llvm.org GIT mirror llvm / release_90 lib / Target / AMDGPU / VOP3PInstructions.td
release_90

Tree @release_90 (Download .tar.gz)

VOP3PInstructions.td @release_90raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
//===-- VOP3PInstructions.td - Vector Instruction Defintions --------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//

//===----------------------------------------------------------------------===//
// VOP3P Classes
//===----------------------------------------------------------------------===//

class VOP3PInst<string OpName, VOPProfile P, SDPatternOperator node = null_frag> :
  VOP3P_Pseudo<OpName, P,
    !if(P.HasModifiers, getVOP3PModPat<P, node>.ret, getVOP3Pat<P, node>.ret)
>;

// Non-packed instructions that use the VOP3P encoding.
// VOP3 neg/abs and VOP3P opsel/opsel_hi modifiers are allowed.
class VOP3_VOP3PInst<string OpName, VOPProfile P, bit UseTiedOutput = 0,
                     SDPatternOperator node = null_frag> :
  VOP3P_Pseudo<OpName, P> {
  // These operands are only sort of f16 operands. Depending on
  // op_sel_hi, these may be interpreted as f32. The inline immediate
  // values are really f16 converted to f32, so we treat these as f16
  // operands.
  let InOperandList =
    !con(
      !con(
        (ins FP16InputMods:$src0_modifiers, VCSrc_f16:$src0,
             FP16InputMods:$src1_modifiers, VCSrc_f16:$src1,
             FP16InputMods:$src2_modifiers, VCSrc_f16:$src2,
             clampmod:$clamp),
         !if(UseTiedOutput, (ins VGPR_32:$vdst_in), (ins))),
         (ins op_sel:$op_sel, op_sel_hi:$op_sel_hi));

  let Constraints = !if(UseTiedOutput, "$vdst = $vdst_in", "");
  let DisableEncoding = !if(UseTiedOutput, "$vdst_in", "");
  let AsmOperands =
    " $vdst, $src0_modifiers, $src1_modifiers, $src2_modifiers$op_sel$op_sel_hi$clamp";
}

let isCommutable = 1 in {
def V_PK_MAD_I16 : VOP3PInst<"v_pk_mad_i16", VOP3_Profile<VOP_V2I16_V2I16_V2I16_V2I16>>;
def V_PK_MAD_U16 : VOP3PInst<"v_pk_mad_u16", VOP3_Profile<VOP_V2I16_V2I16_V2I16_V2I16>>;

let FPDPRounding = 1 in {
def V_PK_FMA_F16 : VOP3PInst<"v_pk_fma_f16", VOP3_Profile<VOP_V2F16_V2F16_V2F16_V2F16>, fma>;
def V_PK_ADD_F16 : VOP3PInst<"v_pk_add_f16", VOP3_Profile<VOP_V2F16_V2F16_V2F16>, fadd>;
def V_PK_MUL_F16 : VOP3PInst<"v_pk_mul_f16", VOP3_Profile<VOP_V2F16_V2F16_V2F16>, fmul>;
} // End FPDPRounding = 1
def V_PK_MAX_F16 : VOP3PInst<"v_pk_max_f16", VOP3_Profile<VOP_V2F16_V2F16_V2F16>, fmaxnum_like>;
def V_PK_MIN_F16 : VOP3PInst<"v_pk_min_f16", VOP3_Profile<VOP_V2F16_V2F16_V2F16>, fminnum_like>;

def V_PK_ADD_U16 : VOP3PInst<"v_pk_add_u16", VOP3_Profile<VOP_V2I16_V2I16_V2I16>, add>;
def V_PK_ADD_I16 : VOP3PInst<"v_pk_add_i16", VOP3_Profile<VOP_V2I16_V2I16_V2I16>>;
def V_PK_MUL_LO_U16 : VOP3PInst<"v_pk_mul_lo_u16", VOP3_Profile<VOP_V2I16_V2I16_V2I16>, mul>;

def V_PK_MIN_I16 : VOP3PInst<"v_pk_min_i16", VOP3_Profile<VOP_V2I16_V2I16_V2I16>, smin>;
def V_PK_MIN_U16 : VOP3PInst<"v_pk_min_u16", VOP3_Profile<VOP_V2I16_V2I16_V2I16>, umin>;
def V_PK_MAX_I16 : VOP3PInst<"v_pk_max_i16", VOP3_Profile<VOP_V2I16_V2I16_V2I16>, smax>;
def V_PK_MAX_U16 : VOP3PInst<"v_pk_max_u16", VOP3_Profile<VOP_V2I16_V2I16_V2I16>, umax>;
}

def V_PK_SUB_U16 : VOP3PInst<"v_pk_sub_u16", VOP3_Profile<VOP_V2I16_V2I16_V2I16>>;
def V_PK_SUB_I16 : VOP3PInst<"v_pk_sub_i16", VOP3_Profile<VOP_V2I16_V2I16_V2I16>, sub>;

def V_PK_LSHLREV_B16 : VOP3PInst<"v_pk_lshlrev_b16", VOP3_Profile<VOP_V2I16_V2I16_V2I16>, lshl_rev>;
def V_PK_ASHRREV_I16 : VOP3PInst<"v_pk_ashrrev_i16", VOP3_Profile<VOP_V2I16_V2I16_V2I16>, ashr_rev>;
def V_PK_LSHRREV_B16 : VOP3PInst<"v_pk_lshrrev_b16", VOP3_Profile<VOP_V2I16_V2I16_V2I16>, lshr_rev>;


// Undo sub x, c -> add x, -c canonicalization since c is more likely
// an inline immediate than -c.
// The constant will be emitted as a mov, and folded later.
// TODO: We could directly encode the immediate now
def : GCNPat<
  (add (v2i16 (VOP3PMods0 v2i16:$src0, i32:$src0_modifiers, i1:$clamp)), NegSubInlineConstV216:$src1),
  (V_PK_SUB_U16 $src0_modifiers, $src0, SRCMODS.OP_SEL_1, NegSubInlineConstV216:$src1, $clamp)
>;

multiclass MadFmaMixPats<SDPatternOperator fma_like,
                         Instruction mix_inst,
                         Instruction mixlo_inst,
                         Instruction mixhi_inst> {
  def : GCNPat <
    (f16 (fpround (fma_like (f32 (VOP3PMadMixMods f16:$src0, i32:$src0_modifiers)),
                            (f32 (VOP3PMadMixMods f16:$src1, i32:$src1_modifiers)),
                            (f32 (VOP3PMadMixMods f16:$src2, i32:$src2_modifiers))))),
    (mixlo_inst $src0_modifiers, $src0,
                $src1_modifiers, $src1,
                $src2_modifiers, $src2,
                DSTCLAMP.NONE,
                (i32 (IMPLICIT_DEF)))
  >;

  // FIXME: Special case handling for maxhi (especially for clamp)
  // because dealing with the write to high half of the register is
  // difficult.
  def : GCNPat <
    (build_vector f16:$elt0, (fpround (fma_like (f32 (VOP3PMadMixMods f16:$src0, i32:$src0_modifiers)),
                                                (f32 (VOP3PMadMixMods f16:$src1, i32:$src1_modifiers)),
                                                (f32 (VOP3PMadMixMods f16:$src2, i32:$src2_modifiers))))),
    (v2f16 (mixhi_inst $src0_modifiers, $src0,
                       $src1_modifiers, $src1,
                       $src2_modifiers, $src2,
                       DSTCLAMP.NONE,
                       $elt0))
  >;

  def : GCNPat <
    (build_vector
      f16:$elt0,
      (AMDGPUclamp (fpround (fma_like (f32 (VOP3PMadMixMods f16:$src0, i32:$src0_modifiers)),
                                      (f32 (VOP3PMadMixMods f16:$src1, i32:$src1_modifiers)),
                                      (f32 (VOP3PMadMixMods f16:$src2, i32:$src2_modifiers)))))),
    (v2f16 (mixhi_inst $src0_modifiers, $src0,
                       $src1_modifiers, $src1,
                       $src2_modifiers, $src2,
                       DSTCLAMP.ENABLE,
                       $elt0))
  >;

  def : GCNPat <
    (AMDGPUclamp (build_vector
      (fpround (fma_like (f32 (VOP3PMadMixMods f16:$lo_src0, i32:$lo_src0_modifiers)),
                         (f32 (VOP3PMadMixMods f16:$lo_src1, i32:$lo_src1_modifiers)),
                         (f32 (VOP3PMadMixMods f16:$lo_src2, i32:$lo_src2_modifiers)))),
      (fpround (fma_like (f32 (VOP3PMadMixMods f16:$hi_src0, i32:$hi_src0_modifiers)),
                         (f32 (VOP3PMadMixMods f16:$hi_src1, i32:$hi_src1_modifiers)),
                         (f32 (VOP3PMadMixMods f16:$hi_src2, i32:$hi_src2_modifiers)))))),
    (v2f16 (mixhi_inst $hi_src0_modifiers, $hi_src0,
                       $hi_src1_modifiers, $hi_src1,
                       $hi_src2_modifiers, $hi_src2,
                       DSTCLAMP.ENABLE,
                       (mixlo_inst $lo_src0_modifiers, $lo_src0,
                                   $lo_src1_modifiers, $lo_src1,
                                   $lo_src2_modifiers, $lo_src2,
                                   DSTCLAMP.ENABLE,
                                   (i32 (IMPLICIT_DEF)))))
  >;
}

let SubtargetPredicate = HasMadMixInsts in {
// These are VOP3a-like opcodes which accept no omod.
// Size of src arguments (16/32) is controlled by op_sel.
// For 16-bit src arguments their location (hi/lo) are controlled by op_sel_hi.
let isCommutable = 1 in {
def V_MAD_MIX_F32 : VOP3_VOP3PInst<"v_mad_mix_f32", VOP3_Profile<VOP_F32_F16_F16_F16, VOP3_OPSEL>>;

let FPDPRounding = 1 in {
// Clamp modifier is applied after conversion to f16.
def V_MAD_MIXLO_F16 : VOP3_VOP3PInst<"v_mad_mixlo_f16", VOP3_Profile<VOP_F16_F16_F16_F16, VOP3_OPSEL>, 1>;

let ClampLo = 0, ClampHi = 1 in {
def V_MAD_MIXHI_F16 : VOP3_VOP3PInst<"v_mad_mixhi_f16", VOP3_Profile<VOP_F16_F16_F16_F16, VOP3_OPSEL>, 1>;
}
} // End FPDPRounding = 1
}

defm : MadFmaMixPats<fmad, V_MAD_MIX_F32, V_MAD_MIXLO_F16, V_MAD_MIXHI_F16>;
} // End SubtargetPredicate = HasMadMixInsts


// Essentially the same as the mad_mix versions
let SubtargetPredicate = HasFmaMixInsts in {
let isCommutable = 1 in {
def V_FMA_MIX_F32 : VOP3_VOP3PInst<"v_fma_mix_f32", VOP3_Profile<VOP_F32_F16_F16_F16, VOP3_OPSEL>>;

let FPDPRounding = 1 in {
// Clamp modifier is applied after conversion to f16.
def V_FMA_MIXLO_F16 : VOP3_VOP3PInst<"v_fma_mixlo_f16", VOP3_Profile<VOP_F16_F16_F16_F16, VOP3_OPSEL>, 1>;

let ClampLo = 0, ClampHi = 1 in {
def V_FMA_MIXHI_F16 : VOP3_VOP3PInst<"v_fma_mixhi_f16", VOP3_Profile<VOP_F16_F16_F16_F16, VOP3_OPSEL>, 1>;
}
} // End FPDPRounding = 1
}

defm : MadFmaMixPats<fma, V_FMA_MIX_F32, V_FMA_MIXLO_F16, V_FMA_MIXHI_F16>;
}

// Defines patterns that extract signed 4bit from each Idx[0].
foreach Idx = [[0,28],[4,24],[8,20],[12,16],[16,12],[20,8],[24,4]] in
  def ExtractSigned4bit_#Idx[0] : PatFrag<(ops node:$src),
                                          (sra (shl node:$src, (i32 Idx[1])), (i32 28))>;

// Defines code pattern that extracts U(unsigned/signed) 4/8bit from FromBitIndex.
class Extract<int FromBitIndex, int BitMask, bit U>: PatFrag<
  (ops node:$src),
  !if (!or (!and (!eq (BitMask, 255), !eq (FromBitIndex, 24)), !eq (FromBitIndex, 28)), // last element
       !if (U, (srl node:$src, (i32 FromBitIndex)), (sra node:$src, (i32 FromBitIndex))),
       !if (!eq (FromBitIndex, 0), // first element
            !if (U, (and node:$src, (i32 BitMask)),
                 !if (!eq (BitMask, 15), (!cast<PatFrag>("ExtractSigned4bit_"#FromBitIndex) node:$src),
                                         (sext_inreg node:$src, i8))),
            !if (U, (and (srl node:$src, (i32 FromBitIndex)), (i32 BitMask)),
                 !if (!eq (BitMask, 15), (!cast<PatFrag>("ExtractSigned4bit_"#FromBitIndex) node:$src),
                      (sext_inreg (srl node:$src, (i32 FromBitIndex)), i8)))))>;


foreach Type = ["I", "U"] in
  foreach Index = 0-3 in {
    // Defines patterns that extract each Index'ed 8bit from an unsigned
    // 32bit scalar value;
    def #Type#Index#"_8bit" : Extract<!shl(Index, 3), 255, !if (!eq (Type, "U"), 1, 0)>;

    // Defines multiplication patterns where the multiplication is happening on each
    // Index'ed 8bit of a 32bit scalar value.

    def Mul#Type#_Elt#Index : PatFrag<
      (ops node:$src0, node:$src1),
      (!cast<HasOneUseBinOp>(!if (!eq (Type, "I"), AMDGPUmul_i24_oneuse, AMDGPUmul_u24_oneuse))
                            (!cast<Extract>(#Type#Index#"_8bit") node:$src0),
                            (!cast<Extract>(#Type#Index#"_8bit") node:$src1))>;
  }

// Different variants of dot8 patterns cause a huge increase in the compile time.
// Define non-associative/commutative add/mul to prevent permutation in the dot8
// pattern.
def NonACAdd        : SDNode<"ISD::ADD"       , SDTIntBinOp>;
def NonACAdd_oneuse : HasOneUseBinOp<NonACAdd>;

def NonACAMDGPUmul_u24        : SDNode<"AMDGPUISD::MUL_U24"       , SDTIntBinOp>;
def NonACAMDGPUmul_u24_oneuse : HasOneUseBinOp<NonACAMDGPUmul_u24>;

def NonACAMDGPUmul_i24        : SDNode<"AMDGPUISD::MUL_I24"       , SDTIntBinOp>;
def NonACAMDGPUmul_i24_oneuse : HasOneUseBinOp<NonACAMDGPUmul_i24>;

foreach Type = ["I", "U"] in
  foreach Index = 0-7 in {
    // Defines patterns that extract each Index'ed 4bit from an unsigned
    // 32bit scalar value;
    def #Type#Index#"_4bit" : Extract<!shl(Index, 2), 15, !if (!eq (Type, "U"), 1, 0)>;

    // Defines multiplication patterns where the multiplication is happening on each
    // Index'ed 8bit of a 32bit scalar value.
    def Mul#Type#Index#"_4bit" : PatFrag<
      (ops node:$src0, node:$src1),
      (!cast<HasOneUseBinOp>(!if (!eq (Type, "I"), NonACAMDGPUmul_i24_oneuse, NonACAMDGPUmul_u24_oneuse))
                             (!cast<Extract>(#Type#Index#"_4bit") node:$src0),
                             (!cast<Extract>(#Type#Index#"_4bit") node:$src1))>;
  }

class UDot2Pat<Instruction Inst> : GCNPat <
  (add (add_oneuse (AMDGPUmul_u24_oneuse (srl i32:$src0, (i32 16)),
                                         (srl i32:$src1, (i32 16))), i32:$src2),
       (AMDGPUmul_u24_oneuse (and i32:$src0, (i32 65535)),
                             (and i32:$src1, (i32 65535)))
   ),
  (Inst (i32 8), $src0, (i32 8), $src1, (i32 8), $src2, (i1 0))> {
  let SubtargetPredicate = !cast<VOP_Pseudo>(Inst).SubtargetPredicate;
}

class SDot2Pat<Instruction Inst> : GCNPat <
  (add (add_oneuse (AMDGPUmul_i24_oneuse (sra i32:$src0, (i32 16)),
                                         (sra i32:$src1, (i32 16))), i32:$src2),
       (AMDGPUmul_i24_oneuse (sext_inreg i32:$src0, i16),
                             (sext_inreg i32:$src1, i16))),
  (Inst (i32 8), $src0, (i32 8), $src1, (i32 8), $src2, (i1 0))> {
  let SubtargetPredicate = !cast<VOP_Pseudo>(Inst).SubtargetPredicate;
}

let SubtargetPredicate = HasDot2Insts in {

def V_DOT2_F32_F16 : VOP3PInst<"v_dot2_f32_f16", VOP3_Profile<VOP_F32_V2F16_V2F16_F32>>;
def V_DOT2_I32_I16 : VOP3PInst<"v_dot2_i32_i16", VOP3_Profile<VOP_I32_V2I16_V2I16_I32>>;
def V_DOT2_U32_U16 : VOP3PInst<"v_dot2_u32_u16", VOP3_Profile<VOP_I32_V2I16_V2I16_I32>>;
def V_DOT4_U32_U8  : VOP3PInst<"v_dot4_u32_u8", VOP3_Profile<VOP_I32_I32_I32_I32, VOP3_PACKED>>;
def V_DOT8_U32_U4  : VOP3PInst<"v_dot8_u32_u4", VOP3_Profile<VOP_I32_I32_I32_I32, VOP3_PACKED>>;

} // End SubtargetPredicate = HasDot2Insts

let SubtargetPredicate = HasDot1Insts in {

def V_DOT4_I32_I8  : VOP3PInst<"v_dot4_i32_i8", VOP3_Profile<VOP_I32_I32_I32_I32, VOP3_PACKED>>;
def V_DOT8_I32_I4  : VOP3PInst<"v_dot8_i32_i4", VOP3_Profile<VOP_I32_I32_I32_I32, VOP3_PACKED>>;

} // End SubtargetPredicate = HasDot1Insts

multiclass DotPats<SDPatternOperator dot_op,
                   VOP3PInst dot_inst> {
  let SubtargetPredicate = dot_inst.SubtargetPredicate in
  def : GCNPat <
    (dot_op (dot_inst.Pfl.Src0VT (VOP3PMods0 dot_inst.Pfl.Src0VT:$src0, i32:$src0_modifiers)),
            (dot_inst.Pfl.Src1VT (VOP3PMods dot_inst.Pfl.Src1VT:$src1, i32:$src1_modifiers)),
            (dot_inst.Pfl.Src2VT (VOP3PMods dot_inst.Pfl.Src2VT:$src2, i32:$src2_modifiers)), i1:$clamp),
    (dot_inst $src0_modifiers, $src0, $src1_modifiers, $src1, $src2_modifiers, $src2, (as_i1imm $clamp))>;
}

defm : DotPats<AMDGPUfdot2, V_DOT2_F32_F16>;
defm : DotPats<int_amdgcn_sdot2, V_DOT2_I32_I16>;
defm : DotPats<int_amdgcn_udot2, V_DOT2_U32_U16>;
defm : DotPats<int_amdgcn_sdot4, V_DOT4_I32_I8>;
defm : DotPats<int_amdgcn_udot4, V_DOT4_U32_U8>;
defm : DotPats<int_amdgcn_sdot8, V_DOT8_I32_I4>;
defm : DotPats<int_amdgcn_udot8, V_DOT8_U32_U4>;

def : UDot2Pat<V_DOT2_U32_U16>;
def : SDot2Pat<V_DOT2_I32_I16>;

foreach Type = ["U", "I"] in
  let SubtargetPredicate = !cast<VOP_Pseudo>("V_DOT4_"#Type#"32_"#Type#8).SubtargetPredicate in
  def : GCNPat <
    !cast<dag>(!foldl((i32 i32:$src2), [0, 1, 2, 3], lhs, y,
                      (add_oneuse lhs, (!cast<PatFrag>("Mul"#Type#"_Elt"#y) i32:$src0, i32:$src1)))),
    (!cast<VOP3PInst>("V_DOT4_"#Type#"32_"#Type#8) (i32 8), $src0, (i32 8), $src1, (i32 8), $src2, (i1 0))>;

foreach Type = ["U", "I"] in
  let SubtargetPredicate = !cast<VOP_Pseudo>("V_DOT8_"#Type#"32_"#Type#4).SubtargetPredicate in
  def : GCNPat <
    !cast<dag>(!foldl((add_oneuse i32:$src2, (!cast<PatFrag>("Mul"#Type#"0_4bit") i32:$src0, i32:$src1)),
                      [1, 2, 3, 4, 5, 6, 7], lhs, y,
                      (NonACAdd_oneuse lhs, (!cast<PatFrag>("Mul"#Type#y#"_4bit") i32:$src0, i32:$src1)))),
    (!cast<VOP3PInst>("V_DOT8_"#Type#"32_"#Type#4) (i32 8), $src0, (i32 8), $src1, (i32 8), $src2, (i1 0))>;

// Different variants of dot8 code-gen dag patterns are not generated through table-gen due to a huge increase
// in the compile time. Directly handle the pattern generated by the FE here.
foreach Type = ["U", "I"] in
  let SubtargetPredicate = !cast<VOP_Pseudo>("V_DOT8_"#Type#"32_"#Type#4).SubtargetPredicate in
  def : GCNPat <
    !cast<dag>(!foldl((add_oneuse i32:$src2, (!cast<PatFrag>("Mul"#Type#"0_4bit") i32:$src0, i32:$src1)),
                      [7, 1, 2, 3, 4, 5, 6], lhs, y,
                      (NonACAdd_oneuse lhs, (!cast<PatFrag>("Mul"#Type#y#"_4bit") i32:$src0, i32:$src1)))),
    (!cast<VOP3PInst>("V_DOT8_"#Type#"32_"#Type#4) (i32 8), $src0, (i32 8), $src1, (i32 8), $src2, (i1 0))>;

def ADst_32   : VOPDstOperand<AGPR_32>;
def ADst_128  : VOPDstOperand<AReg_128>;
def ADst_512  : VOPDstOperand<AReg_512>;
def ADst_1024 : VOPDstOperand<AReg_1024>;

def VOPProfileAccRead : VOP3_Profile<VOP_I32_I32, VOP3_MAI> {
  let Src0RC64 = ARegSrc_32;
}

def VOPProfileAccWrite : VOP3_Profile<VOP_I32_I32, VOP3_MAI> {
  let DstRC = ADst_32;
  let Src0RC64 = VISrc_b32;
}

class VOPProfileMAI<VOPProfile P, RegisterOperand _SrcRC, RegisterOperand _DstRC,
                    RegisterOperand SrcABRC = AVSrc_32>
  : VOP3_Profile<P, VOP3_MAI> {
  let DstRC = _DstRC;
  let Src0RC64 = SrcABRC;
  let Src1RC64 = SrcABRC;
  let Src2RC64 = _SrcRC;
  let HasOpSel = 0;
  let HasClamp = 0;
  let HasModifiers = 0;
  let Asm64 = " $vdst, $src0, $src1, $src2$cbsz$abid$blgp";
  let Ins64 = (ins Src0RC64:$src0, Src1RC64:$src1, Src2RC64:$src2, cbsz:$cbsz, abid:$abid, blgp:$blgp);
}

def VOPProfileMAI_F32_F32_X4    : VOPProfileMAI<VOP_V4F32_F32_F32_V4F32,       AISrc_128_f32,  ADst_128>;
def VOPProfileMAI_F32_F32_X16   : VOPProfileMAI<VOP_V16F32_F32_F32_V16F32,     AISrc_512_f32,  ADst_512>;
def VOPProfileMAI_F32_F32_X32   : VOPProfileMAI<VOP_V32F32_F32_F32_V32F32,     AISrc_1024_f32, ADst_1024>;
def VOPProfileMAI_I32_I32_X4    : VOPProfileMAI<VOP_V4I32_I32_I32_V4I32,       AISrc_128_b32,  ADst_128>;
def VOPProfileMAI_I32_I32_X16   : VOPProfileMAI<VOP_V16I32_I32_I32_V16I32,     AISrc_512_b32,  ADst_512>;
def VOPProfileMAI_I32_I32_X32   : VOPProfileMAI<VOP_V32I32_I32_I32_V32I32,     AISrc_1024_b32, ADst_1024>;
def VOPProfileMAI_F32_V2I16_X4  : VOPProfileMAI<VOP_V4F32_V2I16_V2I16_V4F32,   AISrc_128_b32,  ADst_128>;
def VOPProfileMAI_F32_V2I16_X16 : VOPProfileMAI<VOP_V16F32_V2I16_V2I16_V16F32, AISrc_512_b32,  ADst_512>;
def VOPProfileMAI_F32_V2I16_X32 : VOPProfileMAI<VOP_V32F32_V2I16_V2I16_V32F32, AISrc_1024_b32, ADst_1024>;
def VOPProfileMAI_F32_V4F16_X4  : VOPProfileMAI<VOP_V4F32_V4F16_V4F16_V4F32,   AISrc_128_b32,  ADst_128,  AVSrc_64>;
def VOPProfileMAI_F32_V4F16_X16 : VOPProfileMAI<VOP_V16F32_V4F16_V4F16_V16F32, AISrc_512_b32,  ADst_512,  AVSrc_64>;
def VOPProfileMAI_F32_V4F16_X32 : VOPProfileMAI<VOP_V32F32_V4F16_V4F16_V32F32, AISrc_1024_b32, ADst_1024, AVSrc_64>;

let Predicates = [HasMAIInsts] in {
def V_ACCVGPR_READ_B32  : VOP3Inst<"v_accvgpr_read_b32",  VOPProfileAccRead>;
def V_ACCVGPR_WRITE_B32 : VOP3Inst<"v_accvgpr_write_b32", VOPProfileAccWrite> {
  let isMoveImm = 1;
}

let isConvergent = 1 in {
def V_MFMA_F32_4X4X1F32    : VOP3Inst<"v_mfma_f32_4x4x1f32",    VOPProfileMAI_F32_F32_X4,    int_amdgcn_mfma_f32_4x4x1f32>;
def V_MFMA_F32_4X4X4F16    : VOP3Inst<"v_mfma_f32_4x4x4f16",    VOPProfileMAI_F32_V4F16_X4,  int_amdgcn_mfma_f32_4x4x4f16>;
def V_MFMA_I32_4X4X4I8     : VOP3Inst<"v_mfma_i32_4x4x4i8",     VOPProfileMAI_I32_I32_X4,    int_amdgcn_mfma_i32_4x4x4i8>;
def V_MFMA_F32_4X4X2BF16   : VOP3Inst<"v_mfma_f32_4x4x2bf16",   VOPProfileMAI_F32_V2I16_X4,  int_amdgcn_mfma_f32_4x4x2bf16>;
def V_MFMA_F32_16X16X1F32  : VOP3Inst<"v_mfma_f32_16x16x1f32",  VOPProfileMAI_F32_F32_X16,   int_amdgcn_mfma_f32_16x16x1f32>;
def V_MFMA_F32_16X16X4F32  : VOP3Inst<"v_mfma_f32_16x16x4f32",  VOPProfileMAI_F32_F32_X4,    int_amdgcn_mfma_f32_16x16x4f32>;
def V_MFMA_F32_16X16X4F16  : VOP3Inst<"v_mfma_f32_16x16x4f16",  VOPProfileMAI_F32_V4F16_X16, int_amdgcn_mfma_f32_16x16x4f16>;
def V_MFMA_F32_16X16X16F16 : VOP3Inst<"v_mfma_f32_16x16x16f16", VOPProfileMAI_F32_V4F16_X4,  int_amdgcn_mfma_f32_16x16x16f16>;
def V_MFMA_I32_16X16X4I8   : VOP3Inst<"v_mfma_i32_16x16x4i8",   VOPProfileMAI_I32_I32_X16,   int_amdgcn_mfma_i32_16x16x4i8>;
def V_MFMA_I32_16X16X16I8  : VOP3Inst<"v_mfma_i32_16x16x16i8",  VOPProfileMAI_I32_I32_X4,    int_amdgcn_mfma_i32_16x16x16i8>;
def V_MFMA_F32_16X16X2BF16 : VOP3Inst<"v_mfma_f32_16x16x2bf16", VOPProfileMAI_F32_V2I16_X16, int_amdgcn_mfma_f32_16x16x2bf16>;
def V_MFMA_F32_16X16X8BF16 : VOP3Inst<"v_mfma_f32_16x16x8bf16", VOPProfileMAI_F32_V2I16_X4,  int_amdgcn_mfma_f32_16x16x8bf16>;
def V_MFMA_F32_32X32X1F32  : VOP3Inst<"v_mfma_f32_32x32x1f32",  VOPProfileMAI_F32_F32_X32,   int_amdgcn_mfma_f32_32x32x1f32>;
def V_MFMA_F32_32X32X2F32  : VOP3Inst<"v_mfma_f32_32x32x2f32",  VOPProfileMAI_F32_F32_X16,   int_amdgcn_mfma_f32_32x32x2f32>;
def V_MFMA_F32_32X32X4F16  : VOP3Inst<"v_mfma_f32_32x32x4f16",  VOPProfileMAI_F32_V4F16_X32, int_amdgcn_mfma_f32_32x32x4f16>;
def V_MFMA_F32_32X32X8F16  : VOP3Inst<"v_mfma_f32_32x32x8f16",  VOPProfileMAI_F32_V4F16_X16, int_amdgcn_mfma_f32_32x32x8f16>;
def V_MFMA_I32_32X32X4I8   : VOP3Inst<"v_mfma_i32_32x32x4i8",   VOPProfileMAI_I32_I32_X32,   int_amdgcn_mfma_i32_32x32x4i8>;
def V_MFMA_I32_32X32X8I8   : VOP3Inst<"v_mfma_i32_32x32x8i8",   VOPProfileMAI_I32_I32_X16,   int_amdgcn_mfma_i32_32x32x8i8>;
def V_MFMA_F32_32X32X2BF16 : VOP3Inst<"v_mfma_f32_32x32x2bf16", VOPProfileMAI_F32_V2I16_X32, int_amdgcn_mfma_f32_32x32x2bf16>;
def V_MFMA_F32_32X32X4BF16 : VOP3Inst<"v_mfma_f32_32x32x4bf16", VOPProfileMAI_F32_V2I16_X16, int_amdgcn_mfma_f32_32x32x4bf16>;
} // End isConvergent = 1

} // End SubtargetPredicate = HasMAIInsts

def : MnemonicAlias<"v_accvgpr_read",  "v_accvgpr_read_b32">;
def : MnemonicAlias<"v_accvgpr_write", "v_accvgpr_write_b32">;

multiclass VOP3P_Real_vi<bits<10> op> {
  def _vi : VOP3P_Real<!cast<VOP3_Pseudo>(NAME), SIEncodingFamily.VI>,
            VOP3Pe <op, !cast<VOP3_Pseudo>(NAME).Pfl> {
    let AssemblerPredicates = [HasVOP3PInsts];
    let DecoderNamespace = "GFX8";
  }
}

multiclass VOP3P_Real_MAI<bits<10> op> {
  def _vi : VOP3P_Real<!cast<VOP3_Pseudo>(NAME), SIEncodingFamily.VI>,
            VOP3Pe_MAI <op, !cast<VOP3_Pseudo>(NAME).Pfl> {
    let AssemblerPredicates = [HasMAIInsts];
    let DecoderNamespace = "GFX8";
  }
}

defm V_PK_MAD_I16 : VOP3P_Real_vi <0x380>;
defm V_PK_MUL_LO_U16 : VOP3P_Real_vi <0x381>;
defm V_PK_ADD_I16 : VOP3P_Real_vi <0x382>;
defm V_PK_SUB_I16 : VOP3P_Real_vi <0x383>;
defm V_PK_LSHLREV_B16 : VOP3P_Real_vi <0x384>;
defm V_PK_LSHRREV_B16 : VOP3P_Real_vi <0x385>;
defm V_PK_ASHRREV_I16 : VOP3P_Real_vi <0x386>;
defm V_PK_MAX_I16 : VOP3P_Real_vi <0x387>;
defm V_PK_MIN_I16 : VOP3P_Real_vi <0x388>;
defm V_PK_MAD_U16 : VOP3P_Real_vi <0x389>;

defm V_PK_ADD_U16 : VOP3P_Real_vi <0x38a>;
defm V_PK_SUB_U16 : VOP3P_Real_vi <0x38b>;
defm V_PK_MAX_U16 : VOP3P_Real_vi <0x38c>;
defm V_PK_MIN_U16 : VOP3P_Real_vi <0x38d>;
defm V_PK_FMA_F16 : VOP3P_Real_vi <0x38e>;
defm V_PK_ADD_F16 : VOP3P_Real_vi <0x38f>;
defm V_PK_MUL_F16 : VOP3P_Real_vi <0x390>;
defm V_PK_MIN_F16 : VOP3P_Real_vi <0x391>;
defm V_PK_MAX_F16 : VOP3P_Real_vi <0x392>;


let SubtargetPredicate = HasMadMixInsts in {
defm V_MAD_MIX_F32 : VOP3P_Real_vi <0x3a0>;
defm V_MAD_MIXLO_F16 : VOP3P_Real_vi <0x3a1>;
defm V_MAD_MIXHI_F16 : VOP3P_Real_vi <0x3a2>;
}

let SubtargetPredicate = HasFmaMixInsts in {
let DecoderNamespace = "GFX9_DL" in {
// The mad_mix instructions were renamed and their behaviors changed,
// but the opcode stayed the same so we need to put these in a
// different DecoderNamespace to avoid the ambiguity.
defm V_FMA_MIX_F32 : VOP3P_Real_vi <0x3a0>;
defm V_FMA_MIXLO_F16 : VOP3P_Real_vi <0x3a1>;
defm V_FMA_MIXHI_F16 : VOP3P_Real_vi <0x3a2>;
}
}


let SubtargetPredicate = HasDot2Insts in {

defm V_DOT2_F32_F16 : VOP3P_Real_vi <0x3a3>;
defm V_DOT2_I32_I16 : VOP3P_Real_vi <0x3a6>;
defm V_DOT2_U32_U16 : VOP3P_Real_vi <0x3a7>;
defm V_DOT4_U32_U8  : VOP3P_Real_vi <0x3a9>;
defm V_DOT8_U32_U4  : VOP3P_Real_vi <0x3ab>;

} // End SubtargetPredicate = HasDot2Insts

let SubtargetPredicate = HasDot1Insts in {

defm V_DOT4_I32_I8  : VOP3P_Real_vi <0x3a8>;
defm V_DOT8_I32_I4  : VOP3P_Real_vi <0x3aa>;

} // End SubtargetPredicate = HasDot1Insts

let SubtargetPredicate = HasMAIInsts in {

defm V_ACCVGPR_READ_B32  : VOP3P_Real_MAI <0x3d8>;
defm V_ACCVGPR_WRITE_B32 : VOP3P_Real_MAI <0x3d9>;
defm V_MFMA_F32_32X32X1F32  : VOP3P_Real_MAI <0x3c0>;
defm V_MFMA_F32_16X16X1F32  : VOP3P_Real_MAI <0x3c1>;
defm V_MFMA_F32_4X4X1F32    : VOP3P_Real_MAI <0x3c2>;
defm V_MFMA_F32_32X32X2F32  : VOP3P_Real_MAI <0x3c4>;
defm V_MFMA_F32_16X16X4F32  : VOP3P_Real_MAI <0x3c5>;
defm V_MFMA_F32_32X32X4F16  : VOP3P_Real_MAI <0x3c8>;
defm V_MFMA_F32_16X16X4F16  : VOP3P_Real_MAI <0x3c9>;
defm V_MFMA_F32_4X4X4F16    : VOP3P_Real_MAI <0x3ca>;
defm V_MFMA_F32_32X32X8F16  : VOP3P_Real_MAI <0x3cc>;
defm V_MFMA_F32_16X16X16F16 : VOP3P_Real_MAI <0x3cd>;
defm V_MFMA_I32_32X32X4I8   : VOP3P_Real_MAI <0x3d0>;
defm V_MFMA_I32_16X16X4I8   : VOP3P_Real_MAI <0x3d1>;
defm V_MFMA_I32_4X4X4I8     : VOP3P_Real_MAI <0x3d2>;
defm V_MFMA_I32_32X32X8I8   : VOP3P_Real_MAI <0x3d4>;
defm V_MFMA_I32_16X16X16I8  : VOP3P_Real_MAI <0x3d5>;
defm V_MFMA_F32_32X32X2BF16 : VOP3P_Real_MAI <0x3e8>;
defm V_MFMA_F32_16X16X2BF16 : VOP3P_Real_MAI <0x3e9>;
defm V_MFMA_F32_4X4X2BF16   : VOP3P_Real_MAI <0x3eb>;
defm V_MFMA_F32_32X32X4BF16 : VOP3P_Real_MAI <0x3ec>;
defm V_MFMA_F32_16X16X8BF16 : VOP3P_Real_MAI <0x3ed>;

} // End SubtargetPredicate = HasMAIInsts

//===----------------------------------------------------------------------===//
// GFX10.
//===----------------------------------------------------------------------===//

let AssemblerPredicate = isGFX10Plus, DecoderNamespace = "GFX10" in {
  multiclass VOP3P_Real_gfx10<bits<10> op> {
    def _gfx10 : VOP3P_Real<!cast<VOP3P_Pseudo>(NAME), SIEncodingFamily.GFX10>,
                 VOP3Pe_gfx10 <op, !cast<VOP3P_Pseudo>(NAME).Pfl>;
  }
} // End AssemblerPredicate = isGFX10Plus, DecoderNamespace = "GFX10"

defm V_PK_MAD_I16     : VOP3P_Real_gfx10<0x000>;
defm V_PK_MUL_LO_U16  : VOP3P_Real_gfx10<0x001>;
defm V_PK_ADD_I16     : VOP3P_Real_gfx10<0x002>;
defm V_PK_SUB_I16     : VOP3P_Real_gfx10<0x003>;
defm V_PK_LSHLREV_B16 : VOP3P_Real_gfx10<0x004>;
defm V_PK_LSHRREV_B16 : VOP3P_Real_gfx10<0x005>;
defm V_PK_ASHRREV_I16 : VOP3P_Real_gfx10<0x006>;
defm V_PK_MAX_I16     : VOP3P_Real_gfx10<0x007>;
defm V_PK_MIN_I16     : VOP3P_Real_gfx10<0x008>;
defm V_PK_MAD_U16     : VOP3P_Real_gfx10<0x009>;
defm V_PK_ADD_U16     : VOP3P_Real_gfx10<0x00a>;
defm V_PK_SUB_U16     : VOP3P_Real_gfx10<0x00b>;
defm V_PK_MAX_U16     : VOP3P_Real_gfx10<0x00c>;
defm V_PK_MIN_U16     : VOP3P_Real_gfx10<0x00d>;
defm V_PK_FMA_F16     : VOP3P_Real_gfx10<0x00e>;
defm V_PK_ADD_F16     : VOP3P_Real_gfx10<0x00f>;
defm V_PK_MUL_F16     : VOP3P_Real_gfx10<0x010>;
defm V_PK_MIN_F16     : VOP3P_Real_gfx10<0x011>;
defm V_PK_MAX_F16     : VOP3P_Real_gfx10<0x012>;
defm V_FMA_MIX_F32    : VOP3P_Real_gfx10<0x020>;
defm V_FMA_MIXLO_F16  : VOP3P_Real_gfx10<0x021>;
defm V_FMA_MIXHI_F16  : VOP3P_Real_gfx10<0x022>;

let SubtargetPredicate = HasDot2Insts in {

defm V_DOT2_F32_F16 : VOP3P_Real_gfx10 <0x013>;
defm V_DOT2_I32_I16 : VOP3P_Real_gfx10 <0x014>;
defm V_DOT2_U32_U16 : VOP3P_Real_gfx10 <0x015>;
defm V_DOT4_U32_U8  : VOP3P_Real_gfx10 <0x017>;
defm V_DOT8_U32_U4  : VOP3P_Real_gfx10 <0x019>;

} // End SubtargetPredicate = HasDot2Insts

let SubtargetPredicate = HasDot1Insts in {

defm V_DOT4_I32_I8  : VOP3P_Real_gfx10 <0x016>;
defm V_DOT8_I32_I4  : VOP3P_Real_gfx10 <0x018>;

} // End SubtargetPredicate = HasDot1Insts