llvm.org GIT mirror llvm / stable lib / CodeGen / InterleavedLoadCombinePass.cpp
stable

Tree @stable (Download .tar.gz)

InterleavedLoadCombinePass.cpp @stableraw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
//===- InterleavedLoadCombine.cpp - Combine Interleaved Loads ---*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// \file
//
// This file defines the interleaved-load-combine pass. The pass searches for
// ShuffleVectorInstruction that execute interleaving loads. If a matching
// pattern is found, it adds a combined load and further instructions in a
// pattern that is detectable by InterleavedAccesPass. The old instructions are
// left dead to be removed later. The pass is specifically designed to be
// executed just before InterleavedAccesPass to find any left-over instances
// that are not detected within former passes.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/MemorySSA.h"
#include "llvm/Analysis/MemorySSAUpdater.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetLowering.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"

#include <algorithm>
#include <cassert>
#include <list>

using namespace llvm;

#define DEBUG_TYPE "interleaved-load-combine"

namespace {

/// Statistic counter
STATISTIC(NumInterleavedLoadCombine, "Number of combined loads");

/// Option to disable the pass
static cl::opt<bool> DisableInterleavedLoadCombine(
    "disable-" DEBUG_TYPE, cl::init(false), cl::Hidden,
    cl::desc("Disable combining of interleaved loads"));

struct VectorInfo;

struct InterleavedLoadCombineImpl {
public:
  InterleavedLoadCombineImpl(Function &F, DominatorTree &DT, MemorySSA &MSSA,
                             TargetMachine &TM)
      : F(F), DT(DT), MSSA(MSSA),
        TLI(*TM.getSubtargetImpl(F)->getTargetLowering()),
        TTI(TM.getTargetTransformInfo(F)) {}

  /// Scan the function for interleaved load candidates and execute the
  /// replacement if applicable.
  bool run();

private:
  /// Function this pass is working on
  Function &F;

  /// Dominator Tree Analysis
  DominatorTree &DT;

  /// Memory Alias Analyses
  MemorySSA &MSSA;

  /// Target Lowering Information
  const TargetLowering &TLI;

  /// Target Transform Information
  const TargetTransformInfo TTI;

  /// Find the instruction in sets LIs that dominates all others, return nullptr
  /// if there is none.
  LoadInst *findFirstLoad(const std::set<LoadInst *> &LIs);

  /// Replace interleaved load candidates. It does additional
  /// analyses if this makes sense. Returns true on success and false
  /// of nothing has been changed.
  bool combine(std::list<VectorInfo> &InterleavedLoad,
               OptimizationRemarkEmitter &ORE);

  /// Given a set of VectorInfo containing candidates for a given interleave
  /// factor, find a set that represents a 'factor' interleaved load.
  bool findPattern(std::list<VectorInfo> &Candidates,
                   std::list<VectorInfo> &InterleavedLoad, unsigned Factor,
                   const DataLayout &DL);
}; // InterleavedLoadCombine

/// First Order Polynomial on an n-Bit Integer Value
///
/// Polynomial(Value) = Value * B + A + E*2^(n-e)
///
/// A and B are the coefficients. E*2^(n-e) is an error within 'e' most
/// significant bits. It is introduced if an exact computation cannot be proven
/// (e.q. division by 2).
///
/// As part of this optimization multiple loads will be combined. It necessary
/// to prove that loads are within some relative offset to each other. This
/// class is used to prove relative offsets of values loaded from memory.
///
/// Representing an integer in this form is sound since addition in two's
/// complement is associative (trivial) and multiplication distributes over the
/// addition (see Proof(1) in Polynomial::mul). Further, both operations
/// commute.
//
// Example:
// declare @fn(i64 %IDX, <4 x float>* %PTR) {
//   %Pa1 = add i64 %IDX, 2
//   %Pa2 = lshr i64 %Pa1, 1
//   %Pa3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pa2
//   %Va = load <4 x float>, <4 x float>* %Pa3
//
//   %Pb1 = add i64 %IDX, 4
//   %Pb2 = lshr i64 %Pb1, 1
//   %Pb3 = getelementptr inbounds <4 x float>, <4 x float>* %PTR, i64 %Pb2
//   %Vb = load <4 x float>, <4 x float>* %Pb3
// ... }
//
// The goal is to prove that two loads load consecutive addresses.
//
// In this case the polynomials are constructed by the following
// steps.
//
// The number tag #e specifies the error bits.
//
// Pa_0 = %IDX              #0
// Pa_1 = %IDX + 2          #0 | add 2
// Pa_2 = %IDX/2 + 1        #1 | lshr 1
// Pa_3 = %IDX/2 + 1        #1 | GEP, step signext to i64
// Pa_4 = (%IDX/2)*16 + 16  #0 | GEP, multiply index by sizeof(4) for floats
// Pa_5 = (%IDX/2)*16 + 16  #0 | GEP, add offset of leading components
//
// Pb_0 = %IDX              #0
// Pb_1 = %IDX + 4          #0 | add 2
// Pb_2 = %IDX/2 + 2        #1 | lshr 1
// Pb_3 = %IDX/2 + 2        #1 | GEP, step signext to i64
// Pb_4 = (%IDX/2)*16 + 32  #0 | GEP, multiply index by sizeof(4) for floats
// Pb_5 = (%IDX/2)*16 + 16  #0 | GEP, add offset of leading components
//
// Pb_5 - Pa_5 = 16         #0 | subtract to get the offset
//
// Remark: %PTR is not maintained within this class. So in this instance the
// offset of 16 can only be assumed if the pointers are equal.
//
class Polynomial {
  /// Operations on B
  enum BOps {
    LShr,
    Mul,
    SExt,
    Trunc,
  };

  /// Number of Error Bits e
  unsigned ErrorMSBs;

  /// Value
  Value *V;

  /// Coefficient B
  SmallVector<std::pair<BOps, APInt>, 4> B;

  /// Coefficient A
  APInt A;

public:
  Polynomial(Value *V) : ErrorMSBs((unsigned)-1), V(V), B(), A() {
    IntegerType *Ty = dyn_cast<IntegerType>(V->getType());
    if (Ty) {
      ErrorMSBs = 0;
      this->V = V;
      A = APInt(Ty->getBitWidth(), 0);
    }
  }

  Polynomial(const APInt &A, unsigned ErrorMSBs = 0)
      : ErrorMSBs(ErrorMSBs), V(NULL), B(), A(A) {}

  Polynomial(unsigned BitWidth, uint64_t A, unsigned ErrorMSBs = 0)
      : ErrorMSBs(ErrorMSBs), V(NULL), B(), A(BitWidth, A) {}

  Polynomial() : ErrorMSBs((unsigned)-1), V(NULL), B(), A() {}

  /// Increment and clamp the number of undefined bits.
  void incErrorMSBs(unsigned amt) {
    if (ErrorMSBs == (unsigned)-1)
      return;

    ErrorMSBs += amt;
    if (ErrorMSBs > A.getBitWidth())
      ErrorMSBs = A.getBitWidth();
  }

  /// Decrement and clamp the number of undefined bits.
  void decErrorMSBs(unsigned amt) {
    if (ErrorMSBs == (unsigned)-1)
      return;

    if (ErrorMSBs > amt)
      ErrorMSBs -= amt;
    else
      ErrorMSBs = 0;
  }

  /// Apply an add on the polynomial
  Polynomial &add(const APInt &C) {
    // Note: Addition is associative in two's complement even when in case of
    // signed overflow.
    //
    // Error bits can only propagate into higher significant bits. As these are
    // already regarded as undefined, there is no change.
    //
    // Theorem: Adding a constant to a polynomial does not change the error
    // term.
    //
    // Proof:
    //
    //   Since the addition is associative and commutes:
    //
    //   (B + A + E*2^(n-e)) + C = B + (A + C) + E*2^(n-e)
    // [qed]

    if (C.getBitWidth() != A.getBitWidth()) {
      ErrorMSBs = (unsigned)-1;
      return *this;
    }

    A += C;
    return *this;
  }

  /// Apply a multiplication onto the polynomial.
  Polynomial &mul(const APInt &C) {
    // Note: Multiplication distributes over the addition
    //
    // Theorem: Multiplication distributes over the addition
    //
    // Proof(1):
    //
    //   (B+A)*C =-
    //        = (B + A) + (B + A) + .. {C Times}
    //         addition is associative and commutes, hence
    //        = B + B + .. {C Times} .. + A + A + .. {C times}
    //        = B*C + A*C
    //   (see (function add) for signed values and overflows)
    // [qed]
    //
    // Theorem: If C has c trailing zeros, errors bits in A or B are shifted out
    // to the left.
    //
    // Proof(2):
    //
    //   Let B' and A' be the n-Bit inputs with some unknown errors EA,
    //   EB at e leading bits. B' and A' can be written down as:
    //
    //     B' = B + 2^(n-e)*EB
    //     A' = A + 2^(n-e)*EA
    //
    //   Let C' be an input with c trailing zero bits. C' can be written as
    //
    //     C' = C*2^c
    //
    //   Therefore we can compute the result by using distributivity and
    //   commutativity.
    //
    //     (B'*C' + A'*C') = [B + 2^(n-e)*EB] * C' + [A + 2^(n-e)*EA] * C' =
    //                     = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
    //                     = (B'+A') * C' =
    //                     = [B + 2^(n-e)*EB + A + 2^(n-e)*EA] * C' =
    //                     = [B + A + 2^(n-e)*EB + 2^(n-e)*EA] * C' =
    //                     = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C' =
    //                     = (B + A) * C' + [2^(n-e)*EB + 2^(n-e)*EA)] * C*2^c =
    //                     = (B + A) * C' + C*(EB + EA)*2^(n-e)*2^c =
    //
    //   Let EC be the final error with EC = C*(EB + EA)
    //
    //                     = (B + A)*C' + EC*2^(n-e)*2^c =
    //                     = (B + A)*C' + EC*2^(n-(e-c))
    //
    //   Since EC is multiplied by 2^(n-(e-c)) the resulting error contains c
    //   less error bits than the input. c bits are shifted out to the left.
    // [qed]

    if (C.getBitWidth() != A.getBitWidth()) {
      ErrorMSBs = (unsigned)-1;
      return *this;
    }

    // Multiplying by one is a no-op.
    if (C.isOneValue()) {
      return *this;
    }

    // Multiplying by zero removes the coefficient B and defines all bits.
    if (C.isNullValue()) {
      ErrorMSBs = 0;
      deleteB();
    }

    // See Proof(2): Trailing zero bits indicate a left shift. This removes
    // leading bits from the result even if they are undefined.
    decErrorMSBs(C.countTrailingZeros());

    A *= C;
    pushBOperation(Mul, C);
    return *this;
  }

  /// Apply a logical shift right on the polynomial
  Polynomial &lshr(const APInt &C) {
    // Theorem(1): (B + A + E*2^(n-e)) >> 1 => (B >> 1) + (A >> 1) + E'*2^(n-e')
    //          where
    //             e' = e + 1,
    //             E is a e-bit number,
    //             E' is a e'-bit number,
    //   holds under the following precondition:
    //          pre(1): A % 2 = 0
    //          pre(2): e < n, (see Theorem(2) for the trivial case with e=n)
    //   where >> expresses a logical shift to the right, with adding zeros.
    //
    //  We need to show that for every, E there is a E'
    //
    //  B = b_h * 2^(n-1) + b_m * 2 + b_l
    //  A = a_h * 2^(n-1) + a_m * 2         (pre(1))
    //
    //  where a_h, b_h, b_l are single bits, and a_m, b_m are (n-2) bit numbers
    //
    //  Let X = (B + A + E*2^(n-e)) >> 1
    //  Let Y = (B >> 1) + (A >> 1) + E*2^(n-e) >> 1
    //
    //    X = [B + A + E*2^(n-e)] >> 1 =
    //      = [  b_h * 2^(n-1) + b_m * 2 + b_l +
    //         + a_h * 2^(n-1) + a_m * 2 +
    //         + E * 2^(n-e) ] >> 1 =
    //
    //    The sum is built by putting the overflow of [a_m + b+n] into the term
    //    2^(n-1). As there are no more bits beyond 2^(n-1) the overflow within
    //    this bit is discarded. This is expressed by % 2.
    //
    //    The bit in position 0 cannot overflow into the term (b_m + a_m).
    //
    //      = [  ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-1) +
    //         + ((b_m + a_m) % 2^(n-2)) * 2 +
    //         + b_l + E * 2^(n-e) ] >> 1 =
    //
    //    The shift is computed by dividing the terms by 2 and by cutting off
    //    b_l.
    //
    //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
    //         + ((b_m + a_m) % 2^(n-2)) +
    //         + E * 2^(n-(e+1)) =
    //
    //    by the definition in the Theorem e+1 = e'
    //
    //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
    //         + ((b_m + a_m) % 2^(n-2)) +
    //         + E * 2^(n-e') =
    //
    //    Compute Y by applying distributivity first
    //
    //    Y =  (B >> 1) + (A >> 1) + E*2^(n-e') =
    //      =    (b_h * 2^(n-1) + b_m * 2 + b_l) >> 1 +
    //         + (a_h * 2^(n-1) + a_m * 2) >> 1 +
    //         + E * 2^(n-e) >> 1 =
    //
    //    Again, the shift is computed by dividing the terms by 2 and by cutting
    //    off b_l.
    //
    //      =     b_h * 2^(n-2) + b_m +
    //         +  a_h * 2^(n-2) + a_m +
    //         +  E * 2^(n-(e+1)) =
    //
    //    Again, the sum is built by putting the overflow of [a_m + b+n] into
    //    the term 2^(n-1). But this time there is room for a second bit in the
    //    term 2^(n-2) we add this bit to a new term and denote it o_h in a
    //    second step.
    //
    //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] >> 1) * 2^(n-1) +
    //         + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
    //         + ((b_m + a_m) % 2^(n-2)) +
    //         + E * 2^(n-(e+1)) =
    //
    //    Let o_h = [b_h + a_h + (b_m + a_m) >> (n-2)] >> 1
    //    Further replace e+1 by e'.
    //
    //      =    o_h * 2^(n-1) +
    //         + ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
    //         + ((b_m + a_m) % 2^(n-2)) +
    //         + E * 2^(n-e') =
    //
    //    Move o_h into the error term and construct E'. To ensure that there is
    //    no 2^x with negative x, this step requires pre(2) (e < n).
    //
    //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
    //         + ((b_m + a_m) % 2^(n-2)) +
    //         + o_h * 2^(e'-1) * 2^(n-e') +               | pre(2), move 2^(e'-1)
    //                                                     | out of the old exponent
    //         + E * 2^(n-e') =
    //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
    //         + ((b_m + a_m) % 2^(n-2)) +
    //         + [o_h * 2^(e'-1) + E] * 2^(n-e') +         | move 2^(e'-1) out of
    //                                                     | the old exponent
    //
    //    Let E' = o_h * 2^(e'-1) + E
    //
    //      =    ([b_h + a_h + (b_m + a_m) >> (n-2)] % 2) * 2^(n-2) +
    //         + ((b_m + a_m) % 2^(n-2)) +
    //         + E' * 2^(n-e')
    //
    //    Because X and Y are distinct only in there error terms and E' can be
    //    constructed as shown the theorem holds.
    // [qed]
    //
    // For completeness in case of the case e=n it is also required to show that
    // distributivity can be applied.
    //
    // In this case Theorem(1) transforms to (the pre-condition on A can also be
    // dropped)
    //
    // Theorem(2): (B + A + E) >> 1 => (B >> 1) + (A >> 1) + E'
    //          where
    //             A, B, E, E' are two's complement numbers with the same bit
    //             width
    //
    //   Let A + B + E = X
    //   Let (B >> 1) + (A >> 1) = Y
    //
    //   Therefore we need to show that for every X and Y there is an E' which
    //   makes the equation
    //
    //     X = Y + E'
    //
    //   hold. This is trivially the case for E' = X - Y.
    //
    // [qed]
    //
    // Remark: Distributing lshr with and arbitrary number n can be expressed as
    //   ((((B + A) lshr 1) lshr 1) ... ) {n times}.
    // This construction induces n additional error bits at the left.

    if (C.getBitWidth() != A.getBitWidth()) {
      ErrorMSBs = (unsigned)-1;
      return *this;
    }

    if (C.isNullValue())
      return *this;

    // Test if the result will be zero
    unsigned shiftAmt = C.getZExtValue();
    if (shiftAmt >= C.getBitWidth())
      return mul(APInt(C.getBitWidth(), 0));

    // The proof that shiftAmt LSBs are zero for at least one summand is only
    // possible for the constant number.
    //
    // If this can be proven add shiftAmt to the error counter
    // `ErrorMSBs`. Otherwise set all bits as undefined.
    if (A.countTrailingZeros() < shiftAmt)
      ErrorMSBs = A.getBitWidth();
    else
      incErrorMSBs(shiftAmt);

    // Apply the operation.
    pushBOperation(LShr, C);
    A = A.lshr(shiftAmt);

    return *this;
  }

  /// Apply a sign-extend or truncate operation on the polynomial.
  Polynomial &sextOrTrunc(unsigned n) {
    if (n < A.getBitWidth()) {
      // Truncate: Clearly undefined Bits on the MSB side are removed
      // if there are any.
      decErrorMSBs(A.getBitWidth() - n);
      A = A.trunc(n);
      pushBOperation(Trunc, APInt(sizeof(n) * 8, n));
    }
    if (n > A.getBitWidth()) {
      // Extend: Clearly extending first and adding later is different
      // to adding first and extending later in all extended bits.
      incErrorMSBs(n - A.getBitWidth());
      A = A.sext(n);
      pushBOperation(SExt, APInt(sizeof(n) * 8, n));
    }

    return *this;
  }

  /// Test if there is a coefficient B.
  bool isFirstOrder() const { return V != nullptr; }

  /// Test coefficient B of two Polynomials are equal.
  bool isCompatibleTo(const Polynomial &o) const {
    // The polynomial use different bit width.
    if (A.getBitWidth() != o.A.getBitWidth())
      return false;

    // If neither Polynomial has the Coefficient B.
    if (!isFirstOrder() && !o.isFirstOrder())
      return true;

    // The index variable is different.
    if (V != o.V)
      return false;

    // Check the operations.
    if (B.size() != o.B.size())
      return false;

    auto ob = o.B.begin();
    for (auto &b : B) {
      if (b != *ob)
        return false;
      ob++;
    }

    return true;
  }

  /// Subtract two polynomials, return an undefined polynomial if
  /// subtraction is not possible.
  Polynomial operator-(const Polynomial &o) const {
    // Return an undefined polynomial if incompatible.
    if (!isCompatibleTo(o))
      return Polynomial();

    // If the polynomials are compatible (meaning they have the same
    // coefficient on B), B is eliminated. Thus a polynomial solely
    // containing A is returned
    return Polynomial(A - o.A, std::max(ErrorMSBs, o.ErrorMSBs));
  }

  /// Subtract a constant from a polynomial,
  Polynomial operator-(uint64_t C) const {
    Polynomial Result(*this);
    Result.A -= C;
    return Result;
  }

  /// Add a constant to a polynomial,
  Polynomial operator+(uint64_t C) const {
    Polynomial Result(*this);
    Result.A += C;
    return Result;
  }

  /// Returns true if it can be proven that two Polynomials are equal.
  bool isProvenEqualTo(const Polynomial &o) {
    // Subtract both polynomials and test if it is fully defined and zero.
    Polynomial r = *this - o;
    return (r.ErrorMSBs == 0) && (!r.isFirstOrder()) && (r.A.isNullValue());
  }

  /// Print the polynomial into a stream.
  void print(raw_ostream &OS) const {
    OS << "[{#ErrBits:" << ErrorMSBs << "} ";

    if (V) {
      for (auto b : B)
        OS << "(";
      OS << "(" << *V << ") ";

      for (auto b : B) {
        switch (b.first) {
        case LShr:
          OS << "LShr ";
          break;
        case Mul:
          OS << "Mul ";
          break;
        case SExt:
          OS << "SExt ";
          break;
        case Trunc:
          OS << "Trunc ";
          break;
        }

        OS << b.second << ") ";
      }
    }

    OS << "+ " << A << "]";
  }

private:
  void deleteB() {
    V = nullptr;
    B.clear();
  }

  void pushBOperation(const BOps Op, const APInt &C) {
    if (isFirstOrder()) {
      B.push_back(std::make_pair(Op, C));
      return;
    }
  }
};

#ifndef NDEBUG
static raw_ostream &operator<<(raw_ostream &OS, const Polynomial &S) {
  S.print(OS);
  return OS;
}
#endif

/// VectorInfo stores abstract the following information for each vector
/// element:
///
/// 1) The the memory address loaded into the element as Polynomial
/// 2) a set of load instruction necessary to construct the vector,
/// 3) a set of all other instructions that are necessary to create the vector and
/// 4) a pointer value that can be used as relative base for all elements.
struct VectorInfo {
private:
  VectorInfo(const VectorInfo &c) : VTy(c.VTy) {
    llvm_unreachable(
        "Copying VectorInfo is neither implemented nor necessary,");
  }

public:
  /// Information of a Vector Element
  struct ElementInfo {
    /// Offset Polynomial.
    Polynomial Ofs;

    /// The Load Instruction used to Load the entry. LI is null if the pointer
    /// of the load instruction does not point on to the entry
    LoadInst *LI;

    ElementInfo(Polynomial Offset = Polynomial(), LoadInst *LI = nullptr)
        : Ofs(Offset), LI(LI) {}
  };

  /// Basic-block the load instructions are within
  BasicBlock *BB;

  /// Pointer value of all participation load instructions
  Value *PV;

  /// Participating load instructions
  std::set<LoadInst *> LIs;

  /// Participating instructions
  std::set<Instruction *> Is;

  /// Final shuffle-vector instruction
  ShuffleVectorInst *SVI;

  /// Information of the offset for each vector element
  ElementInfo *EI;

  /// Vector Type
  VectorType *const VTy;

  VectorInfo(VectorType *VTy)
      : BB(nullptr), PV(nullptr), LIs(), Is(), SVI(nullptr), VTy(VTy) {
    EI = new ElementInfo[VTy->getNumElements()];
  }

  virtual ~VectorInfo() { delete[] EI; }

  unsigned getDimension() const { return VTy->getNumElements(); }

  /// Test if the VectorInfo can be part of an interleaved load with the
  /// specified factor.
  ///
  /// \param Factor of the interleave
  /// \param DL Targets Datalayout
  ///
  /// \returns true if this is possible and false if not
  bool isInterleaved(unsigned Factor, const DataLayout &DL) const {
    unsigned Size = DL.getTypeAllocSize(VTy->getElementType());
    for (unsigned i = 1; i < getDimension(); i++) {
      if (!EI[i].Ofs.isProvenEqualTo(EI[0].Ofs + i * Factor * Size)) {
        return false;
      }
    }
    return true;
  }

  /// Recursively computes the vector information stored in V.
  ///
  /// This function delegates the work to specialized implementations
  ///
  /// \param V Value to operate on
  /// \param Result Result of the computation
  ///
  /// \returns false if no sensible information can be gathered.
  static bool compute(Value *V, VectorInfo &Result, const DataLayout &DL) {
    ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(V);
    if (SVI)
      return computeFromSVI(SVI, Result, DL);
    LoadInst *LI = dyn_cast<LoadInst>(V);
    if (LI)
      return computeFromLI(LI, Result, DL);
    BitCastInst *BCI = dyn_cast<BitCastInst>(V);
    if (BCI)
      return computeFromBCI(BCI, Result, DL);
    return false;
  }

  /// BitCastInst specialization to compute the vector information.
  ///
  /// \param BCI BitCastInst to operate on
  /// \param Result Result of the computation
  ///
  /// \returns false if no sensible information can be gathered.
  static bool computeFromBCI(BitCastInst *BCI, VectorInfo &Result,
                             const DataLayout &DL) {
    Instruction *Op = dyn_cast<Instruction>(BCI->getOperand(0));

    if (!Op)
      return false;

    VectorType *VTy = dyn_cast<VectorType>(Op->getType());
    if (!VTy)
      return false;

    // We can only cast from large to smaller vectors
    if (Result.VTy->getNumElements() % VTy->getNumElements())
      return false;

    unsigned Factor = Result.VTy->getNumElements() / VTy->getNumElements();
    unsigned NewSize = DL.getTypeAllocSize(Result.VTy->getElementType());
    unsigned OldSize = DL.getTypeAllocSize(VTy->getElementType());

    if (NewSize * Factor != OldSize)
      return false;

    VectorInfo Old(VTy);
    if (!compute(Op, Old, DL))
      return false;

    for (unsigned i = 0; i < Result.VTy->getNumElements(); i += Factor) {
      for (unsigned j = 0; j < Factor; j++) {
        Result.EI[i + j] =
            ElementInfo(Old.EI[i / Factor].Ofs + j * NewSize,
                        j == 0 ? Old.EI[i / Factor].LI : nullptr);
      }
    }

    Result.BB = Old.BB;
    Result.PV = Old.PV;
    Result.LIs.insert(Old.LIs.begin(), Old.LIs.end());
    Result.Is.insert(Old.Is.begin(), Old.Is.end());
    Result.Is.insert(BCI);
    Result.SVI = nullptr;

    return true;
  }

  /// ShuffleVectorInst specialization to compute vector information.
  ///
  /// \param SVI ShuffleVectorInst to operate on
  /// \param Result Result of the computation
  ///
  /// Compute the left and the right side vector information and merge them by
  /// applying the shuffle operation. This function also ensures that the left
  /// and right side have compatible loads. This means that all loads are with
  /// in the same basic block and are based on the same pointer.
  ///
  /// \returns false if no sensible information can be gathered.
  static bool computeFromSVI(ShuffleVectorInst *SVI, VectorInfo &Result,
                             const DataLayout &DL) {
    VectorType *ArgTy = dyn_cast<VectorType>(SVI->getOperand(0)->getType());
    assert(ArgTy && "ShuffleVector Operand is not a VectorType");

    // Compute the left hand vector information.
    VectorInfo LHS(ArgTy);
    if (!compute(SVI->getOperand(0), LHS, DL))
      LHS.BB = nullptr;

    // Compute the right hand vector information.
    VectorInfo RHS(ArgTy);
    if (!compute(SVI->getOperand(1), RHS, DL))
      RHS.BB = nullptr;

    // Neither operand produced sensible results?
    if (!LHS.BB && !RHS.BB)
      return false;
    // Only RHS produced sensible results?
    else if (!LHS.BB) {
      Result.BB = RHS.BB;
      Result.PV = RHS.PV;
    }
    // Only LHS produced sensible results?
    else if (!RHS.BB) {
      Result.BB = LHS.BB;
      Result.PV = LHS.PV;
    }
    // Both operands produced sensible results?
    else if ((LHS.BB == RHS.BB) && (LHS.PV == RHS.PV)) {
      Result.BB = LHS.BB;
      Result.PV = LHS.PV;
    }
    // Both operands produced sensible results but they are incompatible.
    else {
      return false;
    }

    // Merge and apply the operation on the offset information.
    if (LHS.BB) {
      Result.LIs.insert(LHS.LIs.begin(), LHS.LIs.end());
      Result.Is.insert(LHS.Is.begin(), LHS.Is.end());
    }
    if (RHS.BB) {
      Result.LIs.insert(RHS.LIs.begin(), RHS.LIs.end());
      Result.Is.insert(RHS.Is.begin(), RHS.Is.end());
    }
    Result.Is.insert(SVI);
    Result.SVI = SVI;

    int j = 0;
    for (int i : SVI->getShuffleMask()) {
      assert((i < 2 * (signed)ArgTy->getNumElements()) &&
             "Invalid ShuffleVectorInst (index out of bounds)");

      if (i < 0)
        Result.EI[j] = ElementInfo();
      else if (i < (signed)ArgTy->getNumElements()) {
        if (LHS.BB)
          Result.EI[j] = LHS.EI[i];
        else
          Result.EI[j] = ElementInfo();
      } else {
        if (RHS.BB)
          Result.EI[j] = RHS.EI[i - ArgTy->getNumElements()];
        else
          Result.EI[j] = ElementInfo();
      }
      j++;
    }

    return true;
  }

  /// LoadInst specialization to compute vector information.
  ///
  /// This function also acts as abort condition to the recursion.
  ///
  /// \param LI LoadInst to operate on
  /// \param Result Result of the computation
  ///
  /// \returns false if no sensible information can be gathered.
  static bool computeFromLI(LoadInst *LI, VectorInfo &Result,
                            const DataLayout &DL) {
    Value *BasePtr;
    Polynomial Offset;

    if (LI->isVolatile())
      return false;

    if (LI->isAtomic())
      return false;

    // Get the base polynomial
    computePolynomialFromPointer(*LI->getPointerOperand(), Offset, BasePtr, DL);

    Result.BB = LI->getParent();
    Result.PV = BasePtr;
    Result.LIs.insert(LI);
    Result.Is.insert(LI);

    for (unsigned i = 0; i < Result.getDimension(); i++) {
      Value *Idx[2] = {
          ConstantInt::get(Type::getInt32Ty(LI->getContext()), 0),
          ConstantInt::get(Type::getInt32Ty(LI->getContext()), i),
      };
      int64_t Ofs = DL.getIndexedOffsetInType(Result.VTy, makeArrayRef(Idx, 2));
      Result.EI[i] = ElementInfo(Offset + Ofs, i == 0 ? LI : nullptr);
    }

    return true;
  }

  /// Recursively compute polynomial of a value.
  ///
  /// \param BO Input binary operation
  /// \param Result Result polynomial
  static void computePolynomialBinOp(BinaryOperator &BO, Polynomial &Result) {
    Value *LHS = BO.getOperand(0);
    Value *RHS = BO.getOperand(1);

    // Find the RHS Constant if any
    ConstantInt *C = dyn_cast<ConstantInt>(RHS);
    if ((!C) && BO.isCommutative()) {
      C = dyn_cast<ConstantInt>(LHS);
      if (C)
        std::swap(LHS, RHS);
    }

    switch (BO.getOpcode()) {
    case Instruction::Add:
      if (!C)
        break;

      computePolynomial(*LHS, Result);
      Result.add(C->getValue());
      return;

    case Instruction::LShr:
      if (!C)
        break;

      computePolynomial(*LHS, Result);
      Result.lshr(C->getValue());
      return;

    default:
      break;
    }

    Result = Polynomial(&BO);
  }

  /// Recursively compute polynomial of a value
  ///
  /// \param V input value
  /// \param Result result polynomial
  static void computePolynomial(Value &V, Polynomial &Result) {
    if (isa<BinaryOperator>(&V))
      computePolynomialBinOp(*dyn_cast<BinaryOperator>(&V), Result);
    else
      Result = Polynomial(&V);
  }

  /// Compute the Polynomial representation of a Pointer type.
  ///
  /// \param Ptr input pointer value
  /// \param Result result polynomial
  /// \param BasePtr pointer the polynomial is based on
  /// \param DL Datalayout of the target machine
  static void computePolynomialFromPointer(Value &Ptr, Polynomial &Result,
                                           Value *&BasePtr,
                                           const DataLayout &DL) {
    // Not a pointer type? Return an undefined polynomial
    PointerType *PtrTy = dyn_cast<PointerType>(Ptr.getType());
    if (!PtrTy) {
      Result = Polynomial();
      BasePtr = nullptr;
      return;
    }
    unsigned PointerBits =
        DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace());

    /// Skip pointer casts. Return Zero polynomial otherwise
    if (isa<CastInst>(&Ptr)) {
      CastInst &CI = *cast<CastInst>(&Ptr);
      switch (CI.getOpcode()) {
      case Instruction::BitCast:
        computePolynomialFromPointer(*CI.getOperand(0), Result, BasePtr, DL);
        break;
      default:
        BasePtr = &Ptr;
        Polynomial(PointerBits, 0);
        break;
      }
    }
    /// Resolve GetElementPtrInst.
    else if (isa<GetElementPtrInst>(&Ptr)) {
      GetElementPtrInst &GEP = *cast<GetElementPtrInst>(&Ptr);

      APInt BaseOffset(PointerBits, 0);

      // Check if we can compute the Offset with accumulateConstantOffset
      if (GEP.accumulateConstantOffset(DL, BaseOffset)) {
        Result = Polynomial(BaseOffset);
        BasePtr = GEP.getPointerOperand();
        return;
      } else {
        // Otherwise we allow that the last index operand of the GEP is
        // non-constant.
        unsigned idxOperand, e;
        SmallVector<Value *, 4> Indices;
        for (idxOperand = 1, e = GEP.getNumOperands(); idxOperand < e;
             idxOperand++) {
          ConstantInt *IDX = dyn_cast<ConstantInt>(GEP.getOperand(idxOperand));
          if (!IDX)
            break;
          Indices.push_back(IDX);
        }

        // It must also be the last operand.
        if (idxOperand + 1 != e) {
          Result = Polynomial();
          BasePtr = nullptr;
          return;
        }

        // Compute the polynomial of the index operand.
        computePolynomial(*GEP.getOperand(idxOperand), Result);

        // Compute base offset from zero based index, excluding the last
        // variable operand.
        BaseOffset =
            DL.getIndexedOffsetInType(GEP.getSourceElementType(), Indices);

        // Apply the operations of GEP to the polynomial.
        unsigned ResultSize = DL.getTypeAllocSize(GEP.getResultElementType());
        Result.sextOrTrunc(PointerBits);
        Result.mul(APInt(PointerBits, ResultSize));
        Result.add(BaseOffset);
        BasePtr = GEP.getPointerOperand();
      }
    }
    // All other instructions are handled by using the value as base pointer and
    // a zero polynomial.
    else {
      BasePtr = &Ptr;
      Polynomial(DL.getIndexSizeInBits(PtrTy->getPointerAddressSpace()), 0);
    }
  }

#ifndef NDEBUG
  void print(raw_ostream &OS) const {
    if (PV)
      OS << *PV;
    else
      OS << "(none)";
    OS << " + ";
    for (unsigned i = 0; i < getDimension(); i++)
      OS << ((i == 0) ? "[" : ", ") << EI[i].Ofs;
    OS << "]";
  }
#endif
};

} // anonymous namespace

bool InterleavedLoadCombineImpl::findPattern(
    std::list<VectorInfo> &Candidates, std::list<VectorInfo> &InterleavedLoad,
    unsigned Factor, const DataLayout &DL) {
  for (auto C0 = Candidates.begin(), E0 = Candidates.end(); C0 != E0; ++C0) {
    unsigned i;
    // Try to find an interleaved load using the front of Worklist as first line
    unsigned Size = DL.getTypeAllocSize(C0->VTy->getElementType());

    // List containing iterators pointing to the VectorInfos of the candidates
    std::vector<std::list<VectorInfo>::iterator> Res(Factor, Candidates.end());

    for (auto C = Candidates.begin(), E = Candidates.end(); C != E; C++) {
      if (C->VTy != C0->VTy)
        continue;
      if (C->BB != C0->BB)
        continue;
      if (C->PV != C0->PV)
        continue;

      // Check the current value matches any of factor - 1 remaining lines
      for (i = 1; i < Factor; i++) {
        if (C->EI[0].Ofs.isProvenEqualTo(C0->EI[0].Ofs + i * Size)) {
          Res[i] = C;
        }
      }

      for (i = 1; i < Factor; i++) {
        if (Res[i] == Candidates.end())
          break;
      }
      if (i == Factor) {
        Res[0] = C0;
        break;
      }
    }

    if (Res[0] != Candidates.end()) {
      // Move the result into the output
      for (unsigned i = 0; i < Factor; i++) {
        InterleavedLoad.splice(InterleavedLoad.end(), Candidates, Res[i]);
      }

      return true;
    }
  }
  return false;
}

LoadInst *
InterleavedLoadCombineImpl::findFirstLoad(const std::set<LoadInst *> &LIs) {
  assert(!LIs.empty() && "No load instructions given.");

  // All LIs are within the same BB. Select the first for a reference.
  BasicBlock *BB = (*LIs.begin())->getParent();
  BasicBlock::iterator FLI =
      std::find_if(BB->begin(), BB->end(), [&LIs](Instruction &I) -> bool {
        return is_contained(LIs, &I);
      });
  assert(FLI != BB->end());

  return cast<LoadInst>(FLI);
}

bool InterleavedLoadCombineImpl::combine(std::list<VectorInfo> &InterleavedLoad,
                                         OptimizationRemarkEmitter &ORE) {
  LLVM_DEBUG(dbgs() << "Checking interleaved load\n");

  // The insertion point is the LoadInst which loads the first values. The
  // following tests are used to proof that the combined load can be inserted
  // just before InsertionPoint.
  LoadInst *InsertionPoint = InterleavedLoad.front().EI[0].LI;

  // Test if the offset is computed
  if (!InsertionPoint)
    return false;

  std::set<LoadInst *> LIs;
  std::set<Instruction *> Is;
  std::set<Instruction *> SVIs;

  unsigned InterleavedCost;
  unsigned InstructionCost = 0;

  // Get the interleave factor
  unsigned Factor = InterleavedLoad.size();

  // Merge all input sets used in analysis
  for (auto &VI : InterleavedLoad) {
    // Generate a set of all load instructions to be combined
    LIs.insert(VI.LIs.begin(), VI.LIs.end());

    // Generate a set of all instructions taking part in load
    // interleaved. This list excludes the instructions necessary for the
    // polynomial construction.
    Is.insert(VI.Is.begin(), VI.Is.end());

    // Generate the set of the final ShuffleVectorInst.
    SVIs.insert(VI.SVI);
  }

  // There is nothing to combine.
  if (LIs.size() < 2)
    return false;

  // Test if all participating instruction will be dead after the
  // transformation. If intermediate results are used, no performance gain can
  // be expected. Also sum the cost of the Instructions beeing left dead.
  for (auto &I : Is) {
    // Compute the old cost
    InstructionCost +=
        TTI.getInstructionCost(I, TargetTransformInfo::TCK_Latency);

    // The final SVIs are allowed not to be dead, all uses will be replaced
    if (SVIs.find(I) != SVIs.end())
      continue;

    // If there are users outside the set to be eliminated, we abort the
    // transformation. No gain can be expected.
    for (const auto &U : I->users()) {
      if (Is.find(dyn_cast<Instruction>(U)) == Is.end())
        return false;
    }
  }

  // We know that all LoadInst are within the same BB. This guarantees that
  // either everything or nothing is loaded.
  LoadInst *First = findFirstLoad(LIs);

  // To be safe that the loads can be combined, iterate over all loads and test
  // that the corresponding defining access dominates first LI. This guarantees
  // that there are no aliasing stores in between the loads.
  auto FMA = MSSA.getMemoryAccess(First);
  for (auto LI : LIs) {
    auto MADef = MSSA.getMemoryAccess(LI)->getDefiningAccess();
    if (!MSSA.dominates(MADef, FMA))
      return false;
  }
  assert(!LIs.empty() && "There are no LoadInst to combine");

  // It is necessary that insertion point dominates all final ShuffleVectorInst.
  for (auto &VI : InterleavedLoad) {
    if (!DT.dominates(InsertionPoint, VI.SVI))
      return false;
  }

  // All checks are done. Add instructions detectable by InterleavedAccessPass
  // The old instruction will are left dead.
  IRBuilder<> Builder(InsertionPoint);
  Type *ETy = InterleavedLoad.front().SVI->getType()->getElementType();
  unsigned ElementsPerSVI =
      InterleavedLoad.front().SVI->getType()->getNumElements();
  VectorType *ILTy = VectorType::get(ETy, Factor * ElementsPerSVI);

  SmallVector<unsigned, 4> Indices;
  for (unsigned i = 0; i < Factor; i++)
    Indices.push_back(i);
  InterleavedCost = TTI.getInterleavedMemoryOpCost(
      Instruction::Load, ILTy, Factor, Indices, InsertionPoint->getAlignment(),
      InsertionPoint->getPointerAddressSpace());

  if (InterleavedCost >= InstructionCost) {
    return false;
  }

  // Create a pointer cast for the wide load.
  auto CI = Builder.CreatePointerCast(InsertionPoint->getOperand(0),
                                      ILTy->getPointerTo(),
                                      "interleaved.wide.ptrcast");

  // Create the wide load and update the MemorySSA.
  auto LI = Builder.CreateAlignedLoad(ILTy, CI, InsertionPoint->getAlignment(),
                                      "interleaved.wide.load");
  auto MSSAU = MemorySSAUpdater(&MSSA);
  MemoryUse *MSSALoad = cast<MemoryUse>(MSSAU.createMemoryAccessBefore(
      LI, nullptr, MSSA.getMemoryAccess(InsertionPoint)));
  MSSAU.insertUse(MSSALoad);

  // Create the final SVIs and replace all uses.
  int i = 0;
  for (auto &VI : InterleavedLoad) {
    SmallVector<uint32_t, 4> Mask;
    for (unsigned j = 0; j < ElementsPerSVI; j++)
      Mask.push_back(i + j * Factor);

    Builder.SetInsertPoint(VI.SVI);
    auto SVI = Builder.CreateShuffleVector(LI, UndefValue::get(LI->getType()),
                                           Mask, "interleaved.shuffle");
    VI.SVI->replaceAllUsesWith(SVI);
    i++;
  }

  NumInterleavedLoadCombine++;
  ORE.emit([&]() {
    return OptimizationRemark(DEBUG_TYPE, "Combined Interleaved Load", LI)
           << "Load interleaved combined with factor "
           << ore::NV("Factor", Factor);
  });

  return true;
}

bool InterleavedLoadCombineImpl::run() {
  OptimizationRemarkEmitter ORE(&F);
  bool changed = false;
  unsigned MaxFactor = TLI.getMaxSupportedInterleaveFactor();

  auto &DL = F.getParent()->getDataLayout();

  // Start with the highest factor to avoid combining and recombining.
  for (unsigned Factor = MaxFactor; Factor >= 2; Factor--) {
    std::list<VectorInfo> Candidates;

    for (BasicBlock &BB : F) {
      for (Instruction &I : BB) {
        if (auto SVI = dyn_cast<ShuffleVectorInst>(&I)) {

          Candidates.emplace_back(SVI->getType());

          if (!VectorInfo::computeFromSVI(SVI, Candidates.back(), DL)) {
            Candidates.pop_back();
            continue;
          }

          if (!Candidates.back().isInterleaved(Factor, DL)) {
            Candidates.pop_back();
          }
        }
      }
    }

    std::list<VectorInfo> InterleavedLoad;
    while (findPattern(Candidates, InterleavedLoad, Factor, DL)) {
      if (combine(InterleavedLoad, ORE)) {
        changed = true;
      } else {
        // Remove the first element of the Interleaved Load but put the others
        // back on the list and continue searching
        Candidates.splice(Candidates.begin(), InterleavedLoad,
                          std::next(InterleavedLoad.begin()),
                          InterleavedLoad.end());
      }
      InterleavedLoad.clear();
    }
  }

  return changed;
}

namespace {
/// This pass combines interleaved loads into a pattern detectable by
/// InterleavedAccessPass.
struct InterleavedLoadCombine : public FunctionPass {
  static char ID;

  InterleavedLoadCombine() : FunctionPass(ID) {
    initializeInterleavedLoadCombinePass(*PassRegistry::getPassRegistry());
  }

  StringRef getPassName() const override {
    return "Interleaved Load Combine Pass";
  }

  bool runOnFunction(Function &F) override {
    if (DisableInterleavedLoadCombine)
      return false;

    auto *TPC = getAnalysisIfAvailable<TargetPassConfig>();
    if (!TPC)
      return false;

    LLVM_DEBUG(dbgs() << "*** " << getPassName() << ": " << F.getName()
                      << "\n");

    return InterleavedLoadCombineImpl(
               F, getAnalysis<DominatorTreeWrapperPass>().getDomTree(),
               getAnalysis<MemorySSAWrapperPass>().getMSSA(),
               TPC->getTM<TargetMachine>())
        .run();
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<MemorySSAWrapperPass>();
    AU.addRequired<DominatorTreeWrapperPass>();
    FunctionPass::getAnalysisUsage(AU);
  }

private:
};
} // anonymous namespace

char InterleavedLoadCombine::ID = 0;

INITIALIZE_PASS_BEGIN(
    InterleavedLoadCombine, DEBUG_TYPE,
    "Combine interleaved loads into wide loads and shufflevector instructions",
    false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(MemorySSAWrapperPass)
INITIALIZE_PASS_END(
    InterleavedLoadCombine, DEBUG_TYPE,
    "Combine interleaved loads into wide loads and shufflevector instructions",
    false, false)

FunctionPass *
llvm::createInterleavedLoadCombinePass() {
  auto P = new InterleavedLoadCombine();
  return P;
}