llvm.org GIT mirror llvm / stable lib / CodeGen / SelectionDAG / FunctionLoweringInfo.cpp
stable

Tree @stable (Download .tar.gz)

FunctionLoweringInfo.cpp @stableraw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
//===-- FunctionLoweringInfo.cpp ------------------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This implements routines for translating functions from LLVM IR into
// Machine IR.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/FunctionLoweringInfo.h"
#include "llvm/CodeGen/Analysis.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/TargetFrameLowering.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/CodeGen/WasmEHFuncInfo.h"
#include "llvm/CodeGen/WinEHFuncInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetOptions.h"
#include <algorithm>
using namespace llvm;

#define DEBUG_TYPE "function-lowering-info"

/// isUsedOutsideOfDefiningBlock - Return true if this instruction is used by
/// PHI nodes or outside of the basic block that defines it, or used by a
/// switch or atomic instruction, which may expand to multiple basic blocks.
static bool isUsedOutsideOfDefiningBlock(const Instruction *I) {
  if (I->use_empty()) return false;
  if (isa<PHINode>(I)) return true;
  const BasicBlock *BB = I->getParent();
  for (const User *U : I->users())
    if (cast<Instruction>(U)->getParent() != BB || isa<PHINode>(U))
      return true;

  return false;
}

static ISD::NodeType getPreferredExtendForValue(const Value *V) {
  // For the users of the source value being used for compare instruction, if
  // the number of signed predicate is greater than unsigned predicate, we
  // prefer to use SIGN_EXTEND.
  //
  // With this optimization, we would be able to reduce some redundant sign or
  // zero extension instruction, and eventually more machine CSE opportunities
  // can be exposed.
  ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
  unsigned NumOfSigned = 0, NumOfUnsigned = 0;
  for (const User *U : V->users()) {
    if (const auto *CI = dyn_cast<CmpInst>(U)) {
      NumOfSigned += CI->isSigned();
      NumOfUnsigned += CI->isUnsigned();
    }
  }
  if (NumOfSigned > NumOfUnsigned)
    ExtendKind = ISD::SIGN_EXTEND;

  return ExtendKind;
}

void FunctionLoweringInfo::set(const Function &fn, MachineFunction &mf,
                               SelectionDAG *DAG) {
  Fn = &fn;
  MF = &mf;
  TLI = MF->getSubtarget().getTargetLowering();
  RegInfo = &MF->getRegInfo();
  const TargetFrameLowering *TFI = MF->getSubtarget().getFrameLowering();
  unsigned StackAlign = TFI->getStackAlignment();

  // Check whether the function can return without sret-demotion.
  SmallVector<ISD::OutputArg, 4> Outs;
  CallingConv::ID CC = Fn->getCallingConv();

  GetReturnInfo(CC, Fn->getReturnType(), Fn->getAttributes(), Outs, *TLI,
                mf.getDataLayout());
  CanLowerReturn =
      TLI->CanLowerReturn(CC, *MF, Fn->isVarArg(), Outs, Fn->getContext());

  // If this personality uses funclets, we need to do a bit more work.
  DenseMap<const AllocaInst *, TinyPtrVector<int *>> CatchObjects;
  EHPersonality Personality = classifyEHPersonality(
      Fn->hasPersonalityFn() ? Fn->getPersonalityFn() : nullptr);
  if (isFuncletEHPersonality(Personality)) {
    // Calculate state numbers if we haven't already.
    WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();
    if (Personality == EHPersonality::MSVC_CXX)
      calculateWinCXXEHStateNumbers(&fn, EHInfo);
    else if (isAsynchronousEHPersonality(Personality))
      calculateSEHStateNumbers(&fn, EHInfo);
    else if (Personality == EHPersonality::CoreCLR)
      calculateClrEHStateNumbers(&fn, EHInfo);

    // Map all BB references in the WinEH data to MBBs.
    for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
      for (WinEHHandlerType &H : TBME.HandlerArray) {
        if (const AllocaInst *AI = H.CatchObj.Alloca)
          CatchObjects.insert({AI, {}}).first->second.push_back(
              &H.CatchObj.FrameIndex);
        else
          H.CatchObj.FrameIndex = INT_MAX;
      }
    }
  }
  if (Personality == EHPersonality::Wasm_CXX) {
    WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
    calculateWasmEHInfo(&fn, EHInfo);
  }

  // Initialize the mapping of values to registers.  This is only set up for
  // instruction values that are used outside of the block that defines
  // them.
  for (const BasicBlock &BB : *Fn) {
    for (const Instruction &I : BB) {
      if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
        Type *Ty = AI->getAllocatedType();
        unsigned Align =
          std::max((unsigned)MF->getDataLayout().getPrefTypeAlignment(Ty),
                   AI->getAlignment());

        // Static allocas can be folded into the initial stack frame
        // adjustment. For targets that don't realign the stack, don't
        // do this if there is an extra alignment requirement.
        if (AI->isStaticAlloca() &&
            (TFI->isStackRealignable() || (Align <= StackAlign))) {
          const ConstantInt *CUI = cast<ConstantInt>(AI->getArraySize());
          uint64_t TySize = MF->getDataLayout().getTypeAllocSize(Ty);

          TySize *= CUI->getZExtValue();   // Get total allocated size.
          if (TySize == 0) TySize = 1; // Don't create zero-sized stack objects.
          int FrameIndex = INT_MAX;
          auto Iter = CatchObjects.find(AI);
          if (Iter != CatchObjects.end() && TLI->needsFixedCatchObjects()) {
            FrameIndex = MF->getFrameInfo().CreateFixedObject(
                TySize, 0, /*Immutable=*/false, /*isAliased=*/true);
            MF->getFrameInfo().setObjectAlignment(FrameIndex, Align);
          } else {
            FrameIndex =
                MF->getFrameInfo().CreateStackObject(TySize, Align, false, AI);
          }

          StaticAllocaMap[AI] = FrameIndex;
          // Update the catch handler information.
          if (Iter != CatchObjects.end()) {
            for (int *CatchObjPtr : Iter->second)
              *CatchObjPtr = FrameIndex;
          }
        } else {
          // FIXME: Overaligned static allocas should be grouped into
          // a single dynamic allocation instead of using a separate
          // stack allocation for each one.
          if (Align <= StackAlign)
            Align = 0;
          // Inform the Frame Information that we have variable-sized objects.
          MF->getFrameInfo().CreateVariableSizedObject(Align ? Align : 1, AI);
        }
      }

      // Look for inline asm that clobbers the SP register.
      if (isa<CallInst>(I) || isa<InvokeInst>(I)) {
        ImmutableCallSite CS(&I);
        if (isa<InlineAsm>(CS.getCalledValue())) {
          unsigned SP = TLI->getStackPointerRegisterToSaveRestore();
          const TargetRegisterInfo *TRI = MF->getSubtarget().getRegisterInfo();
          std::vector<TargetLowering::AsmOperandInfo> Ops =
              TLI->ParseConstraints(Fn->getParent()->getDataLayout(), TRI, CS);
          for (TargetLowering::AsmOperandInfo &Op : Ops) {
            if (Op.Type == InlineAsm::isClobber) {
              // Clobbers don't have SDValue operands, hence SDValue().
              TLI->ComputeConstraintToUse(Op, SDValue(), DAG);
              std::pair<unsigned, const TargetRegisterClass *> PhysReg =
                  TLI->getRegForInlineAsmConstraint(TRI, Op.ConstraintCode,
                                                    Op.ConstraintVT);
              if (PhysReg.first == SP)
                MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
            }
          }
        }
      }

      // Look for calls to the @llvm.va_start intrinsic. We can omit some
      // prologue boilerplate for variadic functions that don't examine their
      // arguments.
      if (const auto *II = dyn_cast<IntrinsicInst>(&I)) {
        if (II->getIntrinsicID() == Intrinsic::vastart)
          MF->getFrameInfo().setHasVAStart(true);
      }

      // If we have a musttail call in a variadic function, we need to ensure we
      // forward implicit register parameters.
      if (const auto *CI = dyn_cast<CallInst>(&I)) {
        if (CI->isMustTailCall() && Fn->isVarArg())
          MF->getFrameInfo().setHasMustTailInVarArgFunc(true);
      }

      // Mark values used outside their block as exported, by allocating
      // a virtual register for them.
      if (isUsedOutsideOfDefiningBlock(&I))
        if (!isa<AllocaInst>(I) || !StaticAllocaMap.count(cast<AllocaInst>(&I)))
          InitializeRegForValue(&I);

      // Decide the preferred extend type for a value.
      PreferredExtendType[&I] = getPreferredExtendForValue(&I);
    }
  }

  // Create an initial MachineBasicBlock for each LLVM BasicBlock in F.  This
  // also creates the initial PHI MachineInstrs, though none of the input
  // operands are populated.
  for (const BasicBlock &BB : *Fn) {
    // Don't create MachineBasicBlocks for imaginary EH pad blocks. These blocks
    // are really data, and no instructions can live here.
    if (BB.isEHPad()) {
      const Instruction *PadInst = BB.getFirstNonPHI();
      // If this is a non-landingpad EH pad, mark this function as using
      // funclets.
      // FIXME: SEH catchpads do not create EH scope/funclets, so we could avoid
      // setting this in such cases in order to improve frame layout.
      if (!isa<LandingPadInst>(PadInst)) {
        MF->setHasEHScopes(true);
        MF->setHasEHFunclets(true);
        MF->getFrameInfo().setHasOpaqueSPAdjustment(true);
      }
      if (isa<CatchSwitchInst>(PadInst)) {
        assert(&*BB.begin() == PadInst &&
               "WinEHPrepare failed to remove PHIs from imaginary BBs");
        continue;
      }
      if (isa<FuncletPadInst>(PadInst))
        assert(&*BB.begin() == PadInst && "WinEHPrepare failed to demote PHIs");
    }

    MachineBasicBlock *MBB = mf.CreateMachineBasicBlock(&BB);
    MBBMap[&BB] = MBB;
    MF->push_back(MBB);

    // Transfer the address-taken flag. This is necessary because there could
    // be multiple MachineBasicBlocks corresponding to one BasicBlock, and only
    // the first one should be marked.
    if (BB.hasAddressTaken())
      MBB->setHasAddressTaken();

    // Mark landing pad blocks.
    if (BB.isEHPad())
      MBB->setIsEHPad();

    // Create Machine PHI nodes for LLVM PHI nodes, lowering them as
    // appropriate.
    for (const PHINode &PN : BB.phis()) {
      if (PN.use_empty())
        continue;

      // Skip empty types
      if (PN.getType()->isEmptyTy())
        continue;

      DebugLoc DL = PN.getDebugLoc();
      unsigned PHIReg = ValueMap[&PN];
      assert(PHIReg && "PHI node does not have an assigned virtual register!");

      SmallVector<EVT, 4> ValueVTs;
      ComputeValueVTs(*TLI, MF->getDataLayout(), PN.getType(), ValueVTs);
      for (EVT VT : ValueVTs) {
        unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
        const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();
        for (unsigned i = 0; i != NumRegisters; ++i)
          BuildMI(MBB, DL, TII->get(TargetOpcode::PHI), PHIReg + i);
        PHIReg += NumRegisters;
      }
    }
  }

  if (isFuncletEHPersonality(Personality)) {
    WinEHFuncInfo &EHInfo = *MF->getWinEHFuncInfo();

    // Map all BB references in the WinEH data to MBBs.
    for (WinEHTryBlockMapEntry &TBME : EHInfo.TryBlockMap) {
      for (WinEHHandlerType &H : TBME.HandlerArray) {
        if (H.Handler)
          H.Handler = MBBMap[H.Handler.get<const BasicBlock *>()];
      }
    }
    for (CxxUnwindMapEntry &UME : EHInfo.CxxUnwindMap)
      if (UME.Cleanup)
        UME.Cleanup = MBBMap[UME.Cleanup.get<const BasicBlock *>()];
    for (SEHUnwindMapEntry &UME : EHInfo.SEHUnwindMap) {
      const auto *BB = UME.Handler.get<const BasicBlock *>();
      UME.Handler = MBBMap[BB];
    }
    for (ClrEHUnwindMapEntry &CME : EHInfo.ClrEHUnwindMap) {
      const auto *BB = CME.Handler.get<const BasicBlock *>();
      CME.Handler = MBBMap[BB];
    }
  }

  else if (Personality == EHPersonality::Wasm_CXX) {
    WasmEHFuncInfo &EHInfo = *MF->getWasmEHFuncInfo();
    // Map all BB references in the WinEH data to MBBs.
    DenseMap<BBOrMBB, BBOrMBB> NewMap;
    for (auto &KV : EHInfo.EHPadUnwindMap) {
      const auto *Src = KV.first.get<const BasicBlock *>();
      const auto *Dst = KV.second.get<const BasicBlock *>();
      NewMap[MBBMap[Src]] = MBBMap[Dst];
    }
    EHInfo.EHPadUnwindMap = std::move(NewMap);
  }
}

/// clear - Clear out all the function-specific state. This returns this
/// FunctionLoweringInfo to an empty state, ready to be used for a
/// different function.
void FunctionLoweringInfo::clear() {
  MBBMap.clear();
  ValueMap.clear();
  VirtReg2Value.clear();
  StaticAllocaMap.clear();
  LiveOutRegInfo.clear();
  VisitedBBs.clear();
  ArgDbgValues.clear();
  DescribedArgs.clear();
  ByValArgFrameIndexMap.clear();
  RegFixups.clear();
  RegsWithFixups.clear();
  StatepointStackSlots.clear();
  StatepointSpillMaps.clear();
  PreferredExtendType.clear();
}

/// CreateReg - Allocate a single virtual register for the given type.
unsigned FunctionLoweringInfo::CreateReg(MVT VT) {
  return RegInfo->createVirtualRegister(
      MF->getSubtarget().getTargetLowering()->getRegClassFor(VT));
}

/// CreateRegs - Allocate the appropriate number of virtual registers of
/// the correctly promoted or expanded types.  Assign these registers
/// consecutive vreg numbers and return the first assigned number.
///
/// In the case that the given value has struct or array type, this function
/// will assign registers for each member or element.
///
unsigned FunctionLoweringInfo::CreateRegs(Type *Ty) {
  const TargetLowering *TLI = MF->getSubtarget().getTargetLowering();

  SmallVector<EVT, 4> ValueVTs;
  ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);

  unsigned FirstReg = 0;
  for (unsigned Value = 0, e = ValueVTs.size(); Value != e; ++Value) {
    EVT ValueVT = ValueVTs[Value];
    MVT RegisterVT = TLI->getRegisterType(Ty->getContext(), ValueVT);

    unsigned NumRegs = TLI->getNumRegisters(Ty->getContext(), ValueVT);
    for (unsigned i = 0; i != NumRegs; ++i) {
      unsigned R = CreateReg(RegisterVT);
      if (!FirstReg) FirstReg = R;
    }
  }
  return FirstReg;
}

/// GetLiveOutRegInfo - Gets LiveOutInfo for a register, returning NULL if the
/// register is a PHI destination and the PHI's LiveOutInfo is not valid. If
/// the register's LiveOutInfo is for a smaller bit width, it is extended to
/// the larger bit width by zero extension. The bit width must be no smaller
/// than the LiveOutInfo's existing bit width.
const FunctionLoweringInfo::LiveOutInfo *
FunctionLoweringInfo::GetLiveOutRegInfo(unsigned Reg, unsigned BitWidth) {
  if (!LiveOutRegInfo.inBounds(Reg))
    return nullptr;

  LiveOutInfo *LOI = &LiveOutRegInfo[Reg];
  if (!LOI->IsValid)
    return nullptr;

  if (BitWidth > LOI->Known.getBitWidth()) {
    LOI->NumSignBits = 1;
    LOI->Known = LOI->Known.zext(BitWidth, false /* => any extend */);
  }

  return LOI;
}

/// ComputePHILiveOutRegInfo - Compute LiveOutInfo for a PHI's destination
/// register based on the LiveOutInfo of its operands.
void FunctionLoweringInfo::ComputePHILiveOutRegInfo(const PHINode *PN) {
  Type *Ty = PN->getType();
  if (!Ty->isIntegerTy() || Ty->isVectorTy())
    return;

  SmallVector<EVT, 1> ValueVTs;
  ComputeValueVTs(*TLI, MF->getDataLayout(), Ty, ValueVTs);
  assert(ValueVTs.size() == 1 &&
         "PHIs with non-vector integer types should have a single VT.");
  EVT IntVT = ValueVTs[0];

  if (TLI->getNumRegisters(PN->getContext(), IntVT) != 1)
    return;
  IntVT = TLI->getTypeToTransformTo(PN->getContext(), IntVT);
  unsigned BitWidth = IntVT.getSizeInBits();

  unsigned DestReg = ValueMap[PN];
  if (!TargetRegisterInfo::isVirtualRegister(DestReg))
    return;
  LiveOutRegInfo.grow(DestReg);
  LiveOutInfo &DestLOI = LiveOutRegInfo[DestReg];

  Value *V = PN->getIncomingValue(0);
  if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
    DestLOI.NumSignBits = 1;
    DestLOI.Known = KnownBits(BitWidth);
    return;
  }

  if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
    APInt Val = CI->getValue().zextOrTrunc(BitWidth);
    DestLOI.NumSignBits = Val.getNumSignBits();
    DestLOI.Known.Zero = ~Val;
    DestLOI.Known.One = Val;
  } else {
    assert(ValueMap.count(V) && "V should have been placed in ValueMap when its"
                                "CopyToReg node was created.");
    unsigned SrcReg = ValueMap[V];
    if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
      DestLOI.IsValid = false;
      return;
    }
    const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
    if (!SrcLOI) {
      DestLOI.IsValid = false;
      return;
    }
    DestLOI = *SrcLOI;
  }

  assert(DestLOI.Known.Zero.getBitWidth() == BitWidth &&
         DestLOI.Known.One.getBitWidth() == BitWidth &&
         "Masks should have the same bit width as the type.");

  for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i) {
    Value *V = PN->getIncomingValue(i);
    if (isa<UndefValue>(V) || isa<ConstantExpr>(V)) {
      DestLOI.NumSignBits = 1;
      DestLOI.Known = KnownBits(BitWidth);
      return;
    }

    if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
      APInt Val = CI->getValue().zextOrTrunc(BitWidth);
      DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, Val.getNumSignBits());
      DestLOI.Known.Zero &= ~Val;
      DestLOI.Known.One &= Val;
      continue;
    }

    assert(ValueMap.count(V) && "V should have been placed in ValueMap when "
                                "its CopyToReg node was created.");
    unsigned SrcReg = ValueMap[V];
    if (!TargetRegisterInfo::isVirtualRegister(SrcReg)) {
      DestLOI.IsValid = false;
      return;
    }
    const LiveOutInfo *SrcLOI = GetLiveOutRegInfo(SrcReg, BitWidth);
    if (!SrcLOI) {
      DestLOI.IsValid = false;
      return;
    }
    DestLOI.NumSignBits = std::min(DestLOI.NumSignBits, SrcLOI->NumSignBits);
    DestLOI.Known.Zero &= SrcLOI->Known.Zero;
    DestLOI.Known.One &= SrcLOI->Known.One;
  }
}

/// setArgumentFrameIndex - Record frame index for the byval
/// argument. This overrides previous frame index entry for this argument,
/// if any.
void FunctionLoweringInfo::setArgumentFrameIndex(const Argument *A,
                                                 int FI) {
  ByValArgFrameIndexMap[A] = FI;
}

/// getArgumentFrameIndex - Get frame index for the byval argument.
/// If the argument does not have any assigned frame index then 0 is
/// returned.
int FunctionLoweringInfo::getArgumentFrameIndex(const Argument *A) {
  auto I = ByValArgFrameIndexMap.find(A);
  if (I != ByValArgFrameIndexMap.end())
    return I->second;
  LLVM_DEBUG(dbgs() << "Argument does not have assigned frame index!\n");
  return INT_MAX;
}

unsigned FunctionLoweringInfo::getCatchPadExceptionPointerVReg(
    const Value *CPI, const TargetRegisterClass *RC) {
  MachineRegisterInfo &MRI = MF->getRegInfo();
  auto I = CatchPadExceptionPointers.insert({CPI, 0});
  unsigned &VReg = I.first->second;
  if (I.second)
    VReg = MRI.createVirtualRegister(RC);
  assert(VReg && "null vreg in exception pointer table!");
  return VReg;
}

unsigned
FunctionLoweringInfo::getOrCreateSwiftErrorVReg(const MachineBasicBlock *MBB,
                                                const Value *Val) {
  auto Key = std::make_pair(MBB, Val);
  auto It = SwiftErrorVRegDefMap.find(Key);
  // If this is the first use of this swifterror value in this basic block,
  // create a new virtual register.
  // After we processed all basic blocks we will satisfy this "upwards exposed
  // use" by inserting a copy or phi at the beginning of this block.
  if (It == SwiftErrorVRegDefMap.end()) {
    auto &DL = MF->getDataLayout();
    const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
    auto VReg = MF->getRegInfo().createVirtualRegister(RC);
    SwiftErrorVRegDefMap[Key] = VReg;
    SwiftErrorVRegUpwardsUse[Key] = VReg;
    return VReg;
  } else return It->second;
}

void FunctionLoweringInfo::setCurrentSwiftErrorVReg(
    const MachineBasicBlock *MBB, const Value *Val, unsigned VReg) {
  SwiftErrorVRegDefMap[std::make_pair(MBB, Val)] = VReg;
}

std::pair<unsigned, bool>
FunctionLoweringInfo::getOrCreateSwiftErrorVRegDefAt(const Instruction *I) {
  auto Key = PointerIntPair<const Instruction *, 1, bool>(I, true);
  auto It = SwiftErrorVRegDefUses.find(Key);
  if (It == SwiftErrorVRegDefUses.end()) {
    auto &DL = MF->getDataLayout();
    const TargetRegisterClass *RC = TLI->getRegClassFor(TLI->getPointerTy(DL));
    unsigned VReg =  MF->getRegInfo().createVirtualRegister(RC);
    SwiftErrorVRegDefUses[Key] = VReg;
    return std::make_pair(VReg, true);
  }
  return std::make_pair(It->second, false);
}

std::pair<unsigned, bool>
FunctionLoweringInfo::getOrCreateSwiftErrorVRegUseAt(const Instruction *I, const MachineBasicBlock *MBB, const Value *Val) {
  auto Key = PointerIntPair<const Instruction *, 1, bool>(I, false);
  auto It = SwiftErrorVRegDefUses.find(Key);
  if (It == SwiftErrorVRegDefUses.end()) {
    unsigned VReg = getOrCreateSwiftErrorVReg(MBB, Val);
    SwiftErrorVRegDefUses[Key] = VReg;
    return std::make_pair(VReg, true);
  }
  return std::make_pair(It->second, false);
}

const Value *
FunctionLoweringInfo::getValueFromVirtualReg(unsigned Vreg) {
  if (VirtReg2Value.empty()) {
    SmallVector<EVT, 4> ValueVTs;
    for (auto &P : ValueMap) {
      ValueVTs.clear();
      ComputeValueVTs(*TLI, Fn->getParent()->getDataLayout(),
                      P.first->getType(), ValueVTs);
      unsigned Reg = P.second;
      for (EVT VT : ValueVTs) {
        unsigned NumRegisters = TLI->getNumRegisters(Fn->getContext(), VT);
        for (unsigned i = 0, e = NumRegisters; i != e; ++i)
          VirtReg2Value[Reg++] = P.first;
      }
    }
  }
  return VirtReg2Value.lookup(Vreg);
}