llvm.org GIT mirror llvm / release_90 test / CodeGen / AArch64 / bitfield-insert.ll
release_90

Tree @release_90 (Download .tar.gz)

bitfield-insert.ll @release_90raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
; NOTE: Assertions have been autogenerated by utils/update_llc_test_checks.py
; RUN: llc -mtriple=aarch64-none-linux-gnu < %s | FileCheck %s

; First, a simple example from Clang. The registers could plausibly be
; different, but probably won't be.

%struct.foo = type { i8, [2 x i8], i8 }

define [1 x i64] @from_clang([1 x i64] %f.coerce, i32 %n) nounwind readnone {
; CHECK-LABEL: from_clang:
; CHECK:       // %bb.0: // %entry
; CHECK-NEXT:    mov w8, #135
; CHECK-NEXT:    and w8, w0, w8
; CHECK-NEXT:    bfi w8, w1, #3, #4
; CHECK-NEXT:    and x9, x0, #0xffffff00
; CHECK-NEXT:    orr x0, x8, x9
; CHECK-NEXT:    ret
entry:
  %f.coerce.fca.0.extract = extractvalue [1 x i64] %f.coerce, 0
  %tmp.sroa.0.0.extract.trunc = trunc i64 %f.coerce.fca.0.extract to i32
  %bf.value = shl i32 %n, 3
  %0 = and i32 %bf.value, 120
  %f.sroa.0.0.insert.ext.masked = and i32 %tmp.sroa.0.0.extract.trunc, 135
  %1 = or i32 %f.sroa.0.0.insert.ext.masked, %0
  %f.sroa.0.0.extract.trunc = zext i32 %1 to i64
  %tmp1.sroa.1.1.insert.insert = and i64 %f.coerce.fca.0.extract, 4294967040
  %tmp1.sroa.0.0.insert.insert = or i64 %f.sroa.0.0.extract.trunc, %tmp1.sroa.1.1.insert.insert
  %.fca.0.insert = insertvalue [1 x i64] undef, i64 %tmp1.sroa.0.0.insert.insert, 0
  ret [1 x i64] %.fca.0.insert
}

define void @test_whole32(i32* %existing, i32* %new) {
; CHECK-LABEL: test_whole32:
; CHECK:       // %bb.0:
; CHECK-NEXT:    ldr w8, [x0]
; CHECK-NEXT:    ldr w9, [x1]
; CHECK-NEXT:    bfi w8, w9, #26, #5
; CHECK-NEXT:    str w8, [x0]
; CHECK-NEXT:    ret
  %oldval = load volatile i32, i32* %existing
  %oldval_keep = and i32 %oldval, 2214592511 ; =0x83ffffff

  %newval = load volatile i32, i32* %new
  %newval_shifted = shl i32 %newval, 26
  %newval_masked = and i32 %newval_shifted, 2080374784 ; = 0x7c000000

  %combined = or i32 %oldval_keep, %newval_masked
  store volatile i32 %combined, i32* %existing

  ret void
}

define void @test_whole64(i64* %existing, i64* %new) {
; CHECK-LABEL: test_whole64:
; CHECK:       // %bb.0:
; CHECK-NEXT:    ldr x8, [x0]
; CHECK-NEXT:    ldr x9, [x1]
; CHECK-NEXT:    bfi x8, x9, #26, #14
; CHECK-NEXT:    str x8, [x0]
; CHECK-NEXT:    ret
  %oldval = load volatile i64, i64* %existing
  %oldval_keep = and i64 %oldval, 18446742974265032703 ; = 0xffffff0003ffffffL

  %newval = load volatile i64, i64* %new
  %newval_shifted = shl i64 %newval, 26
  %newval_masked = and i64 %newval_shifted, 1099444518912 ; = 0xfffc000000

  %combined = or i64 %oldval_keep, %newval_masked
  store volatile i64 %combined, i64* %existing

  ret void
}

define void @test_whole32_from64(i64* %existing, i64* %new) {
; CHECK-LABEL: test_whole32_from64:
; CHECK:       // %bb.0:
; CHECK-NEXT:    ldr x8, [x0]
; CHECK-NEXT:    ldr x9, [x1]
; CHECK-NEXT:    and x8, x8, #0xffff0000
; CHECK-NEXT:    bfxil x8, x9, #0, #16
; CHECK-NEXT:    str x8, [x0]
; CHECK-NEXT:    ret
  %oldval = load volatile i64, i64* %existing
  %oldval_keep = and i64 %oldval, 4294901760 ; = 0xffff0000

  %newval = load volatile i64, i64* %new
  %newval_masked = and i64 %newval, 65535 ; = 0xffff

  %combined = or i64 %oldval_keep, %newval_masked
  store volatile i64 %combined, i64* %existing

  ret void
}

define void @test_32bit_masked(i32 *%existing, i32 *%new) {
; CHECK-LABEL: test_32bit_masked:
; CHECK:       // %bb.0:
; CHECK-NEXT:    ldr w8, [x0]
; CHECK-NEXT:    ldr w9, [x1]
; CHECK-NEXT:    mov w10, #135
; CHECK-NEXT:    and w8, w8, w10
; CHECK-NEXT:    bfi w8, w9, #3, #4
; CHECK-NEXT:    str w8, [x0]
; CHECK-NEXT:    ret
  %oldval = load volatile i32, i32* %existing
  %oldval_keep = and i32 %oldval, 135 ; = 0x87

  %newval = load volatile i32, i32* %new
  %newval_shifted = shl i32 %newval, 3
  %newval_masked = and i32 %newval_shifted, 120 ; = 0x78

  %combined = or i32 %oldval_keep, %newval_masked
  store volatile i32 %combined, i32* %existing

  ret void
}

define void @test_64bit_masked(i64 *%existing, i64 *%new) {
; CHECK-LABEL: test_64bit_masked:
; CHECK:       // %bb.0:
; CHECK-NEXT:    ldr x8, [x0]
; CHECK-NEXT:    ldr x9, [x1]
; CHECK-NEXT:    and x8, x8, #0xff00000000
; CHECK-NEXT:    bfi x8, x9, #40, #8
; CHECK-NEXT:    str x8, [x0]
; CHECK-NEXT:    ret
  %oldval = load volatile i64, i64* %existing
  %oldval_keep = and i64 %oldval, 1095216660480 ; = 0xff_0000_0000

  %newval = load volatile i64, i64* %new
  %newval_shifted = shl i64 %newval, 40
  %newval_masked = and i64 %newval_shifted, 280375465082880 ; = 0xff00_0000_0000

  %combined = or i64 %newval_masked, %oldval_keep
  store volatile i64 %combined, i64* %existing

  ret void
}

; Mask is too complicated for literal ANDwwi, make sure other avenues are tried.
define void @test_32bit_complexmask(i32 *%existing, i32 *%new) {
; CHECK-LABEL: test_32bit_complexmask:
; CHECK:       // %bb.0:
; CHECK-NEXT:    ldr w8, [x0]
; CHECK-NEXT:    ldr w9, [x1]
; CHECK-NEXT:    mov w10, #647
; CHECK-NEXT:    and w8, w8, w10
; CHECK-NEXT:    bfi w8, w9, #3, #4
; CHECK-NEXT:    str w8, [x0]
; CHECK-NEXT:    ret
  %oldval = load volatile i32, i32* %existing
  %oldval_keep = and i32 %oldval, 647 ; = 0x287

  %newval = load volatile i32, i32* %new
  %newval_shifted = shl i32 %newval, 3
  %newval_masked = and i32 %newval_shifted, 120 ; = 0x278

  %combined = or i32 %oldval_keep, %newval_masked
  store volatile i32 %combined, i32* %existing

  ret void
}

; Neither mask is a contiguous set of 1s. BFI can't be used
define void @test_32bit_badmask(i32 *%existing, i32 *%new) {
; CHECK-LABEL: test_32bit_badmask:
; CHECK:       // %bb.0:
; CHECK-NEXT:    ldr w8, [x0]
; CHECK-NEXT:    ldr w9, [x1]
; CHECK-NEXT:    mov w10, #135
; CHECK-NEXT:    mov w11, #632
; CHECK-NEXT:    and w8, w8, w10
; CHECK-NEXT:    and w9, w11, w9, lsl #3
; CHECK-NEXT:    orr w8, w8, w9
; CHECK-NEXT:    str w8, [x0]
; CHECK-NEXT:    ret
  %oldval = load volatile i32, i32* %existing
  %oldval_keep = and i32 %oldval, 135 ; = 0x87

  %newval = load volatile i32, i32* %new
  %newval_shifted = shl i32 %newval, 3
  %newval_masked = and i32 %newval_shifted, 632 ; = 0x278

  %combined = or i32 %oldval_keep, %newval_masked
  store volatile i32 %combined, i32* %existing

  ret void
}

; Ditto
define void @test_64bit_badmask(i64 *%existing, i64 *%new) {
; CHECK-LABEL: test_64bit_badmask:
; CHECK:       // %bb.0:
; CHECK-NEXT:    ldr x8, [x0]
; CHECK-NEXT:    ldr x9, [x1]
; CHECK-NEXT:    mov w10, #135
; CHECK-NEXT:    and x8, x8, x10
; CHECK-NEXT:    lsl w9, w9, #3
; CHECK-NEXT:    mov w10, #664
; CHECK-NEXT:    and x9, x9, x10
; CHECK-NEXT:    orr x8, x8, x9
; CHECK-NEXT:    str x8, [x0]
; CHECK-NEXT:    ret
  %oldval = load volatile i64, i64* %existing
  %oldval_keep = and i64 %oldval, 135 ; = 0x87

  %newval = load volatile i64, i64* %new
  %newval_shifted = shl i64 %newval, 3
  %newval_masked = and i64 %newval_shifted, 664 ; = 0x278

  %combined = or i64 %oldval_keep, %newval_masked
  store volatile i64 %combined, i64* %existing

  ret void
}

; Bitfield insert where there's a left-over shr needed at the beginning
; (e.g. result of str.bf1 = str.bf2)
define void @test_32bit_with_shr(i32* %existing, i32* %new) {
; CHECK-LABEL: test_32bit_with_shr:
; CHECK:       // %bb.0:
; CHECK-NEXT:    ldr w8, [x0]
; CHECK-NEXT:    ldr w9, [x1]
; CHECK-NEXT:    lsr w9, w9, #14
; CHECK-NEXT:    bfi w8, w9, #26, #5
; CHECK-NEXT:    str w8, [x0]
; CHECK-NEXT:    ret
  %oldval = load volatile i32, i32* %existing
  %oldval_keep = and i32 %oldval, 2214592511 ; =0x83ffffff

  %newval = load i32, i32* %new
  %newval_shifted = shl i32 %newval, 12
  %newval_masked = and i32 %newval_shifted, 2080374784 ; = 0x7c000000

  %combined = or i32 %oldval_keep, %newval_masked
  store volatile i32 %combined, i32* %existing

  ret void
}

; Bitfield insert where the second or operand is a better match to be folded into the BFM
define void @test_32bit_opnd1_better(i32* %existing, i32* %new) {
; CHECK-LABEL: test_32bit_opnd1_better:
; CHECK:       // %bb.0:
; CHECK-NEXT:    ldr w8, [x0]
; CHECK-NEXT:    ldr w9, [x1]
; CHECK-NEXT:    and w8, w8, #0xffff
; CHECK-NEXT:    bfi w8, w9, #16, #8
; CHECK-NEXT:    str w8, [x0]
; CHECK-NEXT:    ret
  %oldval = load volatile i32, i32* %existing
  %oldval_keep = and i32 %oldval, 65535 ; 0x0000ffff

  %newval = load i32, i32* %new
  %newval_shifted = shl i32 %newval, 16
  %newval_masked = and i32 %newval_shifted, 16711680 ; 0x00ff0000

  %combined = or i32 %oldval_keep, %newval_masked
  store volatile i32 %combined, i32* %existing

  ret void
}

; Tests when all the bits from one operand are not useful
define i32 @test_nouseful_bits(i8 %a, i32 %b) {
; CHECK-LABEL: test_nouseful_bits:
; CHECK:       // %bb.0:
; CHECK-NEXT:    mov w8, w0
; CHECK-NEXT:    bfi w8, w8, #8, #24
; CHECK-NEXT:    mov w9, w0
; CHECK-NEXT:    bfi w9, w8, #8, #24
; CHECK-NEXT:    bfi w0, w9, #8, #24
; CHECK-NEXT:    lsl w0, w0, #8
; CHECK-NEXT:    ret
  %conv = zext i8 %a to i32     ;   0  0  0  A
  %shl = shl i32 %b, 8          ;   B2 B1 B0 0
  %or = or i32 %conv, %shl      ;   B2 B1 B0 A
  %shl.1 = shl i32 %or, 8       ;   B1 B0 A 0
  %or.1 = or i32 %conv, %shl.1  ;   B1 B0 A A
  %shl.2 = shl i32 %or.1, 8     ;   B0 A A 0
  %or.2 = or i32 %conv, %shl.2  ;   B0 A A A
  %shl.3 = shl i32 %or.2, 8     ;   A A A 0
  %or.3 = or i32 %conv, %shl.3  ;   A A A A
  %shl.4 = shl i32 %or.3, 8     ;   A A A 0
  ret i32 %shl.4
}

define void @test_nouseful_strb(i32* %ptr32, i8* %ptr8, i32 %x)  {
; CHECK-LABEL: test_nouseful_strb:
; CHECK:       // %bb.0: // %entry
; CHECK-NEXT:    ldr w8, [x0]
; CHECK-NEXT:    bfxil w8, w2, #16, #3
; CHECK-NEXT:    strb w8, [x1]
; CHECK-NEXT:    ret
entry:
  %0 = load i32, i32* %ptr32, align 8
  %and = and i32 %0, -8
  %shr = lshr i32 %x, 16
  %and1 = and i32 %shr, 7
  %or = or i32 %and, %and1
  %trunc = trunc i32 %or to i8
  store i8 %trunc, i8* %ptr8
  ret void
}

define void @test_nouseful_strh(i32* %ptr32, i16* %ptr16, i32 %x)  {
; CHECK-LABEL: test_nouseful_strh:
; CHECK:       // %bb.0: // %entry
; CHECK-NEXT:    ldr w8, [x0]
; CHECK-NEXT:    bfxil w8, w2, #16, #4
; CHECK-NEXT:    strh w8, [x1]
; CHECK-NEXT:    ret
entry:
  %0 = load i32, i32* %ptr32, align 8
  %and = and i32 %0, -16
  %shr = lshr i32 %x, 16
  %and1 = and i32 %shr, 15
  %or = or i32 %and, %and1
  %trunc = trunc i32 %or to i16
  store i16 %trunc, i16* %ptr16
  ret void
}

define void @test_nouseful_sturb(i32* %ptr32, i8* %ptr8, i32 %x)  {
; CHECK-LABEL: test_nouseful_sturb:
; CHECK:       // %bb.0: // %entry
; CHECK-NEXT:    ldr w8, [x0]
; CHECK-NEXT:    bfxil w8, w2, #16, #3
; CHECK-NEXT:    sturb w8, [x1, #-1]
; CHECK-NEXT:    ret
entry:
  %0 = load i32, i32* %ptr32, align 8
  %and = and i32 %0, -8
  %shr = lshr i32 %x, 16
  %and1 = and i32 %shr, 7
  %or = or i32 %and, %and1
  %trunc = trunc i32 %or to i8
  %gep = getelementptr i8, i8* %ptr8, i64 -1
  store i8 %trunc, i8* %gep
  ret void
}

define void @test_nouseful_sturh(i32* %ptr32, i16* %ptr16, i32 %x)  {
; CHECK-LABEL: test_nouseful_sturh:
; CHECK:       // %bb.0: // %entry
; CHECK-NEXT:    ldr w8, [x0]
; CHECK-NEXT:    bfxil w8, w2, #16, #4
; CHECK-NEXT:    sturh w8, [x1, #-2]
; CHECK-NEXT:    ret
entry:
  %0 = load i32, i32* %ptr32, align 8
  %and = and i32 %0, -16
  %shr = lshr i32 %x, 16
  %and1 = and i32 %shr, 15
  %or = or i32 %and, %and1
  %trunc = trunc i32 %or to i16
  %gep = getelementptr i16, i16* %ptr16, i64 -1
  store i16 %trunc, i16* %gep
  ret void
}

; The next set of tests generate a BFXIL from 'or (and X, Mask0Imm),
; (and Y, Mask1Imm)' iff Mask0Imm and ~Mask1Imm are equivalent and one of the
; MaskImms is a shifted mask (e.g., 0x000ffff0).

define i32 @test_or_and_and1(i32 %a, i32 %b) {
; CHECK-LABEL: test_or_and_and1:
; CHECK:       // %bb.0: // %entry
; CHECK-NEXT:    lsr w8, w1, #4
; CHECK-NEXT:    bfi w0, w8, #4, #12
; CHECK-NEXT:    ret
entry:
  %and = and i32 %a, -65521 ; 0xffff000f
  %and1 = and i32 %b, 65520 ; 0x0000fff0
  %or = or i32 %and1, %and
  ret i32 %or
}

define i32 @test_or_and_and2(i32 %a, i32 %b) {
; CHECK-LABEL: test_or_and_and2:
; CHECK:       // %bb.0: // %entry
; CHECK-NEXT:    lsr w8, w0, #4
; CHECK-NEXT:    bfi w1, w8, #4, #12
; CHECK-NEXT:    mov w0, w1
; CHECK-NEXT:    ret
entry:
  %and = and i32 %a, 65520   ; 0x0000fff0
  %and1 = and i32 %b, -65521 ; 0xffff000f
  %or = or i32 %and1, %and
  ret i32 %or
}

define i64 @test_or_and_and3(i64 %a, i64 %b) {
; CHECK-LABEL: test_or_and_and3:
; CHECK:       // %bb.0: // %entry
; CHECK-NEXT:    lsr x8, x1, #16
; CHECK-NEXT:    bfi x0, x8, #16, #32
; CHECK-NEXT:    ret
entry:
  %and = and i64 %a, -281474976645121 ; 0xffff00000000ffff
  %and1 = and i64 %b, 281474976645120 ; 0x0000ffffffff0000
  %or = or i64 %and1, %and
  ret i64 %or
}

; Don't convert 'and' with multiple uses.
define i32 @test_or_and_and4(i32 %a, i32 %b, i32* %ptr) {
; CHECK-LABEL: test_or_and_and4:
; CHECK:       // %bb.0: // %entry
; CHECK-NEXT:    and w8, w0, #0xffff000f
; CHECK-NEXT:    and w9, w1, #0xfff0
; CHECK-NEXT:    orr w0, w9, w8
; CHECK-NEXT:    str w8, [x2]
; CHECK-NEXT:    ret
entry:
  %and = and i32 %a, -65521
  store i32 %and, i32* %ptr, align 4
  %and2 = and i32 %b, 65520
  %or = or i32 %and2, %and
  ret i32 %or
}

; Don't convert 'and' with multiple uses.
define i32 @test_or_and_and5(i32 %a, i32 %b, i32* %ptr) {
; CHECK-LABEL: test_or_and_and5:
; CHECK:       // %bb.0: // %entry
; CHECK-NEXT:    and w8, w1, #0xfff0
; CHECK-NEXT:    and w9, w0, #0xffff000f
; CHECK-NEXT:    orr w0, w8, w9
; CHECK-NEXT:    str w8, [x2]
; CHECK-NEXT:    ret
entry:
  %and = and i32 %b, 65520
  store i32 %and, i32* %ptr, align 4
  %and1 = and i32 %a, -65521
  %or = or i32 %and, %and1
  ret i32 %or
}

define i32 @test1(i32 %a) {
; CHECK-LABEL: test1:
; CHECK:       // %bb.0:
; CHECK-NEXT:    mov w8, #5
; CHECK-NEXT:    bfxil w0, w8, #0, #4
; CHECK-NEXT:    ret
  %1 = and i32 %a, -16 ; 0xfffffff0
  %2 = or i32 %1, 5    ; 0x00000005
  ret i32 %2
}

define i32 @test2(i32 %a) {
; CHECK-LABEL: test2:
; CHECK:       // %bb.0:
; CHECK-NEXT:    mov w8, #10
; CHECK-NEXT:    bfi w0, w8, #22, #4
; CHECK-NEXT:    ret
  %1 = and i32 %a, -62914561 ; 0xfc3fffff
  %2 = or i32 %1, 41943040   ; 0x06400000
  ret i32 %2
}

define i64 @test3(i64 %a) {
; CHECK-LABEL: test3:
; CHECK:       // %bb.0:
; CHECK-NEXT:    mov x8, #5
; CHECK-NEXT:    bfxil x0, x8, #0, #3
; CHECK-NEXT:    ret
  %1 = and i64 %a, -8 ; 0xfffffffffffffff8
  %2 = or i64 %1, 5   ; 0x0000000000000005
  ret i64 %2
}

define i64 @test4(i64 %a) {
; CHECK-LABEL: test4:
; CHECK:       // %bb.0:
; CHECK-NEXT:    mov x8, #9
; CHECK-NEXT:    bfi x0, x8, #1, #7
; CHECK-NEXT:    ret
  %1 = and i64 %a, -255 ; 0xffffffffffffff01
  %2 = or i64 %1,  18   ; 0x0000000000000012
  ret i64 %2
}

; Don't generate BFI/BFXIL if the immediate can be encoded in the ORR.
define i32 @test5(i32 %a) {
; CHECK-LABEL: test5:
; CHECK:       // %bb.0:
; CHECK-NEXT:    and w8, w0, #0xfffffff0
; CHECK-NEXT:    orr w0, w8, #0x6
; CHECK-NEXT:    ret
  %1 = and i32 %a, 4294967280 ; 0xfffffff0
  %2 = or i32 %1, 6           ; 0x00000006
  ret i32 %2
}

; BFXIL will use the same constant as the ORR, so we don't care how the constant
; is materialized (it's an equal cost either way).
define i32 @test6(i32 %a) {
; CHECK-LABEL: test6:
; CHECK:       // %bb.0:
; CHECK-NEXT:    mov w8, #23250
; CHECK-NEXT:    movk w8, #11, lsl #16
; CHECK-NEXT:    bfxil w0, w8, #0, #20
; CHECK-NEXT:    ret
  %1 = and i32 %a, 4293918720 ; 0xfff00000
  %2 = or i32 %1, 744146      ; 0x000b5ad2
  ret i32 %2
}

; BFIs that require the same number of instruction to materialize the constant
; as the original ORR are okay.
define i32 @test7(i32 %a) {
; CHECK-LABEL: test7:
; CHECK:       // %bb.0:
; CHECK-NEXT:    mov w8, #44393
; CHECK-NEXT:    movk w8, #5, lsl #16
; CHECK-NEXT:    bfi w0, w8, #1, #19
; CHECK-NEXT:    ret
  %1 = and i32 %a, 4293918721 ; 0xfff00001
  %2 = or i32 %1, 744146      ; 0x000b5ad2
  ret i32 %2
}

; BFIs that require more instructions to materialize the constant as compared
; to the original ORR are not okay.  In this case we would be replacing the
; 'and' with a 'movk', which would decrease ILP while using the same number of
; instructions.
define i64 @test8(i64 %a) {
; CHECK-LABEL: test8:
; CHECK:       // %bb.0:
; CHECK-NEXT:    mov x9, #2035482624
; CHECK-NEXT:    and x8, x0, #0xff000000000000ff
; CHECK-NEXT:    movk x9, #36694, lsl #32
; CHECK-NEXT:    orr x0, x8, x9
; CHECK-NEXT:    ret
  %1 = and i64 %a, -72057594037927681 ; 0xff000000000000ff
  %2 = or i64 %1, 157601565442048     ; 0x00008f5679530000
  ret i64 %2
}

; This test exposed an issue with an overly aggressive assert.  The bit of code
; that is expected to catch this case is unable to deal with the trunc, which
; results in a failing check due to a mismatch between the BFI opcode and
; the expected value type of the OR.
define i32 @test9(i64 %b, i32 %e) {
; CHECK-LABEL: test9:
; CHECK:       // %bb.0:
; CHECK-NEXT:    lsr x0, x0, #12
; CHECK-NEXT:    lsr w8, w1, #23
; CHECK-NEXT:    bfi w0, w8, #23, #9
; CHECK-NEXT:    // kill: def $w0 killed $w0 killed $x0
; CHECK-NEXT:    ret
  %c = lshr i64 %b, 12
  %d = trunc i64 %c to i32
  %f = and i32 %d, 8388607
  %g = and i32 %e, -8388608
  %h = or i32 %g, %f
  ret i32 %h
}

define <2 x i32> @test_complex_type(<2 x i32>* %addr, i64 %in, i64* %bf ) {
; CHECK-LABEL: test_complex_type:
; CHECK:       // %bb.0:
; CHECK-NEXT:    ldr d0, [x0], #8
; CHECK-NEXT:    orr x8, x0, x1, lsl #32
; CHECK-NEXT:    str x8, [x2]
; CHECK-NEXT:    ret
  %vec = load <2 x i32>, <2 x i32>* %addr

  %vec.next = getelementptr <2 x i32>, <2 x i32>* %addr, i32 1
  %lo = ptrtoint <2 x i32>* %vec.next to i64

  %hi = shl i64 %in, 32
  %both = or i64 %lo, %hi
  store i64 %both, i64* %bf

  ret <2 x i32> %vec
}