrInMaps(*Restore);
  LIS->createAndComputeVirtRegInterval(SaveReg);

  return Restore;
}

// Return an iterator in the (inclusive) range [First, Last] at which
// instructions can be safely inserted, keeping in mind that some of the
// instructions we want to add necessarily clobber SCC.
MachineBasicBlock::iterator SIWholeQuadMode::prepareInsertion(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator First,
    MachineBasicBlock::iterator Last, bool PreferLast, bool SaveSCC) {
  if (!SaveSCC)
    return PreferLast ? Last : First;

  LiveRange &LR = LIS->getRegUnit(*MCRegUnitIterator(AMDGPU::SCC, TRI));
  auto MBBE = MBB.end();
  SlotIndex FirstIdx = First != MBBE ? LIS->getInstructionIndex(*First)
                                     : LIS->getMBBEndIdx(&MBB);
  SlotIndex LastIdx =
      Last != MBBE ? LIS->getInstructionIndex(*Last) : LIS->getMBBEndIdx(&MBB);
  SlotIndex Idx = PreferLast ? LastIdx : FirstIdx;
  const LiveRange::Segment *S;

  for (;;) {
    S = LR.getSegmentContaining(Idx);
    if (!S)
      break;

    if (PreferLast) {
      SlotIndex Next = S->start.getBaseIndex();
      if (Next < FirstIdx)
        break;
      Idx = Next;
    } else {
      SlotIndex Next = S->end.getNextIndex().getBaseIndex();
      if (Next > LastIdx)
        break;
      Idx = Next;
    }
  }

  MachineBasicBlock::iterator MBBI;

  if (MachineInstr *MI = LIS->getInstructionFromIndex(Idx))
    MBBI = MI;
  else {
    assert(Idx == LIS->getMBBEndIdx(&MBB));
    MBBI = MBB.end();
  }

  if (S)
    MBBI = saveSCC(MBB, MBBI);

  return MBBI;
}

void SIWholeQuadMode::toExact(MachineBasicBlock &MBB,
                              MachineBasicBlock::iterator Before,
                              unsigned SaveWQM, unsigned LiveMaskReg) {
  MachineInstr *MI;

  if (SaveWQM) {
    MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_AND_SAVEEXEC_B64),
                 SaveWQM)
             .addReg(LiveMaskReg);
  } else {
    MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_AND_B64),
                 AMDGPU::EXEC)
             .addReg(AMDGPU::EXEC)
             .addReg(LiveMaskReg);
  }

  LIS->InsertMachineInstrInMaps(*MI);
}

void SIWholeQuadMode::toWQM(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator Before,
                            unsigned SavedWQM) {
  MachineInstr *MI;

  if (SavedWQM) {
    MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::COPY), AMDGPU::EXEC)
             .addReg(SavedWQM);
  } else {
    MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::S_WQM_B64),
                 AMDGPU::EXEC)
             .addReg(AMDGPU::EXEC);
  }

  LIS->InsertMachineInstrInMaps(*MI);
}

void SIWholeQuadMode::toWWM(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator Before,
                            unsigned SaveOrig) {
  MachineInstr *MI;

  assert(SaveOrig);
  MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::ENTER_WWM), SaveOrig)
           .addImm(-1);
  LIS->InsertMachineInstrInMaps(*MI);
}

void SIWholeQuadMode::fromWWM(MachineBasicBlock &MBB,
                              MachineBasicBlock::iterator Before,
                              unsigned SavedOrig) {
  MachineInstr *MI;

  assert(SavedOrig);
  MI = BuildMI(MBB, Before, DebugLoc(), TII->get(AMDGPU::EXIT_WWM), AMDGPU::EXEC)
           .addReg(SavedOrig);
  LIS->InsertMachineInstrInMaps(*MI);
}

void SIWholeQuadMode::processBlock(MachineBasicBlock &MBB, unsigned LiveMaskReg,
                                   bool isEntry) {
  auto BII = Blocks.find(&MBB);
  if (BII == Blocks.end())
    return;

  const BlockInfo &BI = BII->second;

  // This is a non-entry block that is WQM throughout, so no need to do
  // anything.
  if (!isEntry && BI.Needs == StateWQM && BI.OutNeeds != StateExact)
    return;

  LLVM_DEBUG(dbgs() << "\nProcessing block " << printMBBReference(MBB)
                    << ":\n");

  unsigned SavedWQMReg = 0;
  unsigned SavedNonWWMReg = 0;
  bool WQMFromExec = isEntry;
  char State = (isEntry || !(BI.InNeeds & StateWQM)) ? StateExact : StateWQM;
  char NonWWMState = 0;

  auto II = MBB.getFirstNonPHI(), IE = MBB.end();
  if (isEntry)
    ++II; // Skip the instruction that saves LiveMask

  // This stores the first instruction where it's safe to switch from WQM to
  // Exact or vice versa.
  MachineBasicBlock::iterator FirstWQM = IE;

  // This stores the first instruction where it's safe to switch from WWM to
  // Exact/WQM or to switch to WWM. It must always be the same as, or after,
  // FirstWQM since if it's safe to switch to/from WWM, it must be safe to
  // switch to/from WQM as well.
  MachineBasicBlock::iterator FirstWWM = IE;
  for (;;) {
    MachineBasicBlock::iterator Next = II;
    char Needs = StateExact | StateWQM; // WWM is disabled by default
    char OutNeeds = 0;

    if (FirstWQM == IE)
      FirstWQM = II;

    if (FirstWWM == IE)
      FirstWWM = II;

    // First, figure out the allowed states (Needs) based on the propagated
    // flags.
    if (II != IE) {
      MachineInstr &MI = *II;

      if (requiresCorrectState(MI)) {
        auto III = Instructions.find(&MI);
        if (III != Instructions.end()) {
          if (III->second.Needs & StateWWM)
            Needs = StateWWM;
          else if (III->second.Needs & StateWQM)
            Needs = StateWQM;
          else
            Needs &= ~III->second.Disabled;
          OutNeeds = III->second.OutNeeds;
        }
      } else {
        // If the instruction doesn't actually need a correct EXEC, then we can
        // safely leave WWM enabled.
        Needs = StateExact | StateWQM | StateWWM;
      }

      if (MI.isTerminator() && OutNeeds == StateExact)
        Needs = StateExact;

      if (MI.getOpcode() == AMDGPU::SI_ELSE && BI.OutNeeds == StateExact)
        MI.getOperand(3).setImm(1);

      ++Next;
    } else {
      // End of basic block
      if (BI.OutNeeds & StateWQM)
        Needs = StateWQM;
      else if (BI.OutNeeds == StateExact)
        Needs = StateExact;
      else
        Needs = StateWQM | StateExact;
    }

    // Now, transition if necessary.
    if (!(Needs & State)) {
      MachineBasicBlock::iterator First;
      if (State == StateWWM || Needs == StateWWM) {
        // We must switch to or from WWM
        First = FirstWWM;
      } else {
        // We only need to switch to/from WQM, so we can use FirstWQM
        First = FirstWQM;
      }

      MachineBasicBlock::iterator Before =
          prepareInsertion(MBB, First, II, Needs == StateWQM,
                           Needs == StateExact || WQMFromExec);

      if (State == StateWWM) {
        assert(SavedNonWWMReg);
        fromWWM(MBB, Before, SavedNonWWMReg);
        State = NonWWMState;
      }

      if (Needs == StateWWM) {
        NonWWMState = State;
        SavedNonWWMReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass);
        toWWM(MBB, Before, SavedNonWWMReg);
        State = StateWWM;
      } else {
        if (State == StateWQM && (Needs & StateExact) && !(Needs & StateWQM)) {
          if (!WQMFromExec && (OutNeeds & StateWQM))
            SavedWQMReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass);

          toExact(MBB, Before, SavedWQMReg, LiveMaskReg);
          State = StateExact;
        } else if (State == StateExact && (Needs & StateWQM) &&
                   !(Needs & StateExact)) {
          assert(WQMFromExec == (SavedWQMReg == 0));

          toWQM(MBB, Before, SavedWQMReg);

          if (SavedWQMReg) {
            LIS->createAndComputeVirtRegInterval(SavedWQMReg);
            SavedWQMReg = 0;
          }
          State = StateWQM;
        } else {
          // We can get here if we transitioned from WWM to a non-WWM state that
          // already matches our needs, but we shouldn't need to do anything.
          assert(Needs & State);
        }
      }
    }

    if (Needs != (StateExact | StateWQM | StateWWM)) {
      if (Needs != (StateExact | StateWQM))
        FirstWQM = IE;
      FirstWWM = IE;
    }

    if (II == IE)
      break;
    II = Next;
  }
}

void SIWholeQuadMode::lowerLiveMaskQueries(unsigned LiveMaskReg) {
  for (MachineInstr *MI : LiveMaskQueries) {
    const DebugLoc &DL = MI->getDebugLoc();
    unsigned Dest = MI->getOperand(0).getReg();
    MachineInstr *Copy =
        BuildMI(*MI->getParent(), MI, DL, TII->get(AMDGPU::COPY), Dest)
            .addReg(LiveMaskReg);

    LIS->ReplaceMachineInstrInMaps(*MI, *Copy);
    MI->eraseFromParent();
  }
}

void SIWholeQuadMode::lowerCopyInstrs() {
  for (MachineInstr *MI : LowerToCopyInstrs) {
    for (unsigned i = MI->getNumExplicitOperands() - 1; i > 1; i--)
      MI->RemoveOperand(i);

    const unsigned Reg = MI->getOperand(0).getReg();

    if (TRI->isVGPR(*MRI, Reg)) {
      const TargetRegisterClass *regClass =
          TargetRegisterInfo::isVirtualRegister(Reg)
              ? MRI->getRegClass(Reg)
              : TRI->getPhysRegClass(Reg);

      const unsigned MovOp = TII->getMovOpcode(regClass);
      MI->setDesc(TII->get(MovOp));

      // And make it implicitly depend on exec (like all VALU movs should do).
      MI->addOperand(MachineOperand::CreateReg(AMDGPU::EXEC, false, true));
    } else {
      MI->setDesc(TII->get(AMDGPU::COPY));
    }
  }
}

bool SIWholeQuadMode::runOnMachineFunction(MachineFunction &MF) {
  Instructions.clear();
  Blocks.clear();
  LiveMaskQueries.clear();
  LowerToCopyInstrs.clear();
  CallingConv = MF.getFunction().getCallingConv();

  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();

  TII = ST.getInstrInfo();
  TRI = &TII->getRegisterInfo();
  MRI = &MF.getRegInfo();
  LIS = &getAnalysis<LiveIntervals>();

  char GlobalFlags = analyzeFunction(MF);
  unsigned LiveMaskReg = 0;
  if (!(GlobalFlags & StateWQM)) {
    lowerLiveMaskQueries(AMDGPU::EXEC);
    if (!(GlobalFlags & StateWWM))
      return !LiveMaskQueries.empty();
  } else {
    // Store a copy of the original live mask when required
    MachineBasicBlock &Entry = MF.front();
    MachineBasicBlock::iterator EntryMI = Entry.getFirstNonPHI();

    if (GlobalFlags & StateExact || !LiveMaskQueries.empty()) {
      LiveMaskReg = MRI->createVirtualRegister(&AMDGPU::SReg_64RegClass);
      MachineInstr *MI = BuildMI(Entry, EntryMI, DebugLoc(),
                                 TII->get(AMDGPU::COPY), LiveMaskReg)
                             .addReg(AMDGPU::EXEC);
      LIS->InsertMachineInstrInMaps(*MI);
    }

    lowerLiveMaskQueries(LiveMaskReg);

    if (GlobalFlags == StateWQM) {
      // For a shader that needs only WQM, we can just set it once.
      BuildMI(Entry, EntryMI, DebugLoc(), TII->get(AMDGPU::S_WQM_B64),
              AMDGPU::EXEC)
          .addReg(AMDGPU::EXEC);

      lowerCopyInstrs();
      // EntryMI may become invalid here
      return true;
    }
  }

  LLVM_DEBUG(printInfo());

  lowerCopyInstrs();

  // Handle the general case
  for (auto BII : Blocks)
    processBlock(*BII.first, LiveMaskReg, BII.first == &*MF.begin());

  // Physical registers like SCC aren't tracked by default anyway, so just
  // removing the ranges we computed is the simplest option for maintaining
  // the analysis results.
  LIS->removeRegUnit(*MCRegUnitIterator(AMDGPU::SCC, TRI));

  return true;
}