llvm.org GIT mirror llvm / stable lib / Target / AMDGPU / SIShrinkInstructions.cpp
stable

Tree @stable (Download .tar.gz)

SIShrinkInstructions.cpp @stableraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
//===-- SIShrinkInstructions.cpp - Shrink Instructions --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
/// The pass tries to use the 32-bit encoding for instructions when possible.
//===----------------------------------------------------------------------===//
//

#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "MCTargetDesc/AMDGPUMCTargetDesc.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"

#define DEBUG_TYPE "si-shrink-instructions"

STATISTIC(NumInstructionsShrunk,
          "Number of 64-bit instruction reduced to 32-bit.");
STATISTIC(NumLiteralConstantsFolded,
          "Number of literal constants folded into 32-bit instructions.");

using namespace llvm;

namespace {

class SIShrinkInstructions : public MachineFunctionPass {
public:
  static char ID;

  void shrinkMIMG(MachineInstr &MI);

public:
  SIShrinkInstructions() : MachineFunctionPass(ID) {
  }

  bool runOnMachineFunction(MachineFunction &MF) override;

  StringRef getPassName() const override { return "SI Shrink Instructions"; }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    MachineFunctionPass::getAnalysisUsage(AU);
  }
};

} // End anonymous namespace.

INITIALIZE_PASS(SIShrinkInstructions, DEBUG_TYPE,
                "SI Shrink Instructions", false, false)

char SIShrinkInstructions::ID = 0;

FunctionPass *llvm::createSIShrinkInstructionsPass() {
  return new SIShrinkInstructions();
}

/// This function checks \p MI for operands defined by a move immediate
/// instruction and then folds the literal constant into the instruction if it
/// can. This function assumes that \p MI is a VOP1, VOP2, or VOPC instructions.
static bool foldImmediates(MachineInstr &MI, const SIInstrInfo *TII,
                           MachineRegisterInfo &MRI, bool TryToCommute = true) {
  assert(TII->isVOP1(MI) || TII->isVOP2(MI) || TII->isVOPC(MI));

  int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);

  // Try to fold Src0
  MachineOperand &Src0 = MI.getOperand(Src0Idx);
  if (Src0.isReg()) {
    unsigned Reg = Src0.getReg();
    if (TargetRegisterInfo::isVirtualRegister(Reg) && MRI.hasOneUse(Reg)) {
      MachineInstr *Def = MRI.getUniqueVRegDef(Reg);
      if (Def && Def->isMoveImmediate()) {
        MachineOperand &MovSrc = Def->getOperand(1);
        bool ConstantFolded = false;

        if (MovSrc.isImm() && (isInt<32>(MovSrc.getImm()) ||
                               isUInt<32>(MovSrc.getImm()))) {
          // It's possible to have only one component of a super-reg defined by
          // a single mov, so we need to clear any subregister flag.
          Src0.setSubReg(0);
          Src0.ChangeToImmediate(MovSrc.getImm());
          ConstantFolded = true;
        } else if (MovSrc.isFI()) {
          Src0.setSubReg(0);
          Src0.ChangeToFrameIndex(MovSrc.getIndex());
          ConstantFolded = true;
        }

        if (ConstantFolded) {
          assert(MRI.use_empty(Reg));
          Def->eraseFromParent();
          ++NumLiteralConstantsFolded;
          return true;
        }
      }
    }
  }

  // We have failed to fold src0, so commute the instruction and try again.
  if (TryToCommute && MI.isCommutable()) {
    if (TII->commuteInstruction(MI)) {
      if (foldImmediates(MI, TII, MRI, false))
        return true;

      // Commute back.
      TII->commuteInstruction(MI);
    }
  }

  return false;
}

static bool isKImmOperand(const SIInstrInfo *TII, const MachineOperand &Src) {
  return isInt<16>(Src.getImm()) &&
    !TII->isInlineConstant(*Src.getParent(),
                           Src.getParent()->getOperandNo(&Src));
}

static bool isKUImmOperand(const SIInstrInfo *TII, const MachineOperand &Src) {
  return isUInt<16>(Src.getImm()) &&
    !TII->isInlineConstant(*Src.getParent(),
                           Src.getParent()->getOperandNo(&Src));
}

static bool isKImmOrKUImmOperand(const SIInstrInfo *TII,
                                 const MachineOperand &Src,
                                 bool &IsUnsigned) {
  if (isInt<16>(Src.getImm())) {
    IsUnsigned = false;
    return !TII->isInlineConstant(Src);
  }

  if (isUInt<16>(Src.getImm())) {
    IsUnsigned = true;
    return !TII->isInlineConstant(Src);
  }

  return false;
}

/// \returns true if the constant in \p Src should be replaced with a bitreverse
/// of an inline immediate.
static bool isReverseInlineImm(const SIInstrInfo *TII,
                               const MachineOperand &Src,
                               int32_t &ReverseImm) {
  if (!isInt<32>(Src.getImm()) || TII->isInlineConstant(Src))
    return false;

  ReverseImm = reverseBits<int32_t>(static_cast<int32_t>(Src.getImm()));
  return ReverseImm >= -16 && ReverseImm <= 64;
}

/// Copy implicit register operands from specified instruction to this
/// instruction that are not part of the instruction definition.
static void copyExtraImplicitOps(MachineInstr &NewMI, MachineFunction &MF,
                                 const MachineInstr &MI) {
  for (unsigned i = MI.getDesc().getNumOperands() +
         MI.getDesc().getNumImplicitUses() +
         MI.getDesc().getNumImplicitDefs(), e = MI.getNumOperands();
       i != e; ++i) {
    const MachineOperand &MO = MI.getOperand(i);
    if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
      NewMI.addOperand(MF, MO);
  }
}

static void shrinkScalarCompare(const SIInstrInfo *TII, MachineInstr &MI) {
  // cmpk instructions do scc = dst <cc op> imm16, so commute the instruction to
  // get constants on the RHS.
  if (!MI.getOperand(0).isReg())
    TII->commuteInstruction(MI, false, 0, 1);

  const MachineOperand &Src1 = MI.getOperand(1);
  if (!Src1.isImm())
    return;

  int SOPKOpc = AMDGPU::getSOPKOp(MI.getOpcode());
  if (SOPKOpc == -1)
    return;

  // eq/ne is special because the imm16 can be treated as signed or unsigned,
  // and initially selectd to the unsigned versions.
  if (SOPKOpc == AMDGPU::S_CMPK_EQ_U32 || SOPKOpc == AMDGPU::S_CMPK_LG_U32) {
    bool HasUImm;
    if (isKImmOrKUImmOperand(TII, Src1, HasUImm)) {
      if (!HasUImm) {
        SOPKOpc = (SOPKOpc == AMDGPU::S_CMPK_EQ_U32) ?
          AMDGPU::S_CMPK_EQ_I32 : AMDGPU::S_CMPK_LG_I32;
      }

      MI.setDesc(TII->get(SOPKOpc));
    }

    return;
  }

  const MCInstrDesc &NewDesc = TII->get(SOPKOpc);

  if ((TII->sopkIsZext(SOPKOpc) && isKUImmOperand(TII, Src1)) ||
      (!TII->sopkIsZext(SOPKOpc) && isKImmOperand(TII, Src1))) {
    MI.setDesc(NewDesc);
  }
}

// Shrink NSA encoded instructions with contiguous VGPRs to non-NSA encoding.
void SIShrinkInstructions::shrinkMIMG(MachineInstr &MI) {
  const AMDGPU::MIMGInfo *Info = AMDGPU::getMIMGInfo(MI.getOpcode());
  if (Info->MIMGEncoding != AMDGPU::MIMGEncGfx10NSA)
    return;

  MachineFunction *MF = MI.getParent()->getParent();
  const GCNSubtarget &ST = MF->getSubtarget<GCNSubtarget>();
  const SIInstrInfo *TII = ST.getInstrInfo();
  const SIRegisterInfo &TRI = TII->getRegisterInfo();
  int VAddr0Idx =
      AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vaddr0);
  unsigned NewAddrDwords = Info->VAddrDwords;
  const TargetRegisterClass *RC;

  if (Info->VAddrDwords == 2) {
    RC = &AMDGPU::VReg_64RegClass;
  } else if (Info->VAddrDwords == 3) {
    RC = &AMDGPU::VReg_96RegClass;
  } else if (Info->VAddrDwords == 4) {
    RC = &AMDGPU::VReg_128RegClass;
  } else if (Info->VAddrDwords <= 8) {
    RC = &AMDGPU::VReg_256RegClass;
    NewAddrDwords = 8;
  } else {
    RC = &AMDGPU::VReg_512RegClass;
    NewAddrDwords = 16;
  }

  unsigned VgprBase = 0;
  bool IsUndef = true;
  bool IsKill = NewAddrDwords == Info->VAddrDwords;
  for (unsigned i = 0; i < Info->VAddrDwords; ++i) {
    const MachineOperand &Op = MI.getOperand(VAddr0Idx + i);
    unsigned Vgpr = TRI.getHWRegIndex(Op.getReg());

    if (i == 0) {
      VgprBase = Vgpr;
    } else if (VgprBase + i != Vgpr)
      return;

    if (!Op.isUndef())
      IsUndef = false;
    if (!Op.isKill())
      IsKill = false;
  }

  if (VgprBase + NewAddrDwords > 256)
    return;

  // Further check for implicit tied operands - this may be present if TFE is
  // enabled
  int TFEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::tfe);
  int LWEIdx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::lwe);
  unsigned TFEVal = MI.getOperand(TFEIdx).getImm();
  unsigned LWEVal = MI.getOperand(LWEIdx).getImm();
  int ToUntie = -1;
  if (TFEVal || LWEVal) {
    // TFE/LWE is enabled so we need to deal with an implicit tied operand
    for (unsigned i = LWEIdx + 1, e = MI.getNumOperands(); i != e; ++i) {
      if (MI.getOperand(i).isReg() && MI.getOperand(i).isTied() &&
          MI.getOperand(i).isImplicit()) {
        // This is the tied operand
        assert(
            ToUntie == -1 &&
            "found more than one tied implicit operand when expecting only 1");
        ToUntie = i;
        MI.untieRegOperand(ToUntie);
      }
    }
  }

  unsigned NewOpcode =
      AMDGPU::getMIMGOpcode(Info->BaseOpcode, AMDGPU::MIMGEncGfx10Default,
                            Info->VDataDwords, NewAddrDwords);
  MI.setDesc(TII->get(NewOpcode));
  MI.getOperand(VAddr0Idx).setReg(RC->getRegister(VgprBase));
  MI.getOperand(VAddr0Idx).setIsUndef(IsUndef);
  MI.getOperand(VAddr0Idx).setIsKill(IsKill);

  for (unsigned i = 1; i < Info->VAddrDwords; ++i)
    MI.RemoveOperand(VAddr0Idx + 1);

  if (ToUntie >= 0) {
    MI.tieOperands(
        AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::vdata),
        ToUntie - (Info->VAddrDwords - 1));
  }
}

/// Attempt to shink AND/OR/XOR operations requiring non-inlineable literals.
/// For AND or OR, try using S_BITSET{0,1} to clear or set bits.
/// If the inverse of the immediate is legal, use ANDN2, ORN2 or
/// XNOR (as a ^ b == ~(a ^ ~b)).
/// \returns true if the caller should continue the machine function iterator
static bool shrinkScalarLogicOp(const GCNSubtarget &ST,
                                MachineRegisterInfo &MRI,
                                const SIInstrInfo *TII,
                                MachineInstr &MI) {
  unsigned Opc = MI.getOpcode();
  const MachineOperand *Dest = &MI.getOperand(0);
  MachineOperand *Src0 = &MI.getOperand(1);
  MachineOperand *Src1 = &MI.getOperand(2);
  MachineOperand *SrcReg = Src0;
  MachineOperand *SrcImm = Src1;

  if (SrcImm->isImm() &&
      !AMDGPU::isInlinableLiteral32(SrcImm->getImm(), ST.hasInv2PiInlineImm())) {
    uint32_t Imm = static_cast<uint32_t>(SrcImm->getImm());
    uint32_t NewImm = 0;

    if (Opc == AMDGPU::S_AND_B32) {
      if (isPowerOf2_32(~Imm)) {
        NewImm = countTrailingOnes(Imm);
        Opc = AMDGPU::S_BITSET0_B32;
      } else if (AMDGPU::isInlinableLiteral32(~Imm, ST.hasInv2PiInlineImm())) {
        NewImm = ~Imm;
        Opc = AMDGPU::S_ANDN2_B32;
      }
    } else if (Opc == AMDGPU::S_OR_B32) {
      if (isPowerOf2_32(Imm)) {
        NewImm = countTrailingZeros(Imm);
        Opc = AMDGPU::S_BITSET1_B32;
      } else if (AMDGPU::isInlinableLiteral32(~Imm, ST.hasInv2PiInlineImm())) {
        NewImm = ~Imm;
        Opc = AMDGPU::S_ORN2_B32;
      }
    } else if (Opc == AMDGPU::S_XOR_B32) {
      if (AMDGPU::isInlinableLiteral32(~Imm, ST.hasInv2PiInlineImm())) {
        NewImm = ~Imm;
        Opc = AMDGPU::S_XNOR_B32;
      }
    } else {
      llvm_unreachable("unexpected opcode");
    }

    if ((Opc == AMDGPU::S_ANDN2_B32 || Opc == AMDGPU::S_ORN2_B32) &&
        SrcImm == Src0) {
      if (!TII->commuteInstruction(MI, false, 1, 2))
        NewImm = 0;
    }

    if (NewImm != 0) {
      if (TargetRegisterInfo::isVirtualRegister(Dest->getReg()) &&
        SrcReg->isReg()) {
        MRI.setRegAllocationHint(Dest->getReg(), 0, SrcReg->getReg());
        MRI.setRegAllocationHint(SrcReg->getReg(), 0, Dest->getReg());
        return true;
      }

      if (SrcReg->isReg() && SrcReg->getReg() == Dest->getReg()) {
        MI.setDesc(TII->get(Opc));
        if (Opc == AMDGPU::S_BITSET0_B32 ||
            Opc == AMDGPU::S_BITSET1_B32) {
          Src0->ChangeToImmediate(NewImm);
          // Remove the immediate and add the tied input.
          MI.getOperand(2).ChangeToRegister(Dest->getReg(), false);
          MI.tieOperands(0, 2);
        } else {
          SrcImm->setImm(NewImm);
        }
      }
    }
  }

  return false;
}

// This is the same as MachineInstr::readsRegister/modifiesRegister except
// it takes subregs into account.
static bool instAccessReg(iterator_range<MachineInstr::const_mop_iterator> &&R,
                          unsigned Reg, unsigned SubReg,
                          const SIRegisterInfo &TRI) {
  for (const MachineOperand &MO : R) {
    if (!MO.isReg())
      continue;

    if (TargetRegisterInfo::isPhysicalRegister(Reg) &&
        TargetRegisterInfo::isPhysicalRegister(MO.getReg())) {
      if (TRI.regsOverlap(Reg, MO.getReg()))
        return true;
    } else if (MO.getReg() == Reg &&
               TargetRegisterInfo::isVirtualRegister(Reg)) {
      LaneBitmask Overlap = TRI.getSubRegIndexLaneMask(SubReg) &
                            TRI.getSubRegIndexLaneMask(MO.getSubReg());
      if (Overlap.any())
        return true;
    }
  }
  return false;
}

static bool instReadsReg(const MachineInstr *MI,
                         unsigned Reg, unsigned SubReg,
                         const SIRegisterInfo &TRI) {
  return instAccessReg(MI->uses(), Reg, SubReg, TRI);
}

static bool instModifiesReg(const MachineInstr *MI,
                            unsigned Reg, unsigned SubReg,
                            const SIRegisterInfo &TRI) {
  return instAccessReg(MI->defs(), Reg, SubReg, TRI);
}

static TargetInstrInfo::RegSubRegPair
getSubRegForIndex(unsigned Reg, unsigned Sub, unsigned I,
                  const SIRegisterInfo &TRI, const MachineRegisterInfo &MRI) {
  if (TRI.getRegSizeInBits(Reg, MRI) != 32) {
    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
      Reg = TRI.getSubReg(Reg, TRI.getSubRegFromChannel(I));
    } else {
      LaneBitmask LM = TRI.getSubRegIndexLaneMask(Sub);
      Sub = TRI.getSubRegFromChannel(I + countTrailingZeros(LM.getAsInteger()));
    }
  }
  return TargetInstrInfo::RegSubRegPair(Reg, Sub);
}

// Match:
// mov t, x
// mov x, y
// mov y, t
//
// =>
//
// mov t, x (t is potentially dead and move eliminated)
// v_swap_b32 x, y
//
// Returns next valid instruction pointer if was able to create v_swap_b32.
//
// This shall not be done too early not to prevent possible folding which may
// remove matched moves, and this should prefereably be done before RA to
// release saved registers and also possibly after RA which can insert copies
// too.
//
// This is really just a generic peephole that is not a canocical shrinking,
// although requirements match the pass placement and it reduces code size too.
static MachineInstr* matchSwap(MachineInstr &MovT, MachineRegisterInfo &MRI,
                               const SIInstrInfo *TII) {
  assert(MovT.getOpcode() == AMDGPU::V_MOV_B32_e32 ||
         MovT.getOpcode() == AMDGPU::COPY);

  unsigned T = MovT.getOperand(0).getReg();
  unsigned Tsub = MovT.getOperand(0).getSubReg();
  MachineOperand &Xop = MovT.getOperand(1);

  if (!Xop.isReg())
    return nullptr;
  unsigned X = Xop.getReg();
  unsigned Xsub = Xop.getSubReg();

  unsigned Size = TII->getOpSize(MovT, 0) / 4;

  const SIRegisterInfo &TRI = TII->getRegisterInfo();
  if (!TRI.isVGPR(MRI, X))
    return nullptr;

  for (MachineOperand &YTop : MRI.use_nodbg_operands(T)) {
    if (YTop.getSubReg() != Tsub)
      continue;

    MachineInstr &MovY = *YTop.getParent();
    if ((MovY.getOpcode() != AMDGPU::V_MOV_B32_e32 &&
         MovY.getOpcode() != AMDGPU::COPY) ||
        MovY.getOperand(1).getSubReg() != Tsub)
      continue;

    unsigned Y = MovY.getOperand(0).getReg();
    unsigned Ysub = MovY.getOperand(0).getSubReg();

    if (!TRI.isVGPR(MRI, Y) || MovT.getParent() != MovY.getParent())
      continue;

    MachineInstr *MovX = nullptr;
    auto I = std::next(MovT.getIterator()), E = MovT.getParent()->instr_end();
    for (auto IY = MovY.getIterator(); I != E && I != IY; ++I) {
      if (instReadsReg(&*I, X, Xsub, TRI) ||
          instModifiesReg(&*I, Y, Ysub, TRI) ||
          instModifiesReg(&*I, T, Tsub, TRI) ||
          (MovX && instModifiesReg(&*I, X, Xsub, TRI))) {
        MovX = nullptr;
        break;
      }
      if (!instReadsReg(&*I, Y, Ysub, TRI)) {
        if (!MovX && instModifiesReg(&*I, X, Xsub, TRI)) {
          MovX = nullptr;
          break;
        }
        continue;
      }
      if (MovX ||
          (I->getOpcode() != AMDGPU::V_MOV_B32_e32 &&
           I->getOpcode() != AMDGPU::COPY) ||
          I->getOperand(0).getReg() != X ||
          I->getOperand(0).getSubReg() != Xsub) {
        MovX = nullptr;
        break;
      }
      MovX = &*I;
    }

    if (!MovX || I == E)
      continue;

    LLVM_DEBUG(dbgs() << "Matched v_swap_b32:\n" << MovT << *MovX << MovY);

    for (unsigned I = 0; I < Size; ++I) {
      TargetInstrInfo::RegSubRegPair X1, Y1;
      X1 = getSubRegForIndex(X, Xsub, I, TRI, MRI);
      Y1 = getSubRegForIndex(Y, Ysub, I, TRI, MRI);
      BuildMI(*MovT.getParent(), MovX->getIterator(), MovT.getDebugLoc(),
                TII->get(AMDGPU::V_SWAP_B32))
        .addDef(X1.Reg, 0, X1.SubReg)
        .addDef(Y1.Reg, 0, Y1.SubReg)
        .addReg(Y1.Reg, 0, Y1.SubReg)
        .addReg(X1.Reg, 0, X1.SubReg).getInstr();
    }
    MovX->eraseFromParent();
    MovY.eraseFromParent();
    MachineInstr *Next = &*std::next(MovT.getIterator());
    if (MRI.use_nodbg_empty(T))
      MovT.eraseFromParent();
    else
      Xop.setIsKill(false);

    return Next;
  }

  return nullptr;
}

bool SIShrinkInstructions::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(MF.getFunction()))
    return false;

  MachineRegisterInfo &MRI = MF.getRegInfo();
  const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
  const SIInstrInfo *TII = ST.getInstrInfo();

  std::vector<unsigned> I1Defs;

  for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
                                                  BI != BE; ++BI) {

    MachineBasicBlock &MBB = *BI;
    MachineBasicBlock::iterator I, Next;
    for (I = MBB.begin(); I != MBB.end(); I = Next) {
      Next = std::next(I);
      MachineInstr &MI = *I;

      if (MI.getOpcode() == AMDGPU::V_MOV_B32_e32) {
        // If this has a literal constant source that is the same as the
        // reversed bits of an inline immediate, replace with a bitreverse of
        // that constant. This saves 4 bytes in the common case of materializing
        // sign bits.

        // Test if we are after regalloc. We only want to do this after any
        // optimizations happen because this will confuse them.
        // XXX - not exactly a check for post-regalloc run.
        MachineOperand &Src = MI.getOperand(1);
        if (Src.isImm() &&
            TargetRegisterInfo::isPhysicalRegister(MI.getOperand(0).getReg())) {
          int32_t ReverseImm;
          if (isReverseInlineImm(TII, Src, ReverseImm)) {
            MI.setDesc(TII->get(AMDGPU::V_BFREV_B32_e32));
            Src.setImm(ReverseImm);
            continue;
          }
        }
      }

      if (ST.hasSwap() && (MI.getOpcode() == AMDGPU::V_MOV_B32_e32 ||
                           MI.getOpcode() == AMDGPU::COPY)) {
        if (auto *NextMI = matchSwap(MI, MRI, TII)) {
          Next = NextMI->getIterator();
          continue;
        }
      }

      // Combine adjacent s_nops to use the immediate operand encoding how long
      // to wait.
      //
      // s_nop N
      // s_nop M
      //  =>
      // s_nop (N + M)
      if (MI.getOpcode() == AMDGPU::S_NOP &&
          Next != MBB.end() &&
          (*Next).getOpcode() == AMDGPU::S_NOP) {

        MachineInstr &NextMI = *Next;
        // The instruction encodes the amount to wait with an offset of 1,
        // i.e. 0 is wait 1 cycle. Convert both to cycles and then convert back
        // after adding.
        uint8_t Nop0 = MI.getOperand(0).getImm() + 1;
        uint8_t Nop1 = NextMI.getOperand(0).getImm() + 1;

        // Make sure we don't overflow the bounds.
        if (Nop0 + Nop1 <= 8) {
          NextMI.getOperand(0).setImm(Nop0 + Nop1 - 1);
          MI.eraseFromParent();
        }

        continue;
      }

      // FIXME: We also need to consider movs of constant operands since
      // immediate operands are not folded if they have more than one use, and
      // the operand folding pass is unaware if the immediate will be free since
      // it won't know if the src == dest constraint will end up being
      // satisfied.
      if (MI.getOpcode() == AMDGPU::S_ADD_I32 ||
          MI.getOpcode() == AMDGPU::S_MUL_I32) {
        const MachineOperand *Dest = &MI.getOperand(0);
        MachineOperand *Src0 = &MI.getOperand(1);
        MachineOperand *Src1 = &MI.getOperand(2);

        if (!Src0->isReg() && Src1->isReg()) {
          if (TII->commuteInstruction(MI, false, 1, 2))
            std::swap(Src0, Src1);
        }

        // FIXME: This could work better if hints worked with subregisters. If
        // we have a vector add of a constant, we usually don't get the correct
        // allocation due to the subregister usage.
        if (TargetRegisterInfo::isVirtualRegister(Dest->getReg()) &&
            Src0->isReg()) {
          MRI.setRegAllocationHint(Dest->getReg(), 0, Src0->getReg());
          MRI.setRegAllocationHint(Src0->getReg(), 0, Dest->getReg());
          continue;
        }

        if (Src0->isReg() && Src0->getReg() == Dest->getReg()) {
          if (Src1->isImm() && isKImmOperand(TII, *Src1)) {
            unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_I32) ?
              AMDGPU::S_ADDK_I32 : AMDGPU::S_MULK_I32;

            MI.setDesc(TII->get(Opc));
            MI.tieOperands(0, 1);
          }
        }
      }

      // Try to use s_cmpk_*
      if (MI.isCompare() && TII->isSOPC(MI)) {
        shrinkScalarCompare(TII, MI);
        continue;
      }

      // Try to use S_MOVK_I32, which will save 4 bytes for small immediates.
      if (MI.getOpcode() == AMDGPU::S_MOV_B32) {
        const MachineOperand &Dst = MI.getOperand(0);
        MachineOperand &Src = MI.getOperand(1);

        if (Src.isImm() &&
            TargetRegisterInfo::isPhysicalRegister(Dst.getReg())) {
          int32_t ReverseImm;
          if (isKImmOperand(TII, Src))
            MI.setDesc(TII->get(AMDGPU::S_MOVK_I32));
          else if (isReverseInlineImm(TII, Src, ReverseImm)) {
            MI.setDesc(TII->get(AMDGPU::S_BREV_B32));
            Src.setImm(ReverseImm);
          }
        }

        continue;
      }

      // Shrink scalar logic operations.
      if (MI.getOpcode() == AMDGPU::S_AND_B32 ||
          MI.getOpcode() == AMDGPU::S_OR_B32 ||
          MI.getOpcode() == AMDGPU::S_XOR_B32) {
        if (shrinkScalarLogicOp(ST, MRI, TII, MI))
          continue;
      }

      if (TII->isMIMG(MI.getOpcode()) &&
          ST.getGeneration() >= AMDGPUSubtarget::GFX10 &&
          MF.getProperties().hasProperty(
              MachineFunctionProperties::Property::NoVRegs)) {
        shrinkMIMG(MI);
        continue;
      }

      if (!TII->hasVALU32BitEncoding(MI.getOpcode()))
        continue;

      if (!TII->canShrink(MI, MRI)) {
        // Try commuting the instruction and see if that enables us to shrink
        // it.
        if (!MI.isCommutable() || !TII->commuteInstruction(MI) ||
            !TII->canShrink(MI, MRI))
          continue;
      }

      // getVOPe32 could be -1 here if we started with an instruction that had
      // a 32-bit encoding and then commuted it to an instruction that did not.
      if (!TII->hasVALU32BitEncoding(MI.getOpcode()))
        continue;

      int Op32 = AMDGPU::getVOPe32(MI.getOpcode());

      if (TII->isVOPC(Op32)) {
        unsigned DstReg = MI.getOperand(0).getReg();
        if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
          // VOPC instructions can only write to the VCC register. We can't
          // force them to use VCC here, because this is only one register and
          // cannot deal with sequences which would require multiple copies of
          // VCC, e.g. S_AND_B64 (vcc = V_CMP_...), (vcc = V_CMP_...)
          //
          // So, instead of forcing the instruction to write to VCC, we provide
          // a hint to the register allocator to use VCC and then we will run
          // this pass again after RA and shrink it if it outputs to VCC.
          MRI.setRegAllocationHint(MI.getOperand(0).getReg(), 0, AMDGPU::VCC);
          continue;
        }
        if (DstReg != AMDGPU::VCC)
          continue;
      }

      if (Op32 == AMDGPU::V_CNDMASK_B32_e32) {
        // We shrink V_CNDMASK_B32_e64 using regalloc hints like we do for VOPC
        // instructions.
        const MachineOperand *Src2 =
            TII->getNamedOperand(MI, AMDGPU::OpName::src2);
        if (!Src2->isReg())
          continue;
        unsigned SReg = Src2->getReg();
        if (TargetRegisterInfo::isVirtualRegister(SReg)) {
          MRI.setRegAllocationHint(SReg, 0, AMDGPU::VCC);
          continue;
        }
        if (SReg != AMDGPU::VCC)
          continue;
      }

      // Check for the bool flag output for instructions like V_ADD_I32_e64.
      const MachineOperand *SDst = TII->getNamedOperand(MI,
                                                        AMDGPU::OpName::sdst);

      // Check the carry-in operand for v_addc_u32_e64.
      const MachineOperand *Src2 = TII->getNamedOperand(MI,
                                                        AMDGPU::OpName::src2);

      if (SDst) {
        if (SDst->getReg() != AMDGPU::VCC) {
          if (TargetRegisterInfo::isVirtualRegister(SDst->getReg()))
            MRI.setRegAllocationHint(SDst->getReg(), 0, AMDGPU::VCC);
          continue;
        }

        // All of the instructions with carry outs also have an SGPR input in
        // src2.
        if (Src2 && Src2->getReg() != AMDGPU::VCC) {
          if (TargetRegisterInfo::isVirtualRegister(Src2->getReg()))
            MRI.setRegAllocationHint(Src2->getReg(), 0, AMDGPU::VCC);

          continue;
        }
      }

      // We can shrink this instruction
      LLVM_DEBUG(dbgs() << "Shrinking " << MI);

      MachineInstr *Inst32 = TII->buildShrunkInst(MI, Op32);
      ++NumInstructionsShrunk;

      // Copy extra operands not present in the instruction definition.
      copyExtraImplicitOps(*Inst32, MF, MI);

      MI.eraseFromParent();
      foldImmediates(*Inst32, TII, MRI);

      LLVM_DEBUG(dbgs() << "e32 MI = " << *Inst32 << '\n');
    }
  }
  return false;
}