llvm.org GIT mirror llvm / release_90 lib / Transforms / Scalar / LoopIdiomRecognize.cpp
release_90

Tree @release_90 (Download .tar.gz)

LoopIdiomRecognize.cpp @release_90raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
//===- LoopIdiomRecognize.cpp - Loop idiom recognition --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass implements an idiom recognizer that transforms simple loops into a
// non-loop form.  In cases that this kicks in, it can be a significant
// performance win.
//
// If compiling for code size we avoid idiom recognition if the resulting
// code could be larger than the code for the original loop. One way this could
// happen is if the loop is not removable after idiom recognition due to the
// presence of non-idiom instructions. The initial implementation of the
// heuristics applies to idioms in multi-block loops.
//
//===----------------------------------------------------------------------===//
//
// TODO List:
//
// Future loop memory idioms to recognize:
//   memcmp, memmove, strlen, etc.
// Future floating point idioms to recognize in -ffast-math mode:
//   fpowi
// Future integer operation idioms to recognize:
//   ctpop
//
// Beware that isel's default lowering for ctpop is highly inefficient for
// i64 and larger types when i64 is legal and the value has few bits set.  It
// would be good to enhance isel to emit a loop for ctpop in this case.
//
// This could recognize common matrix multiplies and dot product idioms and
// replace them with calls to BLAS (if linked in??).
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Scalar/LoopIdiomRecognize.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/MemoryLocation.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constant.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/User.h"
#include "llvm/IR/Value.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <utility>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "loop-idiom"

STATISTIC(NumMemSet, "Number of memset's formed from loop stores");
STATISTIC(NumMemCpy, "Number of memcpy's formed from loop load+stores");

static cl::opt<bool> UseLIRCodeSizeHeurs(
    "use-lir-code-size-heurs",
    cl::desc("Use loop idiom recognition code size heuristics when compiling"
             "with -Os/-Oz"),
    cl::init(true), cl::Hidden);

namespace {

class LoopIdiomRecognize {
  Loop *CurLoop = nullptr;
  AliasAnalysis *AA;
  DominatorTree *DT;
  LoopInfo *LI;
  ScalarEvolution *SE;
  TargetLibraryInfo *TLI;
  const TargetTransformInfo *TTI;
  const DataLayout *DL;
  OptimizationRemarkEmitter &ORE;
  bool ApplyCodeSizeHeuristics;

public:
  explicit LoopIdiomRecognize(AliasAnalysis *AA, DominatorTree *DT,
                              LoopInfo *LI, ScalarEvolution *SE,
                              TargetLibraryInfo *TLI,
                              const TargetTransformInfo *TTI,
                              const DataLayout *DL,
                              OptimizationRemarkEmitter &ORE)
      : AA(AA), DT(DT), LI(LI), SE(SE), TLI(TLI), TTI(TTI), DL(DL), ORE(ORE) {}

  bool runOnLoop(Loop *L);

private:
  using StoreList = SmallVector<StoreInst *, 8>;
  using StoreListMap = MapVector<Value *, StoreList>;

  StoreListMap StoreRefsForMemset;
  StoreListMap StoreRefsForMemsetPattern;
  StoreList StoreRefsForMemcpy;
  bool HasMemset;
  bool HasMemsetPattern;
  bool HasMemcpy;

  /// Return code for isLegalStore()
  enum LegalStoreKind {
    None = 0,
    Memset,
    MemsetPattern,
    Memcpy,
    UnorderedAtomicMemcpy,
    DontUse // Dummy retval never to be used. Allows catching errors in retval
            // handling.
  };

  /// \name Countable Loop Idiom Handling
  /// @{

  bool runOnCountableLoop();
  bool runOnLoopBlock(BasicBlock *BB, const SCEV *BECount,
                      SmallVectorImpl<BasicBlock *> &ExitBlocks);

  void collectStores(BasicBlock *BB);
  LegalStoreKind isLegalStore(StoreInst *SI);
  enum class ForMemset { No, Yes };
  bool processLoopStores(SmallVectorImpl<StoreInst *> &SL, const SCEV *BECount,
                         ForMemset For);
  bool processLoopMemSet(MemSetInst *MSI, const SCEV *BECount);

  bool processLoopStridedStore(Value *DestPtr, unsigned StoreSize,
                               unsigned StoreAlignment, Value *StoredVal,
                               Instruction *TheStore,
                               SmallPtrSetImpl<Instruction *> &Stores,
                               const SCEVAddRecExpr *Ev, const SCEV *BECount,
                               bool NegStride, bool IsLoopMemset = false);
  bool processLoopStoreOfLoopLoad(StoreInst *SI, const SCEV *BECount);
  bool avoidLIRForMultiBlockLoop(bool IsMemset = false,
                                 bool IsLoopMemset = false);

  /// @}
  /// \name Noncountable Loop Idiom Handling
  /// @{

  bool runOnNoncountableLoop();

  bool recognizePopcount();
  void transformLoopToPopcount(BasicBlock *PreCondBB, Instruction *CntInst,
                               PHINode *CntPhi, Value *Var);
  bool recognizeAndInsertFFS();  /// Find First Set: ctlz or cttz
  void transformLoopToCountable(Intrinsic::ID IntrinID, BasicBlock *PreCondBB,
                                Instruction *CntInst, PHINode *CntPhi,
                                Value *Var, Instruction *DefX,
                                const DebugLoc &DL, bool ZeroCheck,
                                bool IsCntPhiUsedOutsideLoop);

  /// @}
};

class LoopIdiomRecognizeLegacyPass : public LoopPass {
public:
  static char ID;

  explicit LoopIdiomRecognizeLegacyPass() : LoopPass(ID) {
    initializeLoopIdiomRecognizeLegacyPassPass(
        *PassRegistry::getPassRegistry());
  }

  bool runOnLoop(Loop *L, LPPassManager &LPM) override {
    if (skipLoop(L))
      return false;

    AliasAnalysis *AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
    DominatorTree *DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
    ScalarEvolution *SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
    TargetLibraryInfo *TLI =
        &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
    const TargetTransformInfo *TTI =
        &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(
            *L->getHeader()->getParent());
    const DataLayout *DL = &L->getHeader()->getModule()->getDataLayout();

    // For the old PM, we can't use OptimizationRemarkEmitter as an analysis
    // pass.  Function analyses need to be preserved across loop transformations
    // but ORE cannot be preserved (see comment before the pass definition).
    OptimizationRemarkEmitter ORE(L->getHeader()->getParent());

    LoopIdiomRecognize LIR(AA, DT, LI, SE, TLI, TTI, DL, ORE);
    return LIR.runOnLoop(L);
  }

  /// This transformation requires natural loop information & requires that
  /// loop preheaders be inserted into the CFG.
  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<TargetLibraryInfoWrapperPass>();
    AU.addRequired<TargetTransformInfoWrapperPass>();
    getLoopAnalysisUsage(AU);
  }
};

} // end anonymous namespace

char LoopIdiomRecognizeLegacyPass::ID = 0;

PreservedAnalyses LoopIdiomRecognizePass::run(Loop &L, LoopAnalysisManager &AM,
                                              LoopStandardAnalysisResults &AR,
                                              LPMUpdater &) {
  const auto *DL = &L.getHeader()->getModule()->getDataLayout();

  const auto &FAM =
      AM.getResult<FunctionAnalysisManagerLoopProxy>(L, AR).getManager();
  Function *F = L.getHeader()->getParent();

  auto *ORE = FAM.getCachedResult<OptimizationRemarkEmitterAnalysis>(*F);
  // FIXME: This should probably be optional rather than required.
  if (!ORE)
    report_fatal_error(
        "LoopIdiomRecognizePass: OptimizationRemarkEmitterAnalysis not cached "
        "at a higher level");

  LoopIdiomRecognize LIR(&AR.AA, &AR.DT, &AR.LI, &AR.SE, &AR.TLI, &AR.TTI, DL,
                         *ORE);
  if (!LIR.runOnLoop(&L))
    return PreservedAnalyses::all();

  return getLoopPassPreservedAnalyses();
}

INITIALIZE_PASS_BEGIN(LoopIdiomRecognizeLegacyPass, "loop-idiom",
                      "Recognize loop idioms", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
INITIALIZE_PASS_END(LoopIdiomRecognizeLegacyPass, "loop-idiom",
                    "Recognize loop idioms", false, false)

Pass *llvm::createLoopIdiomPass() { return new LoopIdiomRecognizeLegacyPass(); }

static void deleteDeadInstruction(Instruction *I) {
  I->replaceAllUsesWith(UndefValue::get(I->getType()));
  I->eraseFromParent();
}

//===----------------------------------------------------------------------===//
//
//          Implementation of LoopIdiomRecognize
//
//===----------------------------------------------------------------------===//

bool LoopIdiomRecognize::runOnLoop(Loop *L) {
  CurLoop = L;
  // If the loop could not be converted to canonical form, it must have an
  // indirectbr in it, just give up.
  if (!L->getLoopPreheader())
    return false;

  // Disable loop idiom recognition if the function's name is a common idiom.
  StringRef Name = L->getHeader()->getParent()->getName();
  if (Name == "memset" || Name == "memcpy")
    return false;

  // Determine if code size heuristics need to be applied.
  ApplyCodeSizeHeuristics =
      L->getHeader()->getParent()->hasOptSize() && UseLIRCodeSizeHeurs;

  HasMemset = TLI->has(LibFunc_memset);
  HasMemsetPattern = TLI->has(LibFunc_memset_pattern16);
  HasMemcpy = TLI->has(LibFunc_memcpy);

  if (HasMemset || HasMemsetPattern || HasMemcpy)
    if (SE->hasLoopInvariantBackedgeTakenCount(L))
      return runOnCountableLoop();

  return runOnNoncountableLoop();
}

bool LoopIdiomRecognize::runOnCountableLoop() {
  const SCEV *BECount = SE->getBackedgeTakenCount(CurLoop);
  assert(!isa<SCEVCouldNotCompute>(BECount) &&
         "runOnCountableLoop() called on a loop without a predictable"
         "backedge-taken count");

  // If this loop executes exactly one time, then it should be peeled, not
  // optimized by this pass.
  if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
    if (BECst->getAPInt() == 0)
      return false;

  SmallVector<BasicBlock *, 8> ExitBlocks;
  CurLoop->getUniqueExitBlocks(ExitBlocks);

  LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
                    << CurLoop->getHeader()->getParent()->getName()
                    << "] Countable Loop %" << CurLoop->getHeader()->getName()
                    << "\n");

  bool MadeChange = false;

  // The following transforms hoist stores/memsets into the loop pre-header.
  // Give up if the loop has instructions may throw.
  SimpleLoopSafetyInfo SafetyInfo;
  SafetyInfo.computeLoopSafetyInfo(CurLoop);
  if (SafetyInfo.anyBlockMayThrow())
    return MadeChange;

  // Scan all the blocks in the loop that are not in subloops.
  for (auto *BB : CurLoop->getBlocks()) {
    // Ignore blocks in subloops.
    if (LI->getLoopFor(BB) != CurLoop)
      continue;

    MadeChange |= runOnLoopBlock(BB, BECount, ExitBlocks);
  }
  return MadeChange;
}

static APInt getStoreStride(const SCEVAddRecExpr *StoreEv) {
  const SCEVConstant *ConstStride = cast<SCEVConstant>(StoreEv->getOperand(1));
  return ConstStride->getAPInt();
}

/// getMemSetPatternValue - If a strided store of the specified value is safe to
/// turn into a memset_pattern16, return a ConstantArray of 16 bytes that should
/// be passed in.  Otherwise, return null.
///
/// Note that we don't ever attempt to use memset_pattern8 or 4, because these
/// just replicate their input array and then pass on to memset_pattern16.
static Constant *getMemSetPatternValue(Value *V, const DataLayout *DL) {
  // FIXME: This could check for UndefValue because it can be merged into any
  // other valid pattern.

  // If the value isn't a constant, we can't promote it to being in a constant
  // array.  We could theoretically do a store to an alloca or something, but
  // that doesn't seem worthwhile.
  Constant *C = dyn_cast<Constant>(V);
  if (!C)
    return nullptr;

  // Only handle simple values that are a power of two bytes in size.
  uint64_t Size = DL->getTypeSizeInBits(V->getType());
  if (Size == 0 || (Size & 7) || (Size & (Size - 1)))
    return nullptr;

  // Don't care enough about darwin/ppc to implement this.
  if (DL->isBigEndian())
    return nullptr;

  // Convert to size in bytes.
  Size /= 8;

  // TODO: If CI is larger than 16-bytes, we can try slicing it in half to see
  // if the top and bottom are the same (e.g. for vectors and large integers).
  if (Size > 16)
    return nullptr;

  // If the constant is exactly 16 bytes, just use it.
  if (Size == 16)
    return C;

  // Otherwise, we'll use an array of the constants.
  unsigned ArraySize = 16 / Size;
  ArrayType *AT = ArrayType::get(V->getType(), ArraySize);
  return ConstantArray::get(AT, std::vector<Constant *>(ArraySize, C));
}

LoopIdiomRecognize::LegalStoreKind
LoopIdiomRecognize::isLegalStore(StoreInst *SI) {
  // Don't touch volatile stores.
  if (SI->isVolatile())
    return LegalStoreKind::None;
  // We only want simple or unordered-atomic stores.
  if (!SI->isUnordered())
    return LegalStoreKind::None;

  // Don't convert stores of non-integral pointer types to memsets (which stores
  // integers).
  if (DL->isNonIntegralPointerType(SI->getValueOperand()->getType()))
    return LegalStoreKind::None;

  // Avoid merging nontemporal stores.
  if (SI->getMetadata(LLVMContext::MD_nontemporal))
    return LegalStoreKind::None;

  Value *StoredVal = SI->getValueOperand();
  Value *StorePtr = SI->getPointerOperand();

  // Reject stores that are so large that they overflow an unsigned.
  uint64_t SizeInBits = DL->getTypeSizeInBits(StoredVal->getType());
  if ((SizeInBits & 7) || (SizeInBits >> 32) != 0)
    return LegalStoreKind::None;

  // See if the pointer expression is an AddRec like {base,+,1} on the current
  // loop, which indicates a strided store.  If we have something else, it's a
  // random store we can't handle.
  const SCEVAddRecExpr *StoreEv =
      dyn_cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
  if (!StoreEv || StoreEv->getLoop() != CurLoop || !StoreEv->isAffine())
    return LegalStoreKind::None;

  // Check to see if we have a constant stride.
  if (!isa<SCEVConstant>(StoreEv->getOperand(1)))
    return LegalStoreKind::None;

  // See if the store can be turned into a memset.

  // If the stored value is a byte-wise value (like i32 -1), then it may be
  // turned into a memset of i8 -1, assuming that all the consecutive bytes
  // are stored.  A store of i32 0x01020304 can never be turned into a memset,
  // but it can be turned into memset_pattern if the target supports it.
  Value *SplatValue = isBytewiseValue(StoredVal, *DL);
  Constant *PatternValue = nullptr;

  // Note: memset and memset_pattern on unordered-atomic is yet not supported
  bool UnorderedAtomic = SI->isUnordered() && !SI->isSimple();

  // If we're allowed to form a memset, and the stored value would be
  // acceptable for memset, use it.
  if (!UnorderedAtomic && HasMemset && SplatValue &&
      // Verify that the stored value is loop invariant.  If not, we can't
      // promote the memset.
      CurLoop->isLoopInvariant(SplatValue)) {
    // It looks like we can use SplatValue.
    return LegalStoreKind::Memset;
  } else if (!UnorderedAtomic && HasMemsetPattern &&
             // Don't create memset_pattern16s with address spaces.
             StorePtr->getType()->getPointerAddressSpace() == 0 &&
             (PatternValue = getMemSetPatternValue(StoredVal, DL))) {
    // It looks like we can use PatternValue!
    return LegalStoreKind::MemsetPattern;
  }

  // Otherwise, see if the store can be turned into a memcpy.
  if (HasMemcpy) {
    // Check to see if the stride matches the size of the store.  If so, then we
    // know that every byte is touched in the loop.
    APInt Stride = getStoreStride(StoreEv);
    unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
    if (StoreSize != Stride && StoreSize != -Stride)
      return LegalStoreKind::None;

    // The store must be feeding a non-volatile load.
    LoadInst *LI = dyn_cast<LoadInst>(SI->getValueOperand());

    // Only allow non-volatile loads
    if (!LI || LI->isVolatile())
      return LegalStoreKind::None;
    // Only allow simple or unordered-atomic loads
    if (!LI->isUnordered())
      return LegalStoreKind::None;

    // See if the pointer expression is an AddRec like {base,+,1} on the current
    // loop, which indicates a strided load.  If we have something else, it's a
    // random load we can't handle.
    const SCEVAddRecExpr *LoadEv =
        dyn_cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));
    if (!LoadEv || LoadEv->getLoop() != CurLoop || !LoadEv->isAffine())
      return LegalStoreKind::None;

    // The store and load must share the same stride.
    if (StoreEv->getOperand(1) != LoadEv->getOperand(1))
      return LegalStoreKind::None;

    // Success.  This store can be converted into a memcpy.
    UnorderedAtomic = UnorderedAtomic || LI->isAtomic();
    return UnorderedAtomic ? LegalStoreKind::UnorderedAtomicMemcpy
                           : LegalStoreKind::Memcpy;
  }
  // This store can't be transformed into a memset/memcpy.
  return LegalStoreKind::None;
}

void LoopIdiomRecognize::collectStores(BasicBlock *BB) {
  StoreRefsForMemset.clear();
  StoreRefsForMemsetPattern.clear();
  StoreRefsForMemcpy.clear();
  for (Instruction &I : *BB) {
    StoreInst *SI = dyn_cast<StoreInst>(&I);
    if (!SI)
      continue;

    // Make sure this is a strided store with a constant stride.
    switch (isLegalStore(SI)) {
    case LegalStoreKind::None:
      // Nothing to do
      break;
    case LegalStoreKind::Memset: {
      // Find the base pointer.
      Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
      StoreRefsForMemset[Ptr].push_back(SI);
    } break;
    case LegalStoreKind::MemsetPattern: {
      // Find the base pointer.
      Value *Ptr = GetUnderlyingObject(SI->getPointerOperand(), *DL);
      StoreRefsForMemsetPattern[Ptr].push_back(SI);
    } break;
    case LegalStoreKind::Memcpy:
    case LegalStoreKind::UnorderedAtomicMemcpy:
      StoreRefsForMemcpy.push_back(SI);
      break;
    default:
      assert(false && "unhandled return value");
      break;
    }
  }
}

/// runOnLoopBlock - Process the specified block, which lives in a counted loop
/// with the specified backedge count.  This block is known to be in the current
/// loop and not in any subloops.
bool LoopIdiomRecognize::runOnLoopBlock(
    BasicBlock *BB, const SCEV *BECount,
    SmallVectorImpl<BasicBlock *> &ExitBlocks) {
  // We can only promote stores in this block if they are unconditionally
  // executed in the loop.  For a block to be unconditionally executed, it has
  // to dominate all the exit blocks of the loop.  Verify this now.
  for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
    if (!DT->dominates(BB, ExitBlocks[i]))
      return false;

  bool MadeChange = false;
  // Look for store instructions, which may be optimized to memset/memcpy.
  collectStores(BB);

  // Look for a single store or sets of stores with a common base, which can be
  // optimized into a memset (memset_pattern).  The latter most commonly happens
  // with structs and handunrolled loops.
  for (auto &SL : StoreRefsForMemset)
    MadeChange |= processLoopStores(SL.second, BECount, ForMemset::Yes);

  for (auto &SL : StoreRefsForMemsetPattern)
    MadeChange |= processLoopStores(SL.second, BECount, ForMemset::No);

  // Optimize the store into a memcpy, if it feeds an similarly strided load.
  for (auto &SI : StoreRefsForMemcpy)
    MadeChange |= processLoopStoreOfLoopLoad(SI, BECount);

  for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E;) {
    Instruction *Inst = &*I++;
    // Look for memset instructions, which may be optimized to a larger memset.
    if (MemSetInst *MSI = dyn_cast<MemSetInst>(Inst)) {
      WeakTrackingVH InstPtr(&*I);
      if (!processLoopMemSet(MSI, BECount))
        continue;
      MadeChange = true;

      // If processing the memset invalidated our iterator, start over from the
      // top of the block.
      if (!InstPtr)
        I = BB->begin();
      continue;
    }
  }

  return MadeChange;
}

/// See if this store(s) can be promoted to a memset.
bool LoopIdiomRecognize::processLoopStores(SmallVectorImpl<StoreInst *> &SL,
                                           const SCEV *BECount, ForMemset For) {
  // Try to find consecutive stores that can be transformed into memsets.
  SetVector<StoreInst *> Heads, Tails;
  SmallDenseMap<StoreInst *, StoreInst *> ConsecutiveChain;

  // Do a quadratic search on all of the given stores and find
  // all of the pairs of stores that follow each other.
  SmallVector<unsigned, 16> IndexQueue;
  for (unsigned i = 0, e = SL.size(); i < e; ++i) {
    assert(SL[i]->isSimple() && "Expected only non-volatile stores.");

    Value *FirstStoredVal = SL[i]->getValueOperand();
    Value *FirstStorePtr = SL[i]->getPointerOperand();
    const SCEVAddRecExpr *FirstStoreEv =
        cast<SCEVAddRecExpr>(SE->getSCEV(FirstStorePtr));
    APInt FirstStride = getStoreStride(FirstStoreEv);
    unsigned FirstStoreSize = DL->getTypeStoreSize(SL[i]->getValueOperand()->getType());

    // See if we can optimize just this store in isolation.
    if (FirstStride == FirstStoreSize || -FirstStride == FirstStoreSize) {
      Heads.insert(SL[i]);
      continue;
    }

    Value *FirstSplatValue = nullptr;
    Constant *FirstPatternValue = nullptr;

    if (For == ForMemset::Yes)
      FirstSplatValue = isBytewiseValue(FirstStoredVal, *DL);
    else
      FirstPatternValue = getMemSetPatternValue(FirstStoredVal, DL);

    assert((FirstSplatValue || FirstPatternValue) &&
           "Expected either splat value or pattern value.");

    IndexQueue.clear();
    // If a store has multiple consecutive store candidates, search Stores
    // array according to the sequence: from i+1 to e, then from i-1 to 0.
    // This is because usually pairing with immediate succeeding or preceding
    // candidate create the best chance to find memset opportunity.
    unsigned j = 0;
    for (j = i + 1; j < e; ++j)
      IndexQueue.push_back(j);
    for (j = i; j > 0; --j)
      IndexQueue.push_back(j - 1);

    for (auto &k : IndexQueue) {
      assert(SL[k]->isSimple() && "Expected only non-volatile stores.");
      Value *SecondStorePtr = SL[k]->getPointerOperand();
      const SCEVAddRecExpr *SecondStoreEv =
          cast<SCEVAddRecExpr>(SE->getSCEV(SecondStorePtr));
      APInt SecondStride = getStoreStride(SecondStoreEv);

      if (FirstStride != SecondStride)
        continue;

      Value *SecondStoredVal = SL[k]->getValueOperand();
      Value *SecondSplatValue = nullptr;
      Constant *SecondPatternValue = nullptr;

      if (For == ForMemset::Yes)
        SecondSplatValue = isBytewiseValue(SecondStoredVal, *DL);
      else
        SecondPatternValue = getMemSetPatternValue(SecondStoredVal, DL);

      assert((SecondSplatValue || SecondPatternValue) &&
             "Expected either splat value or pattern value.");

      if (isConsecutiveAccess(SL[i], SL[k], *DL, *SE, false)) {
        if (For == ForMemset::Yes) {
          if (isa<UndefValue>(FirstSplatValue))
            FirstSplatValue = SecondSplatValue;
          if (FirstSplatValue != SecondSplatValue)
            continue;
        } else {
          if (isa<UndefValue>(FirstPatternValue))
            FirstPatternValue = SecondPatternValue;
          if (FirstPatternValue != SecondPatternValue)
            continue;
        }
        Tails.insert(SL[k]);
        Heads.insert(SL[i]);
        ConsecutiveChain[SL[i]] = SL[k];
        break;
      }
    }
  }

  // We may run into multiple chains that merge into a single chain. We mark the
  // stores that we transformed so that we don't visit the same store twice.
  SmallPtrSet<Value *, 16> TransformedStores;
  bool Changed = false;

  // For stores that start but don't end a link in the chain:
  for (SetVector<StoreInst *>::iterator it = Heads.begin(), e = Heads.end();
       it != e; ++it) {
    if (Tails.count(*it))
      continue;

    // We found a store instr that starts a chain. Now follow the chain and try
    // to transform it.
    SmallPtrSet<Instruction *, 8> AdjacentStores;
    StoreInst *I = *it;

    StoreInst *HeadStore = I;
    unsigned StoreSize = 0;

    // Collect the chain into a list.
    while (Tails.count(I) || Heads.count(I)) {
      if (TransformedStores.count(I))
        break;
      AdjacentStores.insert(I);

      StoreSize += DL->getTypeStoreSize(I->getValueOperand()->getType());
      // Move to the next value in the chain.
      I = ConsecutiveChain[I];
    }

    Value *StoredVal = HeadStore->getValueOperand();
    Value *StorePtr = HeadStore->getPointerOperand();
    const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
    APInt Stride = getStoreStride(StoreEv);

    // Check to see if the stride matches the size of the stores.  If so, then
    // we know that every byte is touched in the loop.
    if (StoreSize != Stride && StoreSize != -Stride)
      continue;

    bool NegStride = StoreSize == -Stride;

    if (processLoopStridedStore(StorePtr, StoreSize, HeadStore->getAlignment(),
                                StoredVal, HeadStore, AdjacentStores, StoreEv,
                                BECount, NegStride)) {
      TransformedStores.insert(AdjacentStores.begin(), AdjacentStores.end());
      Changed = true;
    }
  }

  return Changed;
}

/// processLoopMemSet - See if this memset can be promoted to a large memset.
bool LoopIdiomRecognize::processLoopMemSet(MemSetInst *MSI,
                                           const SCEV *BECount) {
  // We can only handle non-volatile memsets with a constant size.
  if (MSI->isVolatile() || !isa<ConstantInt>(MSI->getLength()))
    return false;

  // If we're not allowed to hack on memset, we fail.
  if (!HasMemset)
    return false;

  Value *Pointer = MSI->getDest();

  // See if the pointer expression is an AddRec like {base,+,1} on the current
  // loop, which indicates a strided store.  If we have something else, it's a
  // random store we can't handle.
  const SCEVAddRecExpr *Ev = dyn_cast<SCEVAddRecExpr>(SE->getSCEV(Pointer));
  if (!Ev || Ev->getLoop() != CurLoop || !Ev->isAffine())
    return false;

  // Reject memsets that are so large that they overflow an unsigned.
  uint64_t SizeInBytes = cast<ConstantInt>(MSI->getLength())->getZExtValue();
  if ((SizeInBytes >> 32) != 0)
    return false;

  // Check to see if the stride matches the size of the memset.  If so, then we
  // know that every byte is touched in the loop.
  const SCEVConstant *ConstStride = dyn_cast<SCEVConstant>(Ev->getOperand(1));
  if (!ConstStride)
    return false;

  APInt Stride = ConstStride->getAPInt();
  if (SizeInBytes != Stride && SizeInBytes != -Stride)
    return false;

  // Verify that the memset value is loop invariant.  If not, we can't promote
  // the memset.
  Value *SplatValue = MSI->getValue();
  if (!SplatValue || !CurLoop->isLoopInvariant(SplatValue))
    return false;

  SmallPtrSet<Instruction *, 1> MSIs;
  MSIs.insert(MSI);
  bool NegStride = SizeInBytes == -Stride;
  return processLoopStridedStore(Pointer, (unsigned)SizeInBytes,
                                 MSI->getDestAlignment(), SplatValue, MSI, MSIs,
                                 Ev, BECount, NegStride, /*IsLoopMemset=*/true);
}

/// mayLoopAccessLocation - Return true if the specified loop might access the
/// specified pointer location, which is a loop-strided access.  The 'Access'
/// argument specifies what the verboten forms of access are (read or write).
static bool
mayLoopAccessLocation(Value *Ptr, ModRefInfo Access, Loop *L,
                      const SCEV *BECount, unsigned StoreSize,
                      AliasAnalysis &AA,
                      SmallPtrSetImpl<Instruction *> &IgnoredStores) {
  // Get the location that may be stored across the loop.  Since the access is
  // strided positively through memory, we say that the modified location starts
  // at the pointer and has infinite size.
  LocationSize AccessSize = LocationSize::unknown();

  // If the loop iterates a fixed number of times, we can refine the access size
  // to be exactly the size of the memset, which is (BECount+1)*StoreSize
  if (const SCEVConstant *BECst = dyn_cast<SCEVConstant>(BECount))
    AccessSize = LocationSize::precise((BECst->getValue()->getZExtValue() + 1) *
                                       StoreSize);

  // TODO: For this to be really effective, we have to dive into the pointer
  // operand in the store.  Store to &A[i] of 100 will always return may alias
  // with store of &A[100], we need to StoreLoc to be "A" with size of 100,
  // which will then no-alias a store to &A[100].
  MemoryLocation StoreLoc(Ptr, AccessSize);

  for (Loop::block_iterator BI = L->block_begin(), E = L->block_end(); BI != E;
       ++BI)
    for (Instruction &I : **BI)
      if (IgnoredStores.count(&I) == 0 &&
          isModOrRefSet(
              intersectModRef(AA.getModRefInfo(&I, StoreLoc), Access)))
        return true;

  return false;
}

// If we have a negative stride, Start refers to the end of the memory location
// we're trying to memset.  Therefore, we need to recompute the base pointer,
// which is just Start - BECount*Size.
static const SCEV *getStartForNegStride(const SCEV *Start, const SCEV *BECount,
                                        Type *IntPtr, unsigned StoreSize,
                                        ScalarEvolution *SE) {
  const SCEV *Index = SE->getTruncateOrZeroExtend(BECount, IntPtr);
  if (StoreSize != 1)
    Index = SE->getMulExpr(Index, SE->getConstant(IntPtr, StoreSize),
                           SCEV::FlagNUW);
  return SE->getMinusSCEV(Start, Index);
}

/// Compute the number of bytes as a SCEV from the backedge taken count.
///
/// This also maps the SCEV into the provided type and tries to handle the
/// computation in a way that will fold cleanly.
static const SCEV *getNumBytes(const SCEV *BECount, Type *IntPtr,
                               unsigned StoreSize, Loop *CurLoop,
                               const DataLayout *DL, ScalarEvolution *SE) {
  const SCEV *NumBytesS;
  // The # stored bytes is (BECount+1)*Size.  Expand the trip count out to
  // pointer size if it isn't already.
  //
  // If we're going to need to zero extend the BE count, check if we can add
  // one to it prior to zero extending without overflow. Provided this is safe,
  // it allows better simplification of the +1.
  if (DL->getTypeSizeInBits(BECount->getType()) <
          DL->getTypeSizeInBits(IntPtr) &&
      SE->isLoopEntryGuardedByCond(
          CurLoop, ICmpInst::ICMP_NE, BECount,
          SE->getNegativeSCEV(SE->getOne(BECount->getType())))) {
    NumBytesS = SE->getZeroExtendExpr(
        SE->getAddExpr(BECount, SE->getOne(BECount->getType()), SCEV::FlagNUW),
        IntPtr);
  } else {
    NumBytesS = SE->getAddExpr(SE->getTruncateOrZeroExtend(BECount, IntPtr),
                               SE->getOne(IntPtr), SCEV::FlagNUW);
  }

  // And scale it based on the store size.
  if (StoreSize != 1) {
    NumBytesS = SE->getMulExpr(NumBytesS, SE->getConstant(IntPtr, StoreSize),
                               SCEV::FlagNUW);
  }
  return NumBytesS;
}

/// processLoopStridedStore - We see a strided store of some value.  If we can
/// transform this into a memset or memset_pattern in the loop preheader, do so.
bool LoopIdiomRecognize::processLoopStridedStore(
    Value *DestPtr, unsigned StoreSize, unsigned StoreAlignment,
    Value *StoredVal, Instruction *TheStore,
    SmallPtrSetImpl<Instruction *> &Stores, const SCEVAddRecExpr *Ev,
    const SCEV *BECount, bool NegStride, bool IsLoopMemset) {
  Value *SplatValue = isBytewiseValue(StoredVal, *DL);
  Constant *PatternValue = nullptr;

  if (!SplatValue)
    PatternValue = getMemSetPatternValue(StoredVal, DL);

  assert((SplatValue || PatternValue) &&
         "Expected either splat value or pattern value.");

  // The trip count of the loop and the base pointer of the addrec SCEV is
  // guaranteed to be loop invariant, which means that it should dominate the
  // header.  This allows us to insert code for it in the preheader.
  unsigned DestAS = DestPtr->getType()->getPointerAddressSpace();
  BasicBlock *Preheader = CurLoop->getLoopPreheader();
  IRBuilder<> Builder(Preheader->getTerminator());
  SCEVExpander Expander(*SE, *DL, "loop-idiom");

  Type *DestInt8PtrTy = Builder.getInt8PtrTy(DestAS);
  Type *IntPtr = Builder.getIntPtrTy(*DL, DestAS);

  const SCEV *Start = Ev->getStart();
  // Handle negative strided loops.
  if (NegStride)
    Start = getStartForNegStride(Start, BECount, IntPtr, StoreSize, SE);

  // TODO: ideally we should still be able to generate memset if SCEV expander
  // is taught to generate the dependencies at the latest point.
  if (!isSafeToExpand(Start, *SE))
    return false;

  // Okay, we have a strided store "p[i]" of a splattable value.  We can turn
  // this into a memset in the loop preheader now if we want.  However, this
  // would be unsafe to do if there is anything else in the loop that may read
  // or write to the aliased location.  Check for any overlap by generating the
  // base pointer and checking the region.
  Value *BasePtr =
      Expander.expandCodeFor(Start, DestInt8PtrTy, Preheader->getTerminator());
  if (mayLoopAccessLocation(BasePtr, ModRefInfo::ModRef, CurLoop, BECount,
                            StoreSize, *AA, Stores)) {
    Expander.clear();
    // If we generated new code for the base pointer, clean up.
    RecursivelyDeleteTriviallyDeadInstructions(BasePtr, TLI);
    return false;
  }

  if (avoidLIRForMultiBlockLoop(/*IsMemset=*/true, IsLoopMemset))
    return false;

  // Okay, everything looks good, insert the memset.

  const SCEV *NumBytesS =
      getNumBytes(BECount, IntPtr, StoreSize, CurLoop, DL, SE);

  // TODO: ideally we should still be able to generate memset if SCEV expander
  // is taught to generate the dependencies at the latest point.
  if (!isSafeToExpand(NumBytesS, *SE))
    return false;

  Value *NumBytes =
      Expander.expandCodeFor(NumBytesS, IntPtr, Preheader->getTerminator());

  CallInst *NewCall;
  if (SplatValue) {
    NewCall =
        Builder.CreateMemSet(BasePtr, SplatValue, NumBytes, StoreAlignment);
  } else {
    // Everything is emitted in default address space
    Type *Int8PtrTy = DestInt8PtrTy;

    Module *M = TheStore->getModule();
    StringRef FuncName = "memset_pattern16";
    FunctionCallee MSP = M->getOrInsertFunction(FuncName, Builder.getVoidTy(),
                                                Int8PtrTy, Int8PtrTy, IntPtr);
    inferLibFuncAttributes(M, FuncName, *TLI);

    // Otherwise we should form a memset_pattern16.  PatternValue is known to be
    // an constant array of 16-bytes.  Plop the value into a mergable global.
    GlobalVariable *GV = new GlobalVariable(*M, PatternValue->getType(), true,
                                            GlobalValue::PrivateLinkage,
                                            PatternValue, ".memset_pattern");
    GV->setUnnamedAddr(GlobalValue::UnnamedAddr::Global); // Ok to merge these.
    GV->setAlignment(16);
    Value *PatternPtr = ConstantExpr::getBitCast(GV, Int8PtrTy);
    NewCall = Builder.CreateCall(MSP, {BasePtr, PatternPtr, NumBytes});
  }

  LLVM_DEBUG(dbgs() << "  Formed memset: " << *NewCall << "\n"
                    << "    from store to: " << *Ev << " at: " << *TheStore
                    << "\n");
  NewCall->setDebugLoc(TheStore->getDebugLoc());

  ORE.emit([&]() {
    return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStridedStore",
                              NewCall->getDebugLoc(), Preheader)
           << "Transformed loop-strided store into a call to "
           << ore::NV("NewFunction", NewCall->getCalledFunction())
           << "() function";
  });

  // Okay, the memset has been formed.  Zap the original store and anything that
  // feeds into it.
  for (auto *I : Stores)
    deleteDeadInstruction(I);
  ++NumMemSet;
  return true;
}

/// If the stored value is a strided load in the same loop with the same stride
/// this may be transformable into a memcpy.  This kicks in for stuff like
/// for (i) A[i] = B[i];
bool LoopIdiomRecognize::processLoopStoreOfLoopLoad(StoreInst *SI,
                                                    const SCEV *BECount) {
  assert(SI->isUnordered() && "Expected only non-volatile non-ordered stores.");

  Value *StorePtr = SI->getPointerOperand();
  const SCEVAddRecExpr *StoreEv = cast<SCEVAddRecExpr>(SE->getSCEV(StorePtr));
  APInt Stride = getStoreStride(StoreEv);
  unsigned StoreSize = DL->getTypeStoreSize(SI->getValueOperand()->getType());
  bool NegStride = StoreSize == -Stride;

  // The store must be feeding a non-volatile load.
  LoadInst *LI = cast<LoadInst>(SI->getValueOperand());
  assert(LI->isUnordered() && "Expected only non-volatile non-ordered loads.");

  // See if the pointer expression is an AddRec like {base,+,1} on the current
  // loop, which indicates a strided load.  If we have something else, it's a
  // random load we can't handle.
  const SCEVAddRecExpr *LoadEv =
      cast<SCEVAddRecExpr>(SE->getSCEV(LI->getPointerOperand()));

  // The trip count of the loop and the base pointer of the addrec SCEV is
  // guaranteed to be loop invariant, which means that it should dominate the
  // header.  This allows us to insert code for it in the preheader.
  BasicBlock *Preheader = CurLoop->getLoopPreheader();
  IRBuilder<> Builder(Preheader->getTerminator());
  SCEVExpander Expander(*SE, *DL, "loop-idiom");

  const SCEV *StrStart = StoreEv->getStart();
  unsigned StrAS = SI->getPointerAddressSpace();
  Type *IntPtrTy = Builder.getIntPtrTy(*DL, StrAS);

  // Handle negative strided loops.
  if (NegStride)
    StrStart = getStartForNegStride(StrStart, BECount, IntPtrTy, StoreSize, SE);

  // Okay, we have a strided store "p[i]" of a loaded value.  We can turn
  // this into a memcpy in the loop preheader now if we want.  However, this
  // would be unsafe to do if there is anything else in the loop that may read
  // or write the memory region we're storing to.  This includes the load that
  // feeds the stores.  Check for an alias by generating the base address and
  // checking everything.
  Value *StoreBasePtr = Expander.expandCodeFor(
      StrStart, Builder.getInt8PtrTy(StrAS), Preheader->getTerminator());

  SmallPtrSet<Instruction *, 1> Stores;
  Stores.insert(SI);
  if (mayLoopAccessLocation(StoreBasePtr, ModRefInfo::ModRef, CurLoop, BECount,
                            StoreSize, *AA, Stores)) {
    Expander.clear();
    // If we generated new code for the base pointer, clean up.
    RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
    return false;
  }

  const SCEV *LdStart = LoadEv->getStart();
  unsigned LdAS = LI->getPointerAddressSpace();

  // Handle negative strided loops.
  if (NegStride)
    LdStart = getStartForNegStride(LdStart, BECount, IntPtrTy, StoreSize, SE);

  // For a memcpy, we have to make sure that the input array is not being
  // mutated by the loop.
  Value *LoadBasePtr = Expander.expandCodeFor(
      LdStart, Builder.getInt8PtrTy(LdAS), Preheader->getTerminator());

  if (mayLoopAccessLocation(LoadBasePtr, ModRefInfo::Mod, CurLoop, BECount,
                            StoreSize, *AA, Stores)) {
    Expander.clear();
    // If we generated new code for the base pointer, clean up.
    RecursivelyDeleteTriviallyDeadInstructions(LoadBasePtr, TLI);
    RecursivelyDeleteTriviallyDeadInstructions(StoreBasePtr, TLI);
    return false;
  }

  if (avoidLIRForMultiBlockLoop())
    return false;

  // Okay, everything is safe, we can transform this!

  const SCEV *NumBytesS =
      getNumBytes(BECount, IntPtrTy, StoreSize, CurLoop, DL, SE);

  Value *NumBytes =
      Expander.expandCodeFor(NumBytesS, IntPtrTy, Preheader->getTerminator());

  CallInst *NewCall = nullptr;
  // Check whether to generate an unordered atomic memcpy:
  //  If the load or store are atomic, then they must necessarily be unordered
  //  by previous checks.
  if (!SI->isAtomic() && !LI->isAtomic())
    NewCall = Builder.CreateMemCpy(StoreBasePtr, SI->getAlignment(),
                                   LoadBasePtr, LI->getAlignment(), NumBytes);
  else {
    // We cannot allow unaligned ops for unordered load/store, so reject
    // anything where the alignment isn't at least the element size.
    unsigned Align = std::min(SI->getAlignment(), LI->getAlignment());
    if (Align < StoreSize)
      return false;

    // If the element.atomic memcpy is not lowered into explicit
    // loads/stores later, then it will be lowered into an element-size
    // specific lib call. If the lib call doesn't exist for our store size, then
    // we shouldn't generate the memcpy.
    if (StoreSize > TTI->getAtomicMemIntrinsicMaxElementSize())
      return false;

    // Create the call.
    // Note that unordered atomic loads/stores are *required* by the spec to
    // have an alignment but non-atomic loads/stores may not.
    NewCall = Builder.CreateElementUnorderedAtomicMemCpy(
        StoreBasePtr, SI->getAlignment(), LoadBasePtr, LI->getAlignment(),
        NumBytes, StoreSize);
  }
  NewCall->setDebugLoc(SI->getDebugLoc());

  LLVM_DEBUG(dbgs() << "  Formed memcpy: " << *NewCall << "\n"
                    << "    from load ptr=" << *LoadEv << " at: " << *LI << "\n"
                    << "    from store ptr=" << *StoreEv << " at: " << *SI
                    << "\n");

  ORE.emit([&]() {
    return OptimizationRemark(DEBUG_TYPE, "ProcessLoopStoreOfLoopLoad",
                              NewCall->getDebugLoc(), Preheader)
           << "Formed a call to "
           << ore::NV("NewFunction", NewCall->getCalledFunction())
           << "() function";
  });

  // Okay, the memcpy has been formed.  Zap the original store and anything that
  // feeds into it.
  deleteDeadInstruction(SI);
  ++NumMemCpy;
  return true;
}

// When compiling for codesize we avoid idiom recognition for a multi-block loop
// unless it is a loop_memset idiom or a memset/memcpy idiom in a nested loop.
//
bool LoopIdiomRecognize::avoidLIRForMultiBlockLoop(bool IsMemset,
                                                   bool IsLoopMemset) {
  if (ApplyCodeSizeHeuristics && CurLoop->getNumBlocks() > 1) {
    if (!CurLoop->getParentLoop() && (!IsMemset || !IsLoopMemset)) {
      LLVM_DEBUG(dbgs() << "  " << CurLoop->getHeader()->getParent()->getName()
                        << " : LIR " << (IsMemset ? "Memset" : "Memcpy")
                        << " avoided: multi-block top-level loop\n");
      return true;
    }
  }

  return false;
}

bool LoopIdiomRecognize::runOnNoncountableLoop() {
  LLVM_DEBUG(dbgs() << DEBUG_TYPE " Scanning: F["
                    << CurLoop->getHeader()->getParent()->getName()
                    << "] Noncountable Loop %"
                    << CurLoop->getHeader()->getName() << "\n");

  return recognizePopcount() || recognizeAndInsertFFS();
}

/// Check if the given conditional branch is based on the comparison between
/// a variable and zero, and if the variable is non-zero or zero (JmpOnZero is
/// true), the control yields to the loop entry. If the branch matches the
/// behavior, the variable involved in the comparison is returned. This function
/// will be called to see if the precondition and postcondition of the loop are
/// in desirable form.
static Value *matchCondition(BranchInst *BI, BasicBlock *LoopEntry,
                             bool JmpOnZero = false) {
  if (!BI || !BI->isConditional())
    return nullptr;

  ICmpInst *Cond = dyn_cast<ICmpInst>(BI->getCondition());
  if (!Cond)
    return nullptr;

  ConstantInt *CmpZero = dyn_cast<ConstantInt>(Cond->getOperand(1));
  if (!CmpZero || !CmpZero->isZero())
    return nullptr;

  BasicBlock *TrueSucc = BI->getSuccessor(0);
  BasicBlock *FalseSucc = BI->getSuccessor(1);
  if (JmpOnZero)
    std::swap(TrueSucc, FalseSucc);

  ICmpInst::Predicate Pred = Cond->getPredicate();
  if ((Pred == ICmpInst::ICMP_NE && TrueSucc == LoopEntry) ||
      (Pred == ICmpInst::ICMP_EQ && FalseSucc == LoopEntry))
    return Cond->getOperand(0);

  return nullptr;
}

// Check if the recurrence variable `VarX` is in the right form to create
// the idiom. Returns the value coerced to a PHINode if so.
static PHINode *getRecurrenceVar(Value *VarX, Instruction *DefX,
                                 BasicBlock *LoopEntry) {
  auto *PhiX = dyn_cast<PHINode>(VarX);
  if (PhiX && PhiX->getParent() == LoopEntry &&
      (PhiX->getOperand(0) == DefX || PhiX->getOperand(1) == DefX))
    return PhiX;
  return nullptr;
}

/// Return true iff the idiom is detected in the loop.
///
/// Additionally:
/// 1) \p CntInst is set to the instruction counting the population bit.
/// 2) \p CntPhi is set to the corresponding phi node.
/// 3) \p Var is set to the value whose population bits are being counted.
///
/// The core idiom we are trying to detect is:
/// \code
///    if (x0 != 0)
///      goto loop-exit // the precondition of the loop
///    cnt0 = init-val;
///    do {
///       x1 = phi (x0, x2);
///       cnt1 = phi(cnt0, cnt2);
///
///       cnt2 = cnt1 + 1;
///        ...
///       x2 = x1 & (x1 - 1);
///        ...
///    } while(x != 0);
///
/// loop-exit:
/// \endcode
static bool detectPopcountIdiom(Loop *CurLoop, BasicBlock *PreCondBB,
                                Instruction *&CntInst, PHINode *&CntPhi,
                                Value *&Var) {
  // step 1: Check to see if the look-back branch match this pattern:
  //    "if (a!=0) goto loop-entry".
  BasicBlock *LoopEntry;
  Instruction *DefX2, *CountInst;
  Value *VarX1, *VarX0;
  PHINode *PhiX, *CountPhi;

  DefX2 = CountInst = nullptr;
  VarX1 = VarX0 = nullptr;
  PhiX = CountPhi = nullptr;
  LoopEntry = *(CurLoop->block_begin());

  // step 1: Check if the loop-back branch is in desirable form.
  {
    if (Value *T = matchCondition(
            dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
      DefX2 = dyn_cast<Instruction>(T);
    else
      return false;
  }

  // step 2: detect instructions corresponding to "x2 = x1 & (x1 - 1)"
  {
    if (!DefX2 || DefX2->getOpcode() != Instruction::And)
      return false;

    BinaryOperator *SubOneOp;

    if ((SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(0))))
      VarX1 = DefX2->getOperand(1);
    else {
      VarX1 = DefX2->getOperand(0);
      SubOneOp = dyn_cast<BinaryOperator>(DefX2->getOperand(1));
    }
    if (!SubOneOp || SubOneOp->getOperand(0) != VarX1)
      return false;

    ConstantInt *Dec = dyn_cast<ConstantInt>(SubOneOp->getOperand(1));
    if (!Dec ||
        !((SubOneOp->getOpcode() == Instruction::Sub && Dec->isOne()) ||
          (SubOneOp->getOpcode() == Instruction::Add &&
           Dec->isMinusOne()))) {
      return false;
    }
  }

  // step 3: Check the recurrence of variable X
  PhiX = getRecurrenceVar(VarX1, DefX2, LoopEntry);
  if (!PhiX)
    return false;

  // step 4: Find the instruction which count the population: cnt2 = cnt1 + 1
  {
    CountInst = nullptr;
    for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
                              IterE = LoopEntry->end();
         Iter != IterE; Iter++) {
      Instruction *Inst = &*Iter;
      if (Inst->getOpcode() != Instruction::Add)
        continue;

      ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
      if (!Inc || !Inc->isOne())
        continue;

      PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
      if (!Phi)
        continue;

      // Check if the result of the instruction is live of the loop.
      bool LiveOutLoop = false;
      for (User *U : Inst->users()) {
        if ((cast<Instruction>(U))->getParent() != LoopEntry) {
          LiveOutLoop = true;
          break;
        }
      }

      if (LiveOutLoop) {
        CountInst = Inst;
        CountPhi = Phi;
        break;
      }
    }

    if (!CountInst)
      return false;
  }

  // step 5: check if the precondition is in this form:
  //   "if (x != 0) goto loop-head ; else goto somewhere-we-don't-care;"
  {
    auto *PreCondBr = dyn_cast<BranchInst>(PreCondBB->getTerminator());
    Value *T = matchCondition(PreCondBr, CurLoop->getLoopPreheader());
    if (T != PhiX->getOperand(0) && T != PhiX->getOperand(1))
      return false;

    CntInst = CountInst;
    CntPhi = CountPhi;
    Var = T;
  }

  return true;
}

/// Return true if the idiom is detected in the loop.
///
/// Additionally:
/// 1) \p CntInst is set to the instruction Counting Leading Zeros (CTLZ)
///       or nullptr if there is no such.
/// 2) \p CntPhi is set to the corresponding phi node
///       or nullptr if there is no such.
/// 3) \p Var is set to the value whose CTLZ could be used.
/// 4) \p DefX is set to the instruction calculating Loop exit condition.
///
/// The core idiom we are trying to detect is:
/// \code
///    if (x0 == 0)
///      goto loop-exit // the precondition of the loop
///    cnt0 = init-val;
///    do {
///       x = phi (x0, x.next);   //PhiX
///       cnt = phi(cnt0, cnt.next);
///
///       cnt.next = cnt + 1;
///        ...
///       x.next = x >> 1;   // DefX
///        ...
///    } while(x.next != 0);
///
/// loop-exit:
/// \endcode
static bool detectShiftUntilZeroIdiom(Loop *CurLoop, const DataLayout &DL,
                                      Intrinsic::ID &IntrinID, Value *&InitX,
                                      Instruction *&CntInst, PHINode *&CntPhi,
                                      Instruction *&DefX) {
  BasicBlock *LoopEntry;
  Value *VarX = nullptr;

  DefX = nullptr;
  CntInst = nullptr;
  CntPhi = nullptr;
  LoopEntry = *(CurLoop->block_begin());

  // step 1: Check if the loop-back branch is in desirable form.
  if (Value *T = matchCondition(
          dyn_cast<BranchInst>(LoopEntry->getTerminator()), LoopEntry))
    DefX = dyn_cast<Instruction>(T);
  else
    return false;

  // step 2: detect instructions corresponding to "x.next = x >> 1 or x << 1"
  if (!DefX || !DefX->isShift())
    return false;
  IntrinID = DefX->getOpcode() == Instruction::Shl ? Intrinsic::cttz :
                                                     Intrinsic::ctlz;
  ConstantInt *Shft = dyn_cast<ConstantInt>(DefX->getOperand(1));
  if (!Shft || !Shft->isOne())
    return false;
  VarX = DefX->getOperand(0);

  // step 3: Check the recurrence of variable X
  PHINode *PhiX = getRecurrenceVar(VarX, DefX, LoopEntry);
  if (!PhiX)
    return false;

  InitX = PhiX->getIncomingValueForBlock(CurLoop->getLoopPreheader());

  // Make sure the initial value can't be negative otherwise the ashr in the
  // loop might never reach zero which would make the loop infinite.
  if (DefX->getOpcode() == Instruction::AShr && !isKnownNonNegative(InitX, DL))
    return false;

  // step 4: Find the instruction which count the CTLZ: cnt.next = cnt + 1
  // TODO: We can skip the step. If loop trip count is known (CTLZ),
  //       then all uses of "cnt.next" could be optimized to the trip count
  //       plus "cnt0". Currently it is not optimized.
  //       This step could be used to detect POPCNT instruction:
  //       cnt.next = cnt + (x.next & 1)
  for (BasicBlock::iterator Iter = LoopEntry->getFirstNonPHI()->getIterator(),
                            IterE = LoopEntry->end();
       Iter != IterE; Iter++) {
    Instruction *Inst = &*Iter;
    if (Inst->getOpcode() != Instruction::Add)
      continue;

    ConstantInt *Inc = dyn_cast<ConstantInt>(Inst->getOperand(1));
    if (!Inc || !Inc->isOne())
      continue;

    PHINode *Phi = getRecurrenceVar(Inst->getOperand(0), Inst, LoopEntry);
    if (!Phi)
      continue;

    CntInst = Inst;
    CntPhi = Phi;
    break;
  }
  if (!CntInst)
    return false;

  return true;
}

/// Recognize CTLZ or CTTZ idiom in a non-countable loop and convert the loop
/// to countable (with CTLZ / CTTZ trip count). If CTLZ / CTTZ inserted as a new
/// trip count returns true; otherwise, returns false.
bool LoopIdiomRecognize::recognizeAndInsertFFS() {
  // Give up if the loop has multiple blocks or multiple backedges.
  if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
    return false;

  Intrinsic::ID IntrinID;
  Value *InitX;
  Instruction *DefX = nullptr;
  PHINode *CntPhi = nullptr;
  Instruction *CntInst = nullptr;
  // Help decide if transformation is profitable. For ShiftUntilZero idiom,
  // this is always 6.
  size_t IdiomCanonicalSize = 6;

  if (!detectShiftUntilZeroIdiom(CurLoop, *DL, IntrinID, InitX,
                                 CntInst, CntPhi, DefX))
    return false;

  bool IsCntPhiUsedOutsideLoop = false;
  for (User *U : CntPhi->users())
    if (!CurLoop->contains(cast<Instruction>(U))) {
      IsCntPhiUsedOutsideLoop = true;
      break;
    }
  bool IsCntInstUsedOutsideLoop = false;
  for (User *U : CntInst->users())
    if (!CurLoop->contains(cast<Instruction>(U))) {
      IsCntInstUsedOutsideLoop = true;
      break;
    }
  // If both CntInst and CntPhi are used outside the loop the profitability
  // is questionable.
  if (IsCntInstUsedOutsideLoop && IsCntPhiUsedOutsideLoop)
    return false;

  // For some CPUs result of CTLZ(X) intrinsic is undefined
  // when X is 0. If we can not guarantee X != 0, we need to check this
  // when expand.
  bool ZeroCheck = false;
  // It is safe to assume Preheader exist as it was checked in
  // parent function RunOnLoop.
  BasicBlock *PH = CurLoop->getLoopPreheader();

  // If we are using the count instruction outside the loop, make sure we
  // have a zero check as a precondition. Without the check the loop would run
  // one iteration for before any check of the input value. This means 0 and 1
  // would have identical behavior in the original loop and thus
  if (!IsCntPhiUsedOutsideLoop) {
    auto *PreCondBB = PH->getSinglePredecessor();
    if (!PreCondBB)
      return false;
    auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
    if (!PreCondBI)
      return false;
    if (matchCondition(PreCondBI, PH) != InitX)
      return false;
    ZeroCheck = true;
  }

  // Check if CTLZ / CTTZ intrinsic is profitable. Assume it is always
  // profitable if we delete the loop.

  // the loop has only 6 instructions:
  //  %n.addr.0 = phi [ %n, %entry ], [ %shr, %while.cond ]
  //  %i.0 = phi [ %i0, %entry ], [ %inc, %while.cond ]
  //  %shr = ashr %n.addr.0, 1
  //  %tobool = icmp eq %shr, 0
  //  %inc = add nsw %i.0, 1
  //  br i1 %tobool

  const Value *Args[] =
      {InitX, ZeroCheck ? ConstantInt::getTrue(InitX->getContext())
                        : ConstantInt::getFalse(InitX->getContext())};

  // @llvm.dbg doesn't count as they have no semantic effect.
  auto InstWithoutDebugIt = CurLoop->getHeader()->instructionsWithoutDebug();
  uint32_t HeaderSize =
      std::distance(InstWithoutDebugIt.begin(), InstWithoutDebugIt.end());

  if (HeaderSize != IdiomCanonicalSize &&
      TTI->getIntrinsicCost(IntrinID, InitX->getType(), Args) >
          TargetTransformInfo::TCC_Basic)
    return false;

  transformLoopToCountable(IntrinID, PH, CntInst, CntPhi, InitX, DefX,
                           DefX->getDebugLoc(), ZeroCheck,
                           IsCntPhiUsedOutsideLoop);
  return true;
}

/// Recognizes a population count idiom in a non-countable loop.
///
/// If detected, transforms the relevant code to issue the popcount intrinsic
/// function call, and returns true; otherwise, returns false.
bool LoopIdiomRecognize::recognizePopcount() {
  if (TTI->getPopcntSupport(32) != TargetTransformInfo::PSK_FastHardware)
    return false;

  // Counting population are usually conducted by few arithmetic instructions.
  // Such instructions can be easily "absorbed" by vacant slots in a
  // non-compact loop. Therefore, recognizing popcount idiom only makes sense
  // in a compact loop.

  // Give up if the loop has multiple blocks or multiple backedges.
  if (CurLoop->getNumBackEdges() != 1 || CurLoop->getNumBlocks() != 1)
    return false;

  BasicBlock *LoopBody = *(CurLoop->block_begin());
  if (LoopBody->size() >= 20) {
    // The loop is too big, bail out.
    return false;
  }

  // It should have a preheader containing nothing but an unconditional branch.
  BasicBlock *PH = CurLoop->getLoopPreheader();
  if (!PH || &PH->front() != PH->getTerminator())
    return false;
  auto *EntryBI = dyn_cast<BranchInst>(PH->getTerminator());
  if (!EntryBI || EntryBI->isConditional())
    return false;

  // It should have a precondition block where the generated popcount intrinsic
  // function can be inserted.
  auto *PreCondBB = PH->getSinglePredecessor();
  if (!PreCondBB)
    return false;
  auto *PreCondBI = dyn_cast<BranchInst>(PreCondBB->getTerminator());
  if (!PreCondBI || PreCondBI->isUnconditional())
    return false;

  Instruction *CntInst;
  PHINode *CntPhi;
  Value *Val;
  if (!detectPopcountIdiom(CurLoop, PreCondBB, CntInst, CntPhi, Val))
    return false;

  transformLoopToPopcount(PreCondBB, CntInst, CntPhi, Val);
  return true;
}

static CallInst *createPopcntIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
                                       const DebugLoc &DL) {
  Value *Ops[] = {Val};
  Type *Tys[] = {Val->getType()};

  Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
  Function *Func = Intrinsic::getDeclaration(M, Intrinsic::ctpop, Tys);
  CallInst *CI = IRBuilder.CreateCall(Func, Ops);
  CI->setDebugLoc(DL);

  return CI;
}

static CallInst *createFFSIntrinsic(IRBuilder<> &IRBuilder, Value *Val,
                                    const DebugLoc &DL, bool ZeroCheck,
                                    Intrinsic::ID IID) {
  Value *Ops[] = {Val, ZeroCheck ? IRBuilder.getTrue() : IRBuilder.getFalse()};
  Type *Tys[] = {Val->getType()};

  Module *M = IRBuilder.GetInsertBlock()->getParent()->getParent();
  Function *Func = Intrinsic::getDeclaration(M, IID, Tys);
  CallInst *CI = IRBuilder.CreateCall(Func, Ops);
  CI->setDebugLoc(DL);

  return CI;
}

/// Transform the following loop (Using CTLZ, CTTZ is similar):
/// loop:
///   CntPhi = PHI [Cnt0, CntInst]
///   PhiX = PHI [InitX, DefX]
///   CntInst = CntPhi + 1
///   DefX = PhiX >> 1
///   LOOP_BODY
///   Br: loop if (DefX != 0)
/// Use(CntPhi) or Use(CntInst)
///
/// Into:
/// If CntPhi used outside the loop:
///   CountPrev = BitWidth(InitX) - CTLZ(InitX >> 1)
///   Count = CountPrev + 1
/// else
///   Count = BitWidth(InitX) - CTLZ(InitX)
/// loop:
///   CntPhi = PHI [Cnt0, CntInst]
///   PhiX = PHI [InitX, DefX]
///   PhiCount = PHI [Count, Dec]
///   CntInst = CntPhi + 1
///   DefX = PhiX >> 1
///   Dec = PhiCount - 1
///   LOOP_BODY
///   Br: loop if (Dec != 0)
/// Use(CountPrev + Cnt0) // Use(CntPhi)
/// or
/// Use(Count + Cnt0) // Use(CntInst)
///
/// If LOOP_BODY is empty the loop will be deleted.
/// If CntInst and DefX are not used in LOOP_BODY they will be removed.
void LoopIdiomRecognize::transformLoopToCountable(
    Intrinsic::ID IntrinID, BasicBlock *Preheader, Instruction *CntInst,
    PHINode *CntPhi, Value *InitX, Instruction *DefX, const DebugLoc &DL,
    bool ZeroCheck, bool IsCntPhiUsedOutsideLoop) {
  BranchInst *PreheaderBr = cast<BranchInst>(Preheader->getTerminator());

  // Step 1: Insert the CTLZ/CTTZ instruction at the end of the preheader block
  IRBuilder<> Builder(PreheaderBr);
  Builder.SetCurrentDebugLocation(DL);
  Value *FFS, *Count, *CountPrev, *NewCount, *InitXNext;

  //   Count = BitWidth - CTLZ(InitX);
  // If there are uses of CntPhi create:
  //   CountPrev = BitWidth - CTLZ(InitX >> 1);
  if (IsCntPhiUsedOutsideLoop) {
    if (DefX->getOpcode() == Instruction::AShr)
      InitXNext =
          Builder.CreateAShr(InitX, ConstantInt::get(InitX->getType(), 1));
    else if (DefX->getOpcode() == Instruction::LShr)
      InitXNext =
          Builder.CreateLShr(InitX, ConstantInt::get(InitX->getType(), 1));
    else if (DefX->getOpcode() == Instruction::Shl) // cttz
      InitXNext =
          Builder.CreateShl(InitX, ConstantInt::get(InitX->getType(), 1));
    else
      llvm_unreachable("Unexpected opcode!");
  } else
    InitXNext = InitX;
  FFS = createFFSIntrinsic(Builder, InitXNext, DL, ZeroCheck, IntrinID);
  Count = Builder.CreateSub(
      ConstantInt::get(FFS->getType(),
                       FFS->getType()->getIntegerBitWidth()),
      FFS);
  if (IsCntPhiUsedOutsideLoop) {
    CountPrev = Count;
    Count = Builder.CreateAdd(
        CountPrev,
        ConstantInt::get(CountPrev->getType(), 1));
  }

  NewCount = Builder.CreateZExtOrTrunc(
                      IsCntPhiUsedOutsideLoop ? CountPrev : Count,
                      cast<IntegerType>(CntInst->getType()));

  // If the counter's initial value is not zero, insert Add Inst.
  Value *CntInitVal = CntPhi->getIncomingValueForBlock(Preheader);
  ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
  if (!InitConst || !InitConst->isZero())
    NewCount = Builder.CreateAdd(NewCount, CntInitVal);

  // Step 2: Insert new IV and loop condition:
  // loop:
  //   ...
  //   PhiCount = PHI [Count, Dec]
  //   ...
  //   Dec = PhiCount - 1
  //   ...
  //   Br: loop if (Dec != 0)
  BasicBlock *Body = *(CurLoop->block_begin());
  auto *LbBr = cast<BranchInst>(Body->getTerminator());
  ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
  Type *Ty = Count->getType();

  PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());

  Builder.SetInsertPoint(LbCond);
  Instruction *TcDec = cast<Instruction>(
      Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
                        "tcdec", false, true));

  TcPhi->addIncoming(Count, Preheader);
  TcPhi->addIncoming(TcDec, Body);

  CmpInst::Predicate Pred =
      (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_NE : CmpInst::ICMP_EQ;
  LbCond->setPredicate(Pred);
  LbCond->setOperand(0, TcDec);
  LbCond->setOperand(1, ConstantInt::get(Ty, 0));

  // Step 3: All the references to the original counter outside
  //  the loop are replaced with the NewCount
  if (IsCntPhiUsedOutsideLoop)
    CntPhi->replaceUsesOutsideBlock(NewCount, Body);
  else
    CntInst->replaceUsesOutsideBlock(NewCount, Body);

  // step 4: Forget the "non-computable" trip-count SCEV associated with the
  //   loop. The loop would otherwise not be deleted even if it becomes empty.
  SE->forgetLoop(CurLoop);
}

void LoopIdiomRecognize::transformLoopToPopcount(BasicBlock *PreCondBB,
                                                 Instruction *CntInst,
                                                 PHINode *CntPhi, Value *Var) {
  BasicBlock *PreHead = CurLoop->getLoopPreheader();
  auto *PreCondBr = cast<BranchInst>(PreCondBB->getTerminator());
  const DebugLoc &DL = CntInst->getDebugLoc();

  // Assuming before transformation, the loop is following:
  //  if (x) // the precondition
  //     do { cnt++; x &= x - 1; } while(x);

  // Step 1: Insert the ctpop instruction at the end of the precondition block
  IRBuilder<> Builder(PreCondBr);
  Value *PopCnt, *PopCntZext, *NewCount, *TripCnt;
  {
    PopCnt = createPopcntIntrinsic(Builder, Var, DL);
    NewCount = PopCntZext =
        Builder.CreateZExtOrTrunc(PopCnt, cast<IntegerType>(CntPhi->getType()));

    if (NewCount != PopCnt)
      (cast<Instruction>(NewCount))->setDebugLoc(DL);

    // TripCnt is exactly the number of iterations the loop has
    TripCnt = NewCount;

    // If the population counter's initial value is not zero, insert Add Inst.
    Value *CntInitVal = CntPhi->getIncomingValueForBlock(PreHead);
    ConstantInt *InitConst = dyn_cast<ConstantInt>(CntInitVal);
    if (!InitConst || !InitConst->isZero()) {
      NewCount = Builder.CreateAdd(NewCount, CntInitVal);
      (cast<Instruction>(NewCount))->setDebugLoc(DL);
    }
  }

  // Step 2: Replace the precondition from "if (x == 0) goto loop-exit" to
  //   "if (NewCount == 0) loop-exit". Without this change, the intrinsic
  //   function would be partial dead code, and downstream passes will drag
  //   it back from the precondition block to the preheader.
  {
    ICmpInst *PreCond = cast<ICmpInst>(PreCondBr->getCondition());

    Value *Opnd0 = PopCntZext;
    Value *Opnd1 = ConstantInt::get(PopCntZext->getType(), 0);
    if (PreCond->getOperand(0) != Var)
      std::swap(Opnd0, Opnd1);

    ICmpInst *NewPreCond = cast<ICmpInst>(
        Builder.CreateICmp(PreCond->getPredicate(), Opnd0, Opnd1));
    PreCondBr->setCondition(NewPreCond);

    RecursivelyDeleteTriviallyDeadInstructions(PreCond, TLI);
  }

  // Step 3: Note that the population count is exactly the trip count of the
  // loop in question, which enable us to convert the loop from noncountable
  // loop into a countable one. The benefit is twofold:
  //
  //  - If the loop only counts population, the entire loop becomes dead after
  //    the transformation. It is a lot easier to prove a countable loop dead
  //    than to prove a noncountable one. (In some C dialects, an infinite loop
  //    isn't dead even if it computes nothing useful. In general, DCE needs
  //    to prove a noncountable loop finite before safely delete it.)
  //
  //  - If the loop also performs something else, it remains alive.
  //    Since it is transformed to countable form, it can be aggressively
  //    optimized by some optimizations which are in general not applicable
  //    to a noncountable loop.
  //
  // After this step, this loop (conceptually) would look like following:
  //   newcnt = __builtin_ctpop(x);
  //   t = newcnt;
  //   if (x)
  //     do { cnt++; x &= x-1; t--) } while (t > 0);
  BasicBlock *Body = *(CurLoop->block_begin());
  {
    auto *LbBr = cast<BranchInst>(Body->getTerminator());
    ICmpInst *LbCond = cast<ICmpInst>(LbBr->getCondition());
    Type *Ty = TripCnt->getType();

    PHINode *TcPhi = PHINode::Create(Ty, 2, "tcphi", &Body->front());

    Builder.SetInsertPoint(LbCond);
    Instruction *TcDec = cast<Instruction>(
        Builder.CreateSub(TcPhi, ConstantInt::get(Ty, 1),
                          "tcdec", false, true));

    TcPhi->addIncoming(TripCnt, PreHead);
    TcPhi->addIncoming(TcDec, Body);

    CmpInst::Predicate Pred =
        (LbBr->getSuccessor(0) == Body) ? CmpInst::ICMP_UGT : CmpInst::ICMP_SLE;
    LbCond->setPredicate(Pred);
    LbCond->setOperand(0, TcDec);
    LbCond->setOperand(1, ConstantInt::get(Ty, 0));
  }

  // Step 4: All the references to the original population counter outside
  //  the loop are replaced with the NewCount -- the value returned from
  //  __builtin_ctpop().
  CntInst->replaceUsesOutsideBlock(NewCount, Body);

  // step 5: Forget the "non-computable" trip-count SCEV associated with the
  //   loop. The loop would otherwise not be deleted even if it becomes empty.
  SE->forgetLoop(CurLoop);
}