llvm.org GIT mirror llvm / release_90 lib / IR / BasicBlock.cpp
release_90

Tree @release_90 (Download .tar.gz)

BasicBlock.cpp @release_90raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
//===-- BasicBlock.cpp - Implement BasicBlock related methods -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements the BasicBlock class for the IR library.
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/BasicBlock.h"
#include "SymbolTableListTraitsImpl.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Type.h"
#include <algorithm>

using namespace llvm;

ValueSymbolTable *BasicBlock::getValueSymbolTable() {
  if (Function *F = getParent())
    return F->getValueSymbolTable();
  return nullptr;
}

LLVMContext &BasicBlock::getContext() const {
  return getType()->getContext();
}

// Explicit instantiation of SymbolTableListTraits since some of the methods
// are not in the public header file...
template class llvm::SymbolTableListTraits<Instruction>;

BasicBlock::BasicBlock(LLVMContext &C, const Twine &Name, Function *NewParent,
                       BasicBlock *InsertBefore)
  : Value(Type::getLabelTy(C), Value::BasicBlockVal), Parent(nullptr) {

  if (NewParent)
    insertInto(NewParent, InsertBefore);
  else
    assert(!InsertBefore &&
           "Cannot insert block before another block with no function!");

  setName(Name);
}

void BasicBlock::insertInto(Function *NewParent, BasicBlock *InsertBefore) {
  assert(NewParent && "Expected a parent");
  assert(!Parent && "Already has a parent");

  if (InsertBefore)
    NewParent->getBasicBlockList().insert(InsertBefore->getIterator(), this);
  else
    NewParent->getBasicBlockList().push_back(this);
}

BasicBlock::~BasicBlock() {
  // If the address of the block is taken and it is being deleted (e.g. because
  // it is dead), this means that there is either a dangling constant expr
  // hanging off the block, or an undefined use of the block (source code
  // expecting the address of a label to keep the block alive even though there
  // is no indirect branch).  Handle these cases by zapping the BlockAddress
  // nodes.  There are no other possible uses at this point.
  if (hasAddressTaken()) {
    assert(!use_empty() && "There should be at least one blockaddress!");
    Constant *Replacement =
      ConstantInt::get(llvm::Type::getInt32Ty(getContext()), 1);
    while (!use_empty()) {
      BlockAddress *BA = cast<BlockAddress>(user_back());
      BA->replaceAllUsesWith(ConstantExpr::getIntToPtr(Replacement,
                                                       BA->getType()));
      BA->destroyConstant();
    }
  }

  assert(getParent() == nullptr && "BasicBlock still linked into the program!");
  dropAllReferences();
  InstList.clear();
}

void BasicBlock::setParent(Function *parent) {
  // Set Parent=parent, updating instruction symtab entries as appropriate.
  InstList.setSymTabObject(&Parent, parent);
}

iterator_range<filter_iterator<BasicBlock::const_iterator,
                               std::function<bool(const Instruction &)>>>
BasicBlock::instructionsWithoutDebug() const {
  std::function<bool(const Instruction &)> Fn = [](const Instruction &I) {
    return !isa<DbgInfoIntrinsic>(I);
  };
  return make_filter_range(*this, Fn);
}

iterator_range<filter_iterator<BasicBlock::iterator,
                               std::function<bool(Instruction &)>>>
BasicBlock::instructionsWithoutDebug() {
  std::function<bool(Instruction &)> Fn = [](Instruction &I) {
    return !isa<DbgInfoIntrinsic>(I);
  };
  return make_filter_range(*this, Fn);
}

void BasicBlock::removeFromParent() {
  getParent()->getBasicBlockList().remove(getIterator());
}

iplist<BasicBlock>::iterator BasicBlock::eraseFromParent() {
  return getParent()->getBasicBlockList().erase(getIterator());
}

/// Unlink this basic block from its current function and
/// insert it into the function that MovePos lives in, right before MovePos.
void BasicBlock::moveBefore(BasicBlock *MovePos) {
  MovePos->getParent()->getBasicBlockList().splice(
      MovePos->getIterator(), getParent()->getBasicBlockList(), getIterator());
}

/// Unlink this basic block from its current function and
/// insert it into the function that MovePos lives in, right after MovePos.
void BasicBlock::moveAfter(BasicBlock *MovePos) {
  MovePos->getParent()->getBasicBlockList().splice(
      ++MovePos->getIterator(), getParent()->getBasicBlockList(),
      getIterator());
}

const Module *BasicBlock::getModule() const {
  return getParent()->getParent();
}

const Instruction *BasicBlock::getTerminator() const {
  if (InstList.empty() || !InstList.back().isTerminator())
    return nullptr;
  return &InstList.back();
}

const CallInst *BasicBlock::getTerminatingMustTailCall() const {
  if (InstList.empty())
    return nullptr;
  const ReturnInst *RI = dyn_cast<ReturnInst>(&InstList.back());
  if (!RI || RI == &InstList.front())
    return nullptr;

  const Instruction *Prev = RI->getPrevNode();
  if (!Prev)
    return nullptr;

  if (Value *RV = RI->getReturnValue()) {
    if (RV != Prev)
      return nullptr;

    // Look through the optional bitcast.
    if (auto *BI = dyn_cast<BitCastInst>(Prev)) {
      RV = BI->getOperand(0);
      Prev = BI->getPrevNode();
      if (!Prev || RV != Prev)
        return nullptr;
    }
  }

  if (auto *CI = dyn_cast<CallInst>(Prev)) {
    if (CI->isMustTailCall())
      return CI;
  }
  return nullptr;
}

const CallInst *BasicBlock::getTerminatingDeoptimizeCall() const {
  if (InstList.empty())
    return nullptr;
  auto *RI = dyn_cast<ReturnInst>(&InstList.back());
  if (!RI || RI == &InstList.front())
    return nullptr;

  if (auto *CI = dyn_cast_or_null<CallInst>(RI->getPrevNode()))
    if (Function *F = CI->getCalledFunction())
      if (F->getIntrinsicID() == Intrinsic::experimental_deoptimize)
        return CI;

  return nullptr;
}

const Instruction* BasicBlock::getFirstNonPHI() const {
  for (const Instruction &I : *this)
    if (!isa<PHINode>(I))
      return &I;
  return nullptr;
}

const Instruction* BasicBlock::getFirstNonPHIOrDbg() const {
  for (const Instruction &I : *this)
    if (!isa<PHINode>(I) && !isa<DbgInfoIntrinsic>(I))
      return &I;
  return nullptr;
}

const Instruction* BasicBlock::getFirstNonPHIOrDbgOrLifetime() const {
  for (const Instruction &I : *this) {
    if (isa<PHINode>(I) || isa<DbgInfoIntrinsic>(I))
      continue;

    if (I.isLifetimeStartOrEnd())
      continue;

    return &I;
  }
  return nullptr;
}

BasicBlock::const_iterator BasicBlock::getFirstInsertionPt() const {
  const Instruction *FirstNonPHI = getFirstNonPHI();
  if (!FirstNonPHI)
    return end();

  const_iterator InsertPt = FirstNonPHI->getIterator();
  if (InsertPt->isEHPad()) ++InsertPt;
  return InsertPt;
}

void BasicBlock::dropAllReferences() {
  for (Instruction &I : *this)
    I.dropAllReferences();
}

/// If this basic block has a single predecessor block,
/// return the block, otherwise return a null pointer.
const BasicBlock *BasicBlock::getSinglePredecessor() const {
  const_pred_iterator PI = pred_begin(this), E = pred_end(this);
  if (PI == E) return nullptr;         // No preds.
  const BasicBlock *ThePred = *PI;
  ++PI;
  return (PI == E) ? ThePred : nullptr /*multiple preds*/;
}

/// If this basic block has a unique predecessor block,
/// return the block, otherwise return a null pointer.
/// Note that unique predecessor doesn't mean single edge, there can be
/// multiple edges from the unique predecessor to this block (for example
/// a switch statement with multiple cases having the same destination).
const BasicBlock *BasicBlock::getUniquePredecessor() const {
  const_pred_iterator PI = pred_begin(this), E = pred_end(this);
  if (PI == E) return nullptr; // No preds.
  const BasicBlock *PredBB = *PI;
  ++PI;
  for (;PI != E; ++PI) {
    if (*PI != PredBB)
      return nullptr;
    // The same predecessor appears multiple times in the predecessor list.
    // This is OK.
  }
  return PredBB;
}

bool BasicBlock::hasNPredecessors(unsigned N) const {
  return hasNItems(pred_begin(this), pred_end(this), N);
}

bool BasicBlock::hasNPredecessorsOrMore(unsigned N) const {
  return hasNItemsOrMore(pred_begin(this), pred_end(this), N);
}

const BasicBlock *BasicBlock::getSingleSuccessor() const {
  succ_const_iterator SI = succ_begin(this), E = succ_end(this);
  if (SI == E) return nullptr; // no successors
  const BasicBlock *TheSucc = *SI;
  ++SI;
  return (SI == E) ? TheSucc : nullptr /* multiple successors */;
}

const BasicBlock *BasicBlock::getUniqueSuccessor() const {
  succ_const_iterator SI = succ_begin(this), E = succ_end(this);
  if (SI == E) return nullptr; // No successors
  const BasicBlock *SuccBB = *SI;
  ++SI;
  for (;SI != E; ++SI) {
    if (*SI != SuccBB)
      return nullptr;
    // The same successor appears multiple times in the successor list.
    // This is OK.
  }
  return SuccBB;
}

iterator_range<BasicBlock::phi_iterator> BasicBlock::phis() {
  PHINode *P = empty() ? nullptr : dyn_cast<PHINode>(&*begin());
  return make_range<phi_iterator>(P, nullptr);
}

/// This method is used to notify a BasicBlock that the
/// specified Predecessor of the block is no longer able to reach it.  This is
/// actually not used to update the Predecessor list, but is actually used to
/// update the PHI nodes that reside in the block.  Note that this should be
/// called while the predecessor still refers to this block.
///
void BasicBlock::removePredecessor(BasicBlock *Pred,
                                   bool KeepOneInputPHIs) {
  assert((hasNUsesOrMore(16)||// Reduce cost of this assertion for complex CFGs.
          find(pred_begin(this), pred_end(this), Pred) != pred_end(this)) &&
         "removePredecessor: BB is not a predecessor!");

  if (InstList.empty()) return;
  PHINode *APN = dyn_cast<PHINode>(&front());
  if (!APN) return;   // Quick exit.

  // If there are exactly two predecessors, then we want to nuke the PHI nodes
  // altogether.  However, we cannot do this, if this in this case:
  //
  //  Loop:
  //    %x = phi [X, Loop]
  //    %x2 = add %x, 1         ;; This would become %x2 = add %x2, 1
  //    br Loop                 ;; %x2 does not dominate all uses
  //
  // This is because the PHI node input is actually taken from the predecessor
  // basic block.  The only case this can happen is with a self loop, so we
  // check for this case explicitly now.
  //
  unsigned max_idx = APN->getNumIncomingValues();
  assert(max_idx != 0 && "PHI Node in block with 0 predecessors!?!?!");
  if (max_idx == 2) {
    BasicBlock *Other = APN->getIncomingBlock(APN->getIncomingBlock(0) == Pred);

    // Disable PHI elimination!
    if (this == Other) max_idx = 3;
  }

  // <= Two predecessors BEFORE I remove one?
  if (max_idx <= 2 && !KeepOneInputPHIs) {
    // Yup, loop through and nuke the PHI nodes
    while (PHINode *PN = dyn_cast<PHINode>(&front())) {
      // Remove the predecessor first.
      PN->removeIncomingValue(Pred, !KeepOneInputPHIs);

      // If the PHI _HAD_ two uses, replace PHI node with its now *single* value
      if (max_idx == 2) {
        if (PN->getIncomingValue(0) != PN)
          PN->replaceAllUsesWith(PN->getIncomingValue(0));
        else
          // We are left with an infinite loop with no entries: kill the PHI.
          PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
        getInstList().pop_front();    // Remove the PHI node
      }

      // If the PHI node already only had one entry, it got deleted by
      // removeIncomingValue.
    }
  } else {
    // Okay, now we know that we need to remove predecessor #pred_idx from all
    // PHI nodes.  Iterate over each PHI node fixing them up
    PHINode *PN;
    for (iterator II = begin(); (PN = dyn_cast<PHINode>(II)); ) {
      ++II;
      PN->removeIncomingValue(Pred, false);
      // If all incoming values to the Phi are the same, we can replace the Phi
      // with that value.
      Value* PNV = nullptr;
      if (!KeepOneInputPHIs && (PNV = PN->hasConstantValue()))
        if (PNV != PN) {
          PN->replaceAllUsesWith(PNV);
          PN->eraseFromParent();
        }
    }
  }
}

bool BasicBlock::canSplitPredecessors() const {
  const Instruction *FirstNonPHI = getFirstNonPHI();
  if (isa<LandingPadInst>(FirstNonPHI))
    return true;
  // This is perhaps a little conservative because constructs like
  // CleanupBlockInst are pretty easy to split.  However, SplitBlockPredecessors
  // cannot handle such things just yet.
  if (FirstNonPHI->isEHPad())
    return false;
  return true;
}

bool BasicBlock::isLegalToHoistInto() const {
  auto *Term = getTerminator();
  // No terminator means the block is under construction.
  if (!Term)
    return true;

  // If the block has no successors, there can be no instructions to hoist.
  assert(Term->getNumSuccessors() > 0);

  // Instructions should not be hoisted across exception handling boundaries.
  return !Term->isExceptionalTerminator();
}

/// This splits a basic block into two at the specified
/// instruction.  Note that all instructions BEFORE the specified iterator stay
/// as part of the original basic block, an unconditional branch is added to
/// the new BB, and the rest of the instructions in the BB are moved to the new
/// BB, including the old terminator.  This invalidates the iterator.
///
/// Note that this only works on well formed basic blocks (must have a
/// terminator), and 'I' must not be the end of instruction list (which would
/// cause a degenerate basic block to be formed, having a terminator inside of
/// the basic block).
///
BasicBlock *BasicBlock::splitBasicBlock(iterator I, const Twine &BBName) {
  assert(getTerminator() && "Can't use splitBasicBlock on degenerate BB!");
  assert(I != InstList.end() &&
         "Trying to get me to create degenerate basic block!");

  BasicBlock *New = BasicBlock::Create(getContext(), BBName, getParent(),
                                       this->getNextNode());

  // Save DebugLoc of split point before invalidating iterator.
  DebugLoc Loc = I->getDebugLoc();
  // Move all of the specified instructions from the original basic block into
  // the new basic block.
  New->getInstList().splice(New->end(), this->getInstList(), I, end());

  // Add a branch instruction to the newly formed basic block.
  BranchInst *BI = BranchInst::Create(New, this);
  BI->setDebugLoc(Loc);

  // Now we must loop through all of the successors of the New block (which
  // _were_ the successors of the 'this' block), and update any PHI nodes in
  // successors.  If there were PHI nodes in the successors, then they need to
  // know that incoming branches will be from New, not from Old (this).
  //
  New->replaceSuccessorsPhiUsesWith(this, New);
  return New;
}

void BasicBlock::replacePhiUsesWith(BasicBlock *Old, BasicBlock *New) {
  // N.B. This might not be a complete BasicBlock, so don't assume
  // that it ends with a non-phi instruction.
  for (iterator II = begin(), IE = end(); II != IE; ++II) {
    PHINode *PN = dyn_cast<PHINode>(II);
    if (!PN)
      break;
    PN->replaceIncomingBlockWith(Old, New);
  }
}

void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *Old,
                                              BasicBlock *New) {
  Instruction *TI = getTerminator();
  if (!TI)
    // Cope with being called on a BasicBlock that doesn't have a terminator
    // yet. Clang's CodeGenFunction::EmitReturnBlock() likes to do this.
    return;
  llvm::for_each(successors(TI), [Old, New](BasicBlock *Succ) {
    Succ->replacePhiUsesWith(Old, New);
  });
}

void BasicBlock::replaceSuccessorsPhiUsesWith(BasicBlock *New) {
  this->replaceSuccessorsPhiUsesWith(this, New);
}

/// Return true if this basic block is a landing pad. I.e., it's
/// the destination of the 'unwind' edge of an invoke instruction.
bool BasicBlock::isLandingPad() const {
  return isa<LandingPadInst>(getFirstNonPHI());
}

/// Return the landingpad instruction associated with the landing pad.
const LandingPadInst *BasicBlock::getLandingPadInst() const {
  return dyn_cast<LandingPadInst>(getFirstNonPHI());
}

Optional<uint64_t> BasicBlock::getIrrLoopHeaderWeight() const {
  const Instruction *TI = getTerminator();
  if (MDNode *MDIrrLoopHeader =
      TI->getMetadata(LLVMContext::MD_irr_loop)) {
    MDString *MDName = cast<MDString>(MDIrrLoopHeader->getOperand(0));
    if (MDName->getString().equals("loop_header_weight")) {
      auto *CI = mdconst::extract<ConstantInt>(MDIrrLoopHeader->getOperand(1));
      return Optional<uint64_t>(CI->getValue().getZExtValue());
    }
  }
  return Optional<uint64_t>();
}

BasicBlock::iterator llvm::skipDebugIntrinsics(BasicBlock::iterator It) {
  while (isa<DbgInfoIntrinsic>(It))
    ++It;
  return It;
}