llvm.org GIT mirror llvm / release_90 lib / CodeGen / MachineVerifier.cpp
release_90

Tree @release_90 (Download .tar.gz)

MachineVerifier.cpp @release_90raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
//===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// Pass to verify generated machine code. The following is checked:
//
// Operand counts: All explicit operands must be present.
//
// Register classes: All physical and virtual register operands must be
// compatible with the register class required by the instruction descriptor.
//
// Register live intervals: Registers must be defined only once, and must be
// defined before use.
//
// The machine code verifier is enabled from LLVMTargetMachine.cpp with the
// command-line option -verify-machineinstrs, or by defining the environment
// variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
// the verifier errors.
//===----------------------------------------------------------------------===//

#include "LiveRangeCalc.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/Analysis/EHPersonalities.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/LiveInterval.h"
#include "llvm/CodeGen/LiveIntervals.h"
#include "llvm/CodeGen/LiveStacks.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBundle.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/SlotIndexes.h"
#include "llvm/CodeGen/StackMaps.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InlineAsm.h"
#include "llvm/IR/Instructions.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCTargetOptions.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <string>
#include <utility>

using namespace llvm;

namespace {

  struct MachineVerifier {
    MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}

    unsigned verify(MachineFunction &MF);

    Pass *const PASS;
    const char *Banner;
    const MachineFunction *MF;
    const TargetMachine *TM;
    const TargetInstrInfo *TII;
    const TargetRegisterInfo *TRI;
    const MachineRegisterInfo *MRI;

    unsigned foundErrors;

    // Avoid querying the MachineFunctionProperties for each operand.
    bool isFunctionRegBankSelected;
    bool isFunctionSelected;

    using RegVector = SmallVector<unsigned, 16>;
    using RegMaskVector = SmallVector<const uint32_t *, 4>;
    using RegSet = DenseSet<unsigned>;
    using RegMap = DenseMap<unsigned, const MachineInstr *>;
    using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;

    const MachineInstr *FirstNonPHI;
    const MachineInstr *FirstTerminator;
    BlockSet FunctionBlocks;

    BitVector regsReserved;
    RegSet regsLive;
    RegVector regsDefined, regsDead, regsKilled;
    RegMaskVector regMasks;

    SlotIndex lastIndex;

    // Add Reg and any sub-registers to RV
    void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
      RV.push_back(Reg);
      if (TargetRegisterInfo::isPhysicalRegister(Reg))
        for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
          RV.push_back(*SubRegs);
    }

    struct BBInfo {
      // Is this MBB reachable from the MF entry point?
      bool reachable = false;

      // Vregs that must be live in because they are used without being
      // defined. Map value is the user.
      RegMap vregsLiveIn;

      // Regs killed in MBB. They may be defined again, and will then be in both
      // regsKilled and regsLiveOut.
      RegSet regsKilled;

      // Regs defined in MBB and live out. Note that vregs passing through may
      // be live out without being mentioned here.
      RegSet regsLiveOut;

      // Vregs that pass through MBB untouched. This set is disjoint from
      // regsKilled and regsLiveOut.
      RegSet vregsPassed;

      // Vregs that must pass through MBB because they are needed by a successor
      // block. This set is disjoint from regsLiveOut.
      RegSet vregsRequired;

      // Set versions of block's predecessor and successor lists.
      BlockSet Preds, Succs;

      BBInfo() = default;

      // Add register to vregsPassed if it belongs there. Return true if
      // anything changed.
      bool addPassed(unsigned Reg) {
        if (!TargetRegisterInfo::isVirtualRegister(Reg))
          return false;
        if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
          return false;
        return vregsPassed.insert(Reg).second;
      }

      // Same for a full set.
      bool addPassed(const RegSet &RS) {
        bool changed = false;
        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
          if (addPassed(*I))
            changed = true;
        return changed;
      }

      // Add register to vregsRequired if it belongs there. Return true if
      // anything changed.
      bool addRequired(unsigned Reg) {
        if (!TargetRegisterInfo::isVirtualRegister(Reg))
          return false;
        if (regsLiveOut.count(Reg))
          return false;
        return vregsRequired.insert(Reg).second;
      }

      // Same for a full set.
      bool addRequired(const RegSet &RS) {
        bool changed = false;
        for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
          if (addRequired(*I))
            changed = true;
        return changed;
      }

      // Same for a full map.
      bool addRequired(const RegMap &RM) {
        bool changed = false;
        for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
          if (addRequired(I->first))
            changed = true;
        return changed;
      }

      // Live-out registers are either in regsLiveOut or vregsPassed.
      bool isLiveOut(unsigned Reg) const {
        return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
      }
    };

    // Extra register info per MBB.
    DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;

    bool isReserved(unsigned Reg) {
      return Reg < regsReserved.size() && regsReserved.test(Reg);
    }

    bool isAllocatable(unsigned Reg) const {
      return Reg < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
             !regsReserved.test(Reg);
    }

    // Analysis information if available
    LiveVariables *LiveVars;
    LiveIntervals *LiveInts;
    LiveStacks *LiveStks;
    SlotIndexes *Indexes;

    void visitMachineFunctionBefore();
    void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
    void visitMachineBundleBefore(const MachineInstr *MI);

    bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
    void verifyPreISelGenericInstruction(const MachineInstr *MI);
    void visitMachineInstrBefore(const MachineInstr *MI);
    void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
    void visitMachineInstrAfter(const MachineInstr *MI);
    void visitMachineBundleAfter(const MachineInstr *MI);
    void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
    void visitMachineFunctionAfter();

    void report(const char *msg, const MachineFunction *MF);
    void report(const char *msg, const MachineBasicBlock *MBB);
    void report(const char *msg, const MachineInstr *MI);
    void report(const char *msg, const MachineOperand *MO, unsigned MONum,
                LLT MOVRegType = LLT{});

    void report_context(const LiveInterval &LI) const;
    void report_context(const LiveRange &LR, unsigned VRegUnit,
                        LaneBitmask LaneMask) const;
    void report_context(const LiveRange::Segment &S) const;
    void report_context(const VNInfo &VNI) const;
    void report_context(SlotIndex Pos) const;
    void report_context(MCPhysReg PhysReg) const;
    void report_context_liverange(const LiveRange &LR) const;
    void report_context_lanemask(LaneBitmask LaneMask) const;
    void report_context_vreg(unsigned VReg) const;
    void report_context_vreg_regunit(unsigned VRegOrUnit) const;

    void verifyInlineAsm(const MachineInstr *MI);

    void checkLiveness(const MachineOperand *MO, unsigned MONum);
    void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
                            SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
                            LaneBitmask LaneMask = LaneBitmask::getNone());
    void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
                            SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
                            bool SubRangeCheck = false,
                            LaneBitmask LaneMask = LaneBitmask::getNone());

    void markReachable(const MachineBasicBlock *MBB);
    void calcRegsPassed();
    void checkPHIOps(const MachineBasicBlock &MBB);

    void calcRegsRequired();
    void verifyLiveVariables();
    void verifyLiveIntervals();
    void verifyLiveInterval(const LiveInterval&);
    void verifyLiveRangeValue(const LiveRange&, const VNInfo*, unsigned,
                              LaneBitmask);
    void verifyLiveRangeSegment(const LiveRange&,
                                const LiveRange::const_iterator I, unsigned,
                                LaneBitmask);
    void verifyLiveRange(const LiveRange&, unsigned,
                         LaneBitmask LaneMask = LaneBitmask::getNone());

    void verifyStackFrame();

    void verifySlotIndexes() const;
    void verifyProperties(const MachineFunction &MF);
  };

  struct MachineVerifierPass : public MachineFunctionPass {
    static char ID; // Pass ID, replacement for typeid

    const std::string Banner;

    MachineVerifierPass(std::string banner = std::string())
      : MachineFunctionPass(ID), Banner(std::move(banner)) {
        initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
      }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.setPreservesAll();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

    bool runOnMachineFunction(MachineFunction &MF) override {
      unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
      if (FoundErrors)
        report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
      return false;
    }
  };

} // end anonymous namespace

char MachineVerifierPass::ID = 0;

INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
                "Verify generated machine code", false, false)

FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
  return new MachineVerifierPass(Banner);
}

bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
    const {
  MachineFunction &MF = const_cast<MachineFunction&>(*this);
  unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
  if (AbortOnErrors && FoundErrors)
    report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
  return FoundErrors == 0;
}

void MachineVerifier::verifySlotIndexes() const {
  if (Indexes == nullptr)
    return;

  // Ensure the IdxMBB list is sorted by slot indexes.
  SlotIndex Last;
  for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
       E = Indexes->MBBIndexEnd(); I != E; ++I) {
    assert(!Last.isValid() || I->first > Last);
    Last = I->first;
  }
}

void MachineVerifier::verifyProperties(const MachineFunction &MF) {
  // If a pass has introduced virtual registers without clearing the
  // NoVRegs property (or set it without allocating the vregs)
  // then report an error.
  if (MF.getProperties().hasProperty(
          MachineFunctionProperties::Property::NoVRegs) &&
      MRI->getNumVirtRegs())
    report("Function has NoVRegs property but there are VReg operands", &MF);
}

unsigned MachineVerifier::verify(MachineFunction &MF) {
  foundErrors = 0;

  this->MF = &MF;
  TM = &MF.getTarget();
  TII = MF.getSubtarget().getInstrInfo();
  TRI = MF.getSubtarget().getRegisterInfo();
  MRI = &MF.getRegInfo();

  const bool isFunctionFailedISel = MF.getProperties().hasProperty(
      MachineFunctionProperties::Property::FailedISel);

  // If we're mid-GlobalISel and we already triggered the fallback path then
  // it's expected that the MIR is somewhat broken but that's ok since we'll
  // reset it and clear the FailedISel attribute in ResetMachineFunctions.
  if (isFunctionFailedISel)
    return foundErrors;

  isFunctionRegBankSelected =
      !isFunctionFailedISel &&
      MF.getProperties().hasProperty(
          MachineFunctionProperties::Property::RegBankSelected);
  isFunctionSelected = !isFunctionFailedISel &&
                       MF.getProperties().hasProperty(
                           MachineFunctionProperties::Property::Selected);
  LiveVars = nullptr;
  LiveInts = nullptr;
  LiveStks = nullptr;
  Indexes = nullptr;
  if (PASS) {
    LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
    // We don't want to verify LiveVariables if LiveIntervals is available.
    if (!LiveInts)
      LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
    LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
    Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
  }

  verifySlotIndexes();

  verifyProperties(MF);

  visitMachineFunctionBefore();
  for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
       MFI!=MFE; ++MFI) {
    visitMachineBasicBlockBefore(&*MFI);
    // Keep track of the current bundle header.
    const MachineInstr *CurBundle = nullptr;
    // Do we expect the next instruction to be part of the same bundle?
    bool InBundle = false;

    for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
           MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
      if (MBBI->getParent() != &*MFI) {
        report("Bad instruction parent pointer", &*MFI);
        errs() << "Instruction: " << *MBBI;
        continue;
      }

      // Check for consistent bundle flags.
      if (InBundle && !MBBI->isBundledWithPred())
        report("Missing BundledPred flag, "
               "BundledSucc was set on predecessor",
               &*MBBI);
      if (!InBundle && MBBI->isBundledWithPred())
        report("BundledPred flag is set, "
               "but BundledSucc not set on predecessor",
               &*MBBI);

      // Is this a bundle header?
      if (!MBBI->isInsideBundle()) {
        if (CurBundle)
          visitMachineBundleAfter(CurBundle);
        CurBundle = &*MBBI;
        visitMachineBundleBefore(CurBundle);
      } else if (!CurBundle)
        report("No bundle header", &*MBBI);
      visitMachineInstrBefore(&*MBBI);
      for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I) {
        const MachineInstr &MI = *MBBI;
        const MachineOperand &Op = MI.getOperand(I);
        if (Op.getParent() != &MI) {
          // Make sure to use correct addOperand / RemoveOperand / ChangeTo
          // functions when replacing operands of a MachineInstr.
          report("Instruction has operand with wrong parent set", &MI);
        }

        visitMachineOperand(&Op, I);
      }

      visitMachineInstrAfter(&*MBBI);

      // Was this the last bundled instruction?
      InBundle = MBBI->isBundledWithSucc();
    }
    if (CurBundle)
      visitMachineBundleAfter(CurBundle);
    if (InBundle)
      report("BundledSucc flag set on last instruction in block", &MFI->back());
    visitMachineBasicBlockAfter(&*MFI);
  }
  visitMachineFunctionAfter();

  // Clean up.
  regsLive.clear();
  regsDefined.clear();
  regsDead.clear();
  regsKilled.clear();
  regMasks.clear();
  MBBInfoMap.clear();

  return foundErrors;
}

void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
  assert(MF);
  errs() << '\n';
  if (!foundErrors++) {
    if (Banner)
      errs() << "# " << Banner << '\n';
    if (LiveInts != nullptr)
      LiveInts->print(errs());
    else
      MF->print(errs(), Indexes);
  }
  errs() << "*** Bad machine code: " << msg << " ***\n"
      << "- function:    " << MF->getName() << "\n";
}

void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
  assert(MBB);
  report(msg, MBB->getParent());
  errs() << "- basic block: " << printMBBReference(*MBB) << ' '
         << MBB->getName() << " (" << (const void *)MBB << ')';
  if (Indexes)
    errs() << " [" << Indexes->getMBBStartIdx(MBB)
        << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
  errs() << '\n';
}

void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
  assert(MI);
  report(msg, MI->getParent());
  errs() << "- instruction: ";
  if (Indexes && Indexes->hasIndex(*MI))
    errs() << Indexes->getInstructionIndex(*MI) << '\t';
  MI->print(errs(), /*SkipOpers=*/true);
}

void MachineVerifier::report(const char *msg, const MachineOperand *MO,
                             unsigned MONum, LLT MOVRegType) {
  assert(MO);
  report(msg, MO->getParent());
  errs() << "- operand " << MONum << ":   ";
  MO->print(errs(), MOVRegType, TRI);
  errs() << "\n";
}

void MachineVerifier::report_context(SlotIndex Pos) const {
  errs() << "- at:          " << Pos << '\n';
}

void MachineVerifier::report_context(const LiveInterval &LI) const {
  errs() << "- interval:    " << LI << '\n';
}

void MachineVerifier::report_context(const LiveRange &LR, unsigned VRegUnit,
                                     LaneBitmask LaneMask) const {
  report_context_liverange(LR);
  report_context_vreg_regunit(VRegUnit);
  if (LaneMask.any())
    report_context_lanemask(LaneMask);
}

void MachineVerifier::report_context(const LiveRange::Segment &S) const {
  errs() << "- segment:     " << S << '\n';
}

void MachineVerifier::report_context(const VNInfo &VNI) const {
  errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
}

void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
  errs() << "- liverange:   " << LR << '\n';
}

void MachineVerifier::report_context(MCPhysReg PReg) const {
  errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
}

void MachineVerifier::report_context_vreg(unsigned VReg) const {
  errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
}

void MachineVerifier::report_context_vreg_regunit(unsigned VRegOrUnit) const {
  if (TargetRegisterInfo::isVirtualRegister(VRegOrUnit)) {
    report_context_vreg(VRegOrUnit);
  } else {
    errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
  }
}

void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
  errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
}

void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
  BBInfo &MInfo = MBBInfoMap[MBB];
  if (!MInfo.reachable) {
    MInfo.reachable = true;
    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
           SuE = MBB->succ_end(); SuI != SuE; ++SuI)
      markReachable(*SuI);
  }
}

void MachineVerifier::visitMachineFunctionBefore() {
  lastIndex = SlotIndex();
  regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
                                           : TRI->getReservedRegs(*MF);

  if (!MF->empty())
    markReachable(&MF->front());

  // Build a set of the basic blocks in the function.
  FunctionBlocks.clear();
  for (const auto &MBB : *MF) {
    FunctionBlocks.insert(&MBB);
    BBInfo &MInfo = MBBInfoMap[&MBB];

    MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
    if (MInfo.Preds.size() != MBB.pred_size())
      report("MBB has duplicate entries in its predecessor list.", &MBB);

    MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
    if (MInfo.Succs.size() != MBB.succ_size())
      report("MBB has duplicate entries in its successor list.", &MBB);
  }

  // Check that the register use lists are sane.
  MRI->verifyUseLists();

  if (!MF->empty())
    verifyStackFrame();
}

// Does iterator point to a and b as the first two elements?
static bool matchPair(MachineBasicBlock::const_succ_iterator i,
                      const MachineBasicBlock *a, const MachineBasicBlock *b) {
  if (*i == a)
    return *++i == b;
  if (*i == b)
    return *++i == a;
  return false;
}

void
MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
  FirstTerminator = nullptr;
  FirstNonPHI = nullptr;

  if (!MF->getProperties().hasProperty(
      MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
    // If this block has allocatable physical registers live-in, check that
    // it is an entry block or landing pad.
    for (const auto &LI : MBB->liveins()) {
      if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
          MBB->getIterator() != MBB->getParent()->begin()) {
        report("MBB has allocatable live-in, but isn't entry or landing-pad.", MBB);
        report_context(LI.PhysReg);
      }
    }
  }

  // Count the number of landing pad successors.
  SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
  for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
       E = MBB->succ_end(); I != E; ++I) {
    if ((*I)->isEHPad())
      LandingPadSuccs.insert(*I);
    if (!FunctionBlocks.count(*I))
      report("MBB has successor that isn't part of the function.", MBB);
    if (!MBBInfoMap[*I].Preds.count(MBB)) {
      report("Inconsistent CFG", MBB);
      errs() << "MBB is not in the predecessor list of the successor "
             << printMBBReference(*(*I)) << ".\n";
    }
  }

  // Check the predecessor list.
  for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
       E = MBB->pred_end(); I != E; ++I) {
    if (!FunctionBlocks.count(*I))
      report("MBB has predecessor that isn't part of the function.", MBB);
    if (!MBBInfoMap[*I].Succs.count(MBB)) {
      report("Inconsistent CFG", MBB);
      errs() << "MBB is not in the successor list of the predecessor "
             << printMBBReference(*(*I)) << ".\n";
    }
  }

  const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
  const BasicBlock *BB = MBB->getBasicBlock();
  const Function &F = MF->getFunction();
  if (LandingPadSuccs.size() > 1 &&
      !(AsmInfo &&
        AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
        BB && isa<SwitchInst>(BB->getTerminator())) &&
      !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
    report("MBB has more than one landing pad successor", MBB);

  // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
  MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
  SmallVector<MachineOperand, 4> Cond;
  if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
                          Cond)) {
    // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
    // check whether its answers match up with reality.
    if (!TBB && !FBB) {
      // Block falls through to its successor.
      MachineFunction::const_iterator MBBI = MBB->getIterator();
      ++MBBI;
      if (MBBI == MF->end()) {
        // It's possible that the block legitimately ends with a noreturn
        // call or an unreachable, in which case it won't actually fall
        // out the bottom of the function.
      } else if (MBB->succ_size() == LandingPadSuccs.size()) {
        // It's possible that the block legitimately ends with a noreturn
        // call or an unreachable, in which case it won't actually fall
        // out of the block.
      } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
        report("MBB exits via unconditional fall-through but doesn't have "
               "exactly one CFG successor!", MBB);
      } else if (!MBB->isSuccessor(&*MBBI)) {
        report("MBB exits via unconditional fall-through but its successor "
               "differs from its CFG successor!", MBB);
      }
      if (!MBB->empty() && MBB->back().isBarrier() &&
          !TII->isPredicated(MBB->back())) {
        report("MBB exits via unconditional fall-through but ends with a "
               "barrier instruction!", MBB);
      }
      if (!Cond.empty()) {
        report("MBB exits via unconditional fall-through but has a condition!",
               MBB);
      }
    } else if (TBB && !FBB && Cond.empty()) {
      // Block unconditionally branches somewhere.
      // If the block has exactly one successor, that happens to be a
      // landingpad, accept it as valid control flow.
      if (MBB->succ_size() != 1+LandingPadSuccs.size() &&
          (MBB->succ_size() != 1 || LandingPadSuccs.size() != 1 ||
           *MBB->succ_begin() != *LandingPadSuccs.begin())) {
        report("MBB exits via unconditional branch but doesn't have "
               "exactly one CFG successor!", MBB);
      } else if (!MBB->isSuccessor(TBB)) {
        report("MBB exits via unconditional branch but the CFG "
               "successor doesn't match the actual successor!", MBB);
      }
      if (MBB->empty()) {
        report("MBB exits via unconditional branch but doesn't contain "
               "any instructions!", MBB);
      } else if (!MBB->back().isBarrier()) {
        report("MBB exits via unconditional branch but doesn't end with a "
               "barrier instruction!", MBB);
      } else if (!MBB->back().isTerminator()) {
        report("MBB exits via unconditional branch but the branch isn't a "
               "terminator instruction!", MBB);
      }
    } else if (TBB && !FBB && !Cond.empty()) {
      // Block conditionally branches somewhere, otherwise falls through.
      MachineFunction::const_iterator MBBI = MBB->getIterator();
      ++MBBI;
      if (MBBI == MF->end()) {
        report("MBB conditionally falls through out of function!", MBB);
      } else if (MBB->succ_size() == 1) {
        // A conditional branch with only one successor is weird, but allowed.
        if (&*MBBI != TBB)
          report("MBB exits via conditional branch/fall-through but only has "
                 "one CFG successor!", MBB);
        else if (TBB != *MBB->succ_begin())
          report("MBB exits via conditional branch/fall-through but the CFG "
                 "successor don't match the actual successor!", MBB);
      } else if (MBB->succ_size() != 2) {
        report("MBB exits via conditional branch/fall-through but doesn't have "
               "exactly two CFG successors!", MBB);
      } else if (!matchPair(MBB->succ_begin(), TBB, &*MBBI)) {
        report("MBB exits via conditional branch/fall-through but the CFG "
               "successors don't match the actual successors!", MBB);
      }
      if (MBB->empty()) {
        report("MBB exits via conditional branch/fall-through but doesn't "
               "contain any instructions!", MBB);
      } else if (MBB->back().isBarrier()) {
        report("MBB exits via conditional branch/fall-through but ends with a "
               "barrier instruction!", MBB);
      } else if (!MBB->back().isTerminator()) {
        report("MBB exits via conditional branch/fall-through but the branch "
               "isn't a terminator instruction!", MBB);
      }
    } else if (TBB && FBB) {
      // Block conditionally branches somewhere, otherwise branches
      // somewhere else.
      if (MBB->succ_size() == 1) {
        // A conditional branch with only one successor is weird, but allowed.
        if (FBB != TBB)
          report("MBB exits via conditional branch/branch through but only has "
                 "one CFG successor!", MBB);
        else if (TBB != *MBB->succ_begin())
          report("MBB exits via conditional branch/branch through but the CFG "
                 "successor don't match the actual successor!", MBB);
      } else if (MBB->succ_size() != 2) {
        report("MBB exits via conditional branch/branch but doesn't have "
               "exactly two CFG successors!", MBB);
      } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
        report("MBB exits via conditional branch/branch but the CFG "
               "successors don't match the actual successors!", MBB);
      }
      if (MBB->empty()) {
        report("MBB exits via conditional branch/branch but doesn't "
               "contain any instructions!", MBB);
      } else if (!MBB->back().isBarrier()) {
        report("MBB exits via conditional branch/branch but doesn't end with a "
               "barrier instruction!", MBB);
      } else if (!MBB->back().isTerminator()) {
        report("MBB exits via conditional branch/branch but the branch "
               "isn't a terminator instruction!", MBB);
      }
      if (Cond.empty()) {
        report("MBB exits via conditional branch/branch but there's no "
               "condition!", MBB);
      }
    } else {
      report("AnalyzeBranch returned invalid data!", MBB);
    }
  }

  regsLive.clear();
  if (MRI->tracksLiveness()) {
    for (const auto &LI : MBB->liveins()) {
      if (!TargetRegisterInfo::isPhysicalRegister(LI.PhysReg)) {
        report("MBB live-in list contains non-physical register", MBB);
        continue;
      }
      for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
           SubRegs.isValid(); ++SubRegs)
        regsLive.insert(*SubRegs);
    }
  }

  const MachineFrameInfo &MFI = MF->getFrameInfo();
  BitVector PR = MFI.getPristineRegs(*MF);
  for (unsigned I : PR.set_bits()) {
    for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
         SubRegs.isValid(); ++SubRegs)
      regsLive.insert(*SubRegs);
  }

  regsKilled.clear();
  regsDefined.clear();

  if (Indexes)
    lastIndex = Indexes->getMBBStartIdx(MBB);
}

// This function gets called for all bundle headers, including normal
// stand-alone unbundled instructions.
void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
  if (Indexes && Indexes->hasIndex(*MI)) {
    SlotIndex idx = Indexes->getInstructionIndex(*MI);
    if (!(idx > lastIndex)) {
      report("Instruction index out of order", MI);
      errs() << "Last instruction was at " << lastIndex << '\n';
    }
    lastIndex = idx;
  }

  // Ensure non-terminators don't follow terminators.
  // Ignore predicated terminators formed by if conversion.
  // FIXME: If conversion shouldn't need to violate this rule.
  if (MI->isTerminator() && !TII->isPredicated(*MI)) {
    if (!FirstTerminator)
      FirstTerminator = MI;
  } else if (FirstTerminator && !MI->isDebugEntryValue()) {
    report("Non-terminator instruction after the first terminator", MI);
    errs() << "First terminator was:\t" << *FirstTerminator;
  }
}

// The operands on an INLINEASM instruction must follow a template.
// Verify that the flag operands make sense.
void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
  // The first two operands on INLINEASM are the asm string and global flags.
  if (MI->getNumOperands() < 2) {
    report("Too few operands on inline asm", MI);
    return;
  }
  if (!MI->getOperand(0).isSymbol())
    report("Asm string must be an external symbol", MI);
  if (!MI->getOperand(1).isImm())
    report("Asm flags must be an immediate", MI);
  // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
  // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
  // and Extra_IsConvergent = 32.
  if (!isUInt<6>(MI->getOperand(1).getImm()))
    report("Unknown asm flags", &MI->getOperand(1), 1);

  static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");

  unsigned OpNo = InlineAsm::MIOp_FirstOperand;
  unsigned NumOps;
  for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
    const MachineOperand &MO = MI->getOperand(OpNo);
    // There may be implicit ops after the fixed operands.
    if (!MO.isImm())
      break;
    NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
  }

  if (OpNo > MI->getNumOperands())
    report("Missing operands in last group", MI);

  // An optional MDNode follows the groups.
  if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
    ++OpNo;

  // All trailing operands must be implicit registers.
  for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
    const MachineOperand &MO = MI->getOperand(OpNo);
    if (!MO.isReg() || !MO.isImplicit())
      report("Expected implicit register after groups", &MO, OpNo);
  }
}

/// Check that types are consistent when two operands need to have the same
/// number of vector elements.
/// \return true if the types are valid.
bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
                                               const MachineInstr *MI) {
  if (Ty0.isVector() != Ty1.isVector()) {
    report("operand types must be all-vector or all-scalar", MI);
    // Generally we try to report as many issues as possible at once, but in
    // this case it's not clear what should we be comparing the size of the
    // scalar with: the size of the whole vector or its lane. Instead of
    // making an arbitrary choice and emitting not so helpful message, let's
    // avoid the extra noise and stop here.
    return false;
  }

  if (Ty0.isVector() && Ty0.getNumElements() != Ty1.getNumElements()) {
    report("operand types must preserve number of vector elements", MI);
    return false;
  }

  return true;
}

void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
  if (isFunctionSelected)
    report("Unexpected generic instruction in a Selected function", MI);

  const MCInstrDesc &MCID = MI->getDesc();
  unsigned NumOps = MI->getNumOperands();

  // Check types.
  SmallVector<LLT, 4> Types;
  for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
       I != E; ++I) {
    if (!MCID.OpInfo[I].isGenericType())
      continue;
    // Generic instructions specify type equality constraints between some of
    // their operands. Make sure these are consistent.
    size_t TypeIdx = MCID.OpInfo[I].getGenericTypeIndex();
    Types.resize(std::max(TypeIdx + 1, Types.size()));

    const MachineOperand *MO = &MI->getOperand(I);
    if (!MO->isReg()) {
      report("generic instruction must use register operands", MI);
      continue;
    }

    LLT OpTy = MRI->getType(MO->getReg());
    // Don't report a type mismatch if there is no actual mismatch, only a
    // type missing, to reduce noise:
    if (OpTy.isValid()) {
      // Only the first valid type for a type index will be printed: don't
      // overwrite it later so it's always clear which type was expected:
      if (!Types[TypeIdx].isValid())
        Types[TypeIdx] = OpTy;
      else if (Types[TypeIdx] != OpTy)
        report("Type mismatch in generic instruction", MO, I, OpTy);
    } else {
      // Generic instructions must have types attached to their operands.
      report("Generic instruction is missing a virtual register type", MO, I);
    }
  }

  // Generic opcodes must not have physical register operands.
  for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
    const MachineOperand *MO = &MI->getOperand(I);
    if (MO->isReg() && TargetRegisterInfo::isPhysicalRegister(MO->getReg()))
      report("Generic instruction cannot have physical register", MO, I);
  }

  // Avoid out of bounds in checks below. This was already reported earlier.
  if (MI->getNumOperands() < MCID.getNumOperands())
    return;

  StringRef ErrorInfo;
  if (!TII->verifyInstruction(*MI, ErrorInfo))
    report(ErrorInfo.data(), MI);

  // Verify properties of various specific instruction types
  switch (MI->getOpcode()) {
  case TargetOpcode::G_CONSTANT:
  case TargetOpcode::G_FCONSTANT: {
    if (MI->getNumOperands() < MCID.getNumOperands())
      break;

    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    if (DstTy.isVector())
      report("Instruction cannot use a vector result type", MI);

    if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
      if (!MI->getOperand(1).isCImm()) {
        report("G_CONSTANT operand must be cimm", MI);
        break;
      }

      const ConstantInt *CI = MI->getOperand(1).getCImm();
      if (CI->getBitWidth() != DstTy.getSizeInBits())
        report("inconsistent constant size", MI);
    } else {
      if (!MI->getOperand(1).isFPImm()) {
        report("G_FCONSTANT operand must be fpimm", MI);
        break;
      }
      const ConstantFP *CF = MI->getOperand(1).getFPImm();

      if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
          DstTy.getSizeInBits()) {
        report("inconsistent constant size", MI);
      }
    }

    break;
  }
  case TargetOpcode::G_LOAD:
  case TargetOpcode::G_STORE:
  case TargetOpcode::G_ZEXTLOAD:
  case TargetOpcode::G_SEXTLOAD: {
    LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
    LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
    if (!PtrTy.isPointer())
      report("Generic memory instruction must access a pointer", MI);

    // Generic loads and stores must have a single MachineMemOperand
    // describing that access.
    if (!MI->hasOneMemOperand()) {
      report("Generic instruction accessing memory must have one mem operand",
             MI);
    } else {
      const MachineMemOperand &MMO = **MI->memoperands_begin();
      if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
          MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
        if (MMO.getSizeInBits() >= ValTy.getSizeInBits())
          report("Generic extload must have a narrower memory type", MI);
      } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
        if (MMO.getSize() > ValTy.getSizeInBytes())
          report("load memory size cannot exceed result size", MI);
      } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
        if (ValTy.getSizeInBytes() < MMO.getSize())
          report("store memory size cannot exceed value size", MI);
      }
    }

    break;
  }
  case TargetOpcode::G_PHI: {
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    if (!DstTy.isValid() ||
        !std::all_of(MI->operands_begin() + 1, MI->operands_end(),
                     [this, &DstTy](const MachineOperand &MO) {
                       if (!MO.isReg())
                         return true;
                       LLT Ty = MRI->getType(MO.getReg());
                       if (!Ty.isValid() || (Ty != DstTy))
                         return false;
                       return true;
                     }))
      report("Generic Instruction G_PHI has operands with incompatible/missing "
             "types",
             MI);
    break;
  }
  case TargetOpcode::G_BITCAST: {
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
    if (!DstTy.isValid() || !SrcTy.isValid())
      break;

    if (SrcTy.isPointer() != DstTy.isPointer())
      report("bitcast cannot convert between pointers and other types", MI);

    if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
      report("bitcast sizes must match", MI);
    break;
  }
  case TargetOpcode::G_INTTOPTR:
  case TargetOpcode::G_PTRTOINT:
  case TargetOpcode::G_ADDRSPACE_CAST: {
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
    if (!DstTy.isValid() || !SrcTy.isValid())
      break;

    verifyVectorElementMatch(DstTy, SrcTy, MI);

    DstTy = DstTy.getScalarType();
    SrcTy = SrcTy.getScalarType();

    if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
      if (!DstTy.isPointer())
        report("inttoptr result type must be a pointer", MI);
      if (SrcTy.isPointer())
        report("inttoptr source type must not be a pointer", MI);
    } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
      if (!SrcTy.isPointer())
        report("ptrtoint source type must be a pointer", MI);
      if (DstTy.isPointer())
        report("ptrtoint result type must not be a pointer", MI);
    } else {
      assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
      if (!SrcTy.isPointer() || !DstTy.isPointer())
        report("addrspacecast types must be pointers", MI);
      else {
        if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
          report("addrspacecast must convert different address spaces", MI);
      }
    }

    break;
  }
  case TargetOpcode::G_GEP: {
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
    LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
    if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
      break;

    if (!PtrTy.getScalarType().isPointer())
      report("gep first operand must be a pointer", MI);

    if (OffsetTy.getScalarType().isPointer())
      report("gep offset operand must not be a pointer", MI);

    // TODO: Is the offset allowed to be a scalar with a vector?
    break;
  }
  case TargetOpcode::G_SEXT:
  case TargetOpcode::G_ZEXT:
  case TargetOpcode::G_ANYEXT:
  case TargetOpcode::G_TRUNC:
  case TargetOpcode::G_FPEXT:
  case TargetOpcode::G_FPTRUNC: {
    // Number of operands and presense of types is already checked (and
    // reported in case of any issues), so no need to report them again. As
    // we're trying to report as many issues as possible at once, however, the
    // instructions aren't guaranteed to have the right number of operands or
    // types attached to them at this point
    assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
    if (!DstTy.isValid() || !SrcTy.isValid())
      break;

    LLT DstElTy = DstTy.getScalarType();
    LLT SrcElTy = SrcTy.getScalarType();
    if (DstElTy.isPointer() || SrcElTy.isPointer())
      report("Generic extend/truncate can not operate on pointers", MI);

    verifyVectorElementMatch(DstTy, SrcTy, MI);

    unsigned DstSize = DstElTy.getSizeInBits();
    unsigned SrcSize = SrcElTy.getSizeInBits();
    switch (MI->getOpcode()) {
    default:
      if (DstSize <= SrcSize)
        report("Generic extend has destination type no larger than source", MI);
      break;
    case TargetOpcode::G_TRUNC:
    case TargetOpcode::G_FPTRUNC:
      if (DstSize >= SrcSize)
        report("Generic truncate has destination type no smaller than source",
               MI);
      break;
    }
    break;
  }
  case TargetOpcode::G_SELECT: {
    LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
    LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
    if (!SelTy.isValid() || !CondTy.isValid())
      break;

    // Scalar condition select on a vector is valid.
    if (CondTy.isVector())
      verifyVectorElementMatch(SelTy, CondTy, MI);
    break;
  }
  case TargetOpcode::G_MERGE_VALUES: {
    // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
    // e.g. s2N = MERGE sN, sN
    // Merging multiple scalars into a vector is not allowed, should use
    // G_BUILD_VECTOR for that.
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
    if (DstTy.isVector() || SrcTy.isVector())
      report("G_MERGE_VALUES cannot operate on vectors", MI);

    const unsigned NumOps = MI->getNumOperands();
    if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
      report("G_MERGE_VALUES result size is inconsistent", MI);

    for (unsigned I = 2; I != NumOps; ++I) {
      if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
        report("G_MERGE_VALUES source types do not match", MI);
    }

    break;
  }
  case TargetOpcode::G_UNMERGE_VALUES: {
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcTy = MRI->getType(MI->getOperand(MI->getNumOperands()-1).getReg());
    // For now G_UNMERGE can split vectors.
    for (unsigned i = 0; i < MI->getNumOperands()-1; ++i) {
      if (MRI->getType(MI->getOperand(i).getReg()) != DstTy)
        report("G_UNMERGE_VALUES destination types do not match", MI);
    }
    if (SrcTy.getSizeInBits() !=
        (DstTy.getSizeInBits() * (MI->getNumOperands() - 1))) {
      report("G_UNMERGE_VALUES source operand does not cover dest operands",
             MI);
    }
    break;
  }
  case TargetOpcode::G_BUILD_VECTOR: {
    // Source types must be scalars, dest type a vector. Total size of scalars
    // must match the dest vector size.
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
    if (!DstTy.isVector() || SrcEltTy.isVector()) {
      report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
      break;
    }

    if (DstTy.getElementType() != SrcEltTy)
      report("G_BUILD_VECTOR result element type must match source type", MI);

    if (DstTy.getNumElements() != MI->getNumOperands() - 1)
      report("G_BUILD_VECTOR must have an operand for each elemement", MI);

    for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
      if (MRI->getType(MI->getOperand(1).getReg()) !=
          MRI->getType(MI->getOperand(i).getReg()))
        report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
    }

    break;
  }
  case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
    // Source types must be scalars, dest type a vector. Scalar types must be
    // larger than the dest vector elt type, as this is a truncating operation.
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
    if (!DstTy.isVector() || SrcEltTy.isVector())
      report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
             MI);
    for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
      if (MRI->getType(MI->getOperand(1).getReg()) !=
          MRI->getType(MI->getOperand(i).getReg()))
        report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
               MI);
    }
    if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
      report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
             "dest elt type",
             MI);
    break;
  }
  case TargetOpcode::G_CONCAT_VECTORS: {
    // Source types should be vectors, and total size should match the dest
    // vector size.
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
    if (!DstTy.isVector() || !SrcTy.isVector())
      report("G_CONCAT_VECTOR requires vector source and destination operands",
             MI);
    for (unsigned i = 2; i < MI->getNumOperands(); ++i) {
      if (MRI->getType(MI->getOperand(1).getReg()) !=
          MRI->getType(MI->getOperand(i).getReg()))
        report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
    }
    if (DstTy.getNumElements() !=
        SrcTy.getNumElements() * (MI->getNumOperands() - 1))
      report("G_CONCAT_VECTOR num dest and source elements should match", MI);
    break;
  }
  case TargetOpcode::G_ICMP:
  case TargetOpcode::G_FCMP: {
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());

    if ((DstTy.isVector() != SrcTy.isVector()) ||
        (DstTy.isVector() && DstTy.getNumElements() != SrcTy.getNumElements()))
      report("Generic vector icmp/fcmp must preserve number of lanes", MI);

    break;
  }
  case TargetOpcode::G_EXTRACT: {
    const MachineOperand &SrcOp = MI->getOperand(1);
    if (!SrcOp.isReg()) {
      report("extract source must be a register", MI);
      break;
    }

    const MachineOperand &OffsetOp = MI->getOperand(2);
    if (!OffsetOp.isImm()) {
      report("extract offset must be a constant", MI);
      break;
    }

    unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
    unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
    if (SrcSize == DstSize)
      report("extract source must be larger than result", MI);

    if (DstSize + OffsetOp.getImm() > SrcSize)
      report("extract reads past end of register", MI);
    break;
  }
  case TargetOpcode::G_INSERT: {
    const MachineOperand &SrcOp = MI->getOperand(2);
    if (!SrcOp.isReg()) {
      report("insert source must be a register", MI);
      break;
    }

    const MachineOperand &OffsetOp = MI->getOperand(3);
    if (!OffsetOp.isImm()) {
      report("insert offset must be a constant", MI);
      break;
    }

    unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
    unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();

    if (DstSize <= SrcSize)
      report("inserted size must be smaller than total register", MI);

    if (SrcSize + OffsetOp.getImm() > DstSize)
      report("insert writes past end of register", MI);

    break;
  }
  case TargetOpcode::G_JUMP_TABLE: {
    if (!MI->getOperand(1).isJTI())
      report("G_JUMP_TABLE source operand must be a jump table index", MI);
    LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
    if (!DstTy.isPointer())
      report("G_JUMP_TABLE dest operand must have a pointer type", MI);
    break;
  }
  case TargetOpcode::G_BRJT: {
    if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
      report("G_BRJT src operand 0 must be a pointer type", MI);

    if (!MI->getOperand(1).isJTI())
      report("G_BRJT src operand 1 must be a jump table index", MI);

    const auto &IdxOp = MI->getOperand(2);
    if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
      report("G_BRJT src operand 2 must be a scalar reg type", MI);
    break;
  }
  case TargetOpcode::G_INTRINSIC:
  case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: {
    // TODO: Should verify number of def and use operands, but the current
    // interface requires passing in IR types for mangling.
    const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
    if (!IntrIDOp.isIntrinsicID()) {
      report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
      break;
    }

    bool NoSideEffects = MI->getOpcode() == TargetOpcode::G_INTRINSIC;
    unsigned IntrID = IntrIDOp.getIntrinsicID();
    if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
      AttributeList Attrs
        = Intrinsic::getAttributes(MF->getFunction().getContext(),
                                   static_cast<Intrinsic::ID>(IntrID));
      bool DeclHasSideEffects = !Attrs.hasFnAttribute(Attribute::ReadNone);
      if (NoSideEffects && DeclHasSideEffects) {
        report("G_INTRINSIC used with intrinsic that accesses memory", MI);
        break;
      }
      if (!NoSideEffects && !DeclHasSideEffects) {
        report("G_INTRINSIC_W_SIDE_EFFECTS used with readnone intrinsic", MI);
        break;
      }
    }

    break;
  }
  default:
    break;
  }
}

void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
  const MCInstrDesc &MCID = MI->getDesc();
  if (MI->getNumOperands() < MCID.getNumOperands()) {
    report("Too few operands", MI);
    errs() << MCID.getNumOperands() << " operands expected, but "
           << MI->getNumOperands() << " given.\n";
  }

  if (MI->isPHI()) {
    if (MF->getProperties().hasProperty(
            MachineFunctionProperties::Property::NoPHIs))
      report("Found PHI instruction with NoPHIs property set", MI);

    if (FirstNonPHI)
      report("Found PHI instruction after non-PHI", MI);
  } else if (FirstNonPHI == nullptr)
    FirstNonPHI = MI;

  // Check the tied operands.
  if (MI->isInlineAsm())
    verifyInlineAsm(MI);

  // Check the MachineMemOperands for basic consistency.
  for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
                                  E = MI->memoperands_end();
       I != E; ++I) {
    if ((*I)->isLoad() && !MI->mayLoad())
      report("Missing mayLoad flag", MI);
    if ((*I)->isStore() && !MI->mayStore())
      report("Missing mayStore flag", MI);
  }

  // Debug values must not have a slot index.
  // Other instructions must have one, unless they are inside a bundle.
  if (LiveInts) {
    bool mapped = !LiveInts->isNotInMIMap(*MI);
    if (MI->isDebugInstr()) {
      if (mapped)
        report("Debug instruction has a slot index", MI);
    } else if (MI->isInsideBundle()) {
      if (mapped)
        report("Instruction inside bundle has a slot index", MI);
    } else {
      if (!mapped)
        report("Missing slot index", MI);
    }
  }

  if (isPreISelGenericOpcode(MCID.getOpcode())) {
    verifyPreISelGenericInstruction(MI);
    return;
  }

  StringRef ErrorInfo;
  if (!TII->verifyInstruction(*MI, ErrorInfo))
    report(ErrorInfo.data(), MI);

  // Verify properties of various specific instruction types
  switch (MI->getOpcode()) {
  case TargetOpcode::COPY: {
    if (foundErrors)
      break;
    const MachineOperand &DstOp = MI->getOperand(0);
    const MachineOperand &SrcOp = MI->getOperand(1);
    LLT DstTy = MRI->getType(DstOp.getReg());
    LLT SrcTy = MRI->getType(SrcOp.getReg());
    if (SrcTy.isValid() && DstTy.isValid()) {
      // If both types are valid, check that the types are the same.
      if (SrcTy != DstTy) {
        report("Copy Instruction is illegal with mismatching types", MI);
        errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
      }
    }
    if (SrcTy.isValid() || DstTy.isValid()) {
      // If one of them have valid types, let's just check they have the same
      // size.
      unsigned SrcSize = TRI->getRegSizeInBits(SrcOp.getReg(), *MRI);
      unsigned DstSize = TRI->getRegSizeInBits(DstOp.getReg(), *MRI);
      assert(SrcSize && "Expecting size here");
      assert(DstSize && "Expecting size here");
      if (SrcSize != DstSize)
        if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
          report("Copy Instruction is illegal with mismatching sizes", MI);
          errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
                 << "\n";
        }
    }
    break;
  }
  case TargetOpcode::STATEPOINT:
    if (!MI->getOperand(StatepointOpers::IDPos).isImm() ||
        !MI->getOperand(StatepointOpers::NBytesPos).isImm() ||
        !MI->getOperand(StatepointOpers::NCallArgsPos).isImm())
      report("meta operands to STATEPOINT not constant!", MI);
    break;

    auto VerifyStackMapConstant = [&](unsigned Offset) {
      if (!MI->getOperand(Offset).isImm() ||
          MI->getOperand(Offset).getImm() != StackMaps::ConstantOp ||
          !MI->getOperand(Offset + 1).isImm())
        report("stack map constant to STATEPOINT not well formed!", MI);
    };
    const unsigned VarStart = StatepointOpers(MI).getVarIdx();
    VerifyStackMapConstant(VarStart + StatepointOpers::CCOffset);
    VerifyStackMapConstant(VarStart + StatepointOpers::FlagsOffset);
    VerifyStackMapConstant(VarStart + StatepointOpers::NumDeoptOperandsOffset);

    // TODO: verify we have properly encoded deopt arguments
    break;
  }
}

void
MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
  const MachineInstr *MI = MO->getParent();
  const MCInstrDesc &MCID = MI->getDesc();
  unsigned NumDefs = MCID.getNumDefs();
  if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
    NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;

  // The first MCID.NumDefs operands must be explicit register defines
  if (MONum < NumDefs) {
    const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
    if (!MO->isReg())
      report("Explicit definition must be a register", MO, MONum);
    else if (!MO->isDef() && !MCOI.isOptionalDef())
      report("Explicit definition marked as use", MO, MONum);
    else if (MO->isImplicit())
      report("Explicit definition marked as implicit", MO, MONum);
  } else if (MONum < MCID.getNumOperands()) {
    const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
    // Don't check if it's the last operand in a variadic instruction. See,
    // e.g., LDM_RET in the arm back end.
    if (MO->isReg() &&
        !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
      if (MO->isDef() && !MCOI.isOptionalDef())
        report("Explicit operand marked as def", MO, MONum);
      if (MO->isImplicit())
        report("Explicit operand marked as implicit", MO, MONum);
    }

    int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
    if (TiedTo != -1) {
      if (!MO->isReg())
        report("Tied use must be a register", MO, MONum);
      else if (!MO->isTied())
        report("Operand should be tied", MO, MONum);
      else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
        report("Tied def doesn't match MCInstrDesc", MO, MONum);
      else if (TargetRegisterInfo::isPhysicalRegister(MO->getReg())) {
        const MachineOperand &MOTied = MI->getOperand(TiedTo);
        if (!MOTied.isReg())
          report("Tied counterpart must be a register", &MOTied, TiedTo);
        else if (TargetRegisterInfo::isPhysicalRegister(MOTied.getReg()) &&
                 MO->getReg() != MOTied.getReg())
          report("Tied physical registers must match.", &MOTied, TiedTo);
      }
    } else if (MO->isReg() && MO->isTied())
      report("Explicit operand should not be tied", MO, MONum);
  } else {
    // ARM adds %reg0 operands to indicate predicates. We'll allow that.
    if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
      report("Extra explicit operand on non-variadic instruction", MO, MONum);
  }

  switch (MO->getType()) {
  case MachineOperand::MO_Register: {
    const unsigned Reg = MO->getReg();
    if (!Reg)
      return;
    if (MRI->tracksLiveness() && !MI->isDebugValue())
      checkLiveness(MO, MONum);

    // Verify the consistency of tied operands.
    if (MO->isTied()) {
      unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
      const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
      if (!OtherMO.isReg())
        report("Must be tied to a register", MO, MONum);
      if (!OtherMO.isTied())
        report("Missing tie flags on tied operand", MO, MONum);
      if (MI->findTiedOperandIdx(OtherIdx) != MONum)
        report("Inconsistent tie links", MO, MONum);
      if (MONum < MCID.getNumDefs()) {
        if (OtherIdx < MCID.getNumOperands()) {
          if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
            report("Explicit def tied to explicit use without tie constraint",
                   MO, MONum);
        } else {
          if (!OtherMO.isImplicit())
            report("Explicit def should be tied to implicit use", MO, MONum);
        }
      }
    }

    // Verify two-address constraints after leaving SSA form.
    unsigned DefIdx;
    if (!MRI->isSSA() && MO->isUse() &&
        MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
        Reg != MI->getOperand(DefIdx).getReg())
      report("Two-address instruction operands must be identical", MO, MONum);

    // Check register classes.
    unsigned SubIdx = MO->getSubReg();

    if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
      if (SubIdx) {
        report("Illegal subregister index for physical register", MO, MONum);
        return;
      }
      if (MONum < MCID.getNumOperands()) {
        if (const TargetRegisterClass *DRC =
              TII->getRegClass(MCID, MONum, TRI, *MF)) {
          if (!DRC->contains(Reg)) {
            report("Illegal physical register for instruction", MO, MONum);
            errs() << printReg(Reg, TRI) << " is not a "
                   << TRI->getRegClassName(DRC) << " register.\n";
          }
        }
      }
      if (MO->isRenamable()) {
        if (MRI->isReserved(Reg)) {
          report("isRenamable set on reserved register", MO, MONum);
          return;
        }
      }
      if (MI->isDebugValue() && MO->isUse() && !MO->isDebug()) {
        report("Use-reg is not IsDebug in a DBG_VALUE", MO, MONum);
        return;
      }
    } else {
      // Virtual register.
      const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
      if (!RC) {
        // This is a generic virtual register.

        // If we're post-Select, we can't have gvregs anymore.
        if (isFunctionSelected) {
          report("Generic virtual register invalid in a Selected function",
                 MO, MONum);
          return;
        }

        // The gvreg must have a type and it must not have a SubIdx.
        LLT Ty = MRI->getType(Reg);
        if (!Ty.isValid()) {
          report("Generic virtual register must have a valid type", MO,
                 MONum);
          return;
        }

        const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);

        // If we're post-RegBankSelect, the gvreg must have a bank.
        if (!RegBank && isFunctionRegBankSelected) {
          report("Generic virtual register must have a bank in a "
                 "RegBankSelected function",
                 MO, MONum);
          return;
        }

        // Make sure the register fits into its register bank if any.
        if (RegBank && Ty.isValid() &&
            RegBank->getSize() < Ty.getSizeInBits()) {
          report("Register bank is too small for virtual register", MO,
                 MONum);
          errs() << "Register bank " << RegBank->getName() << " too small("
                 << RegBank->getSize() << ") to fit " << Ty.getSizeInBits()
                 << "-bits\n";
          return;
        }
        if (SubIdx)  {
          report("Generic virtual register does not allow subregister index", MO,
                 MONum);
          return;
        }

        // If this is a target specific instruction and this operand
        // has register class constraint, the virtual register must
        // comply to it.
        if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
            MONum < MCID.getNumOperands() &&
            TII->getRegClass(MCID, MONum, TRI, *MF)) {
          report("Virtual register does not match instruction constraint", MO,
                 MONum);
          errs() << "Expect register class "
                 << TRI->getRegClassName(
                        TII->getRegClass(MCID, MONum, TRI, *MF))
                 << " but got nothing\n";
          return;
        }

        break;
      }
      if (SubIdx) {
        const TargetRegisterClass *SRC =
          TRI->getSubClassWithSubReg(RC, SubIdx);
        if (!SRC) {
          report("Invalid subregister index for virtual register", MO, MONum);
          errs() << "Register class " << TRI->getRegClassName(RC)
              << " does not support subreg index " << SubIdx << "\n";
          return;
        }
        if (RC != SRC) {
          report("Invalid register class for subregister index", MO, MONum);
          errs() << "Register class " << TRI->getRegClassName(RC)
              << " does not fully support subreg index " << SubIdx << "\n";
          return;
        }
      }
      if (MONum < MCID.getNumOperands()) {
        if (const TargetRegisterClass *DRC =
              TII->getRegClass(MCID, MONum, TRI, *MF)) {
          if (SubIdx) {
            const TargetRegisterClass *SuperRC =
                TRI->getLargestLegalSuperClass(RC, *MF);
            if (!SuperRC) {
              report("No largest legal super class exists.", MO, MONum);
              return;
            }
            DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
            if (!DRC) {
              report("No matching super-reg register class.", MO, MONum);
              return;
            }
          }
          if (!RC->hasSuperClassEq(DRC)) {
            report("Illegal virtual register for instruction", MO, MONum);
            errs() << "Expected a " << TRI->getRegClassName(DRC)
                << " register, but got a " << TRI->getRegClassName(RC)
                << " register\n";
          }
        }
      }
    }
    break;
  }

  case MachineOperand::MO_RegisterMask:
    regMasks.push_back(MO->getRegMask());
    break;

  case MachineOperand::MO_MachineBasicBlock:
    if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
      report("PHI operand is not in the CFG", MO, MONum);
    break;

  case MachineOperand::MO_FrameIndex:
    if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
        LiveInts && !LiveInts->isNotInMIMap(*MI)) {
      int FI = MO->getIndex();
      LiveInterval &LI = LiveStks->getInterval(FI);
      SlotIndex Idx = LiveInts->getInstructionIndex(*MI);

      bool stores = MI->mayStore();
      bool loads = MI->mayLoad();
      // For a memory-to-memory move, we need to check if the frame
      // index is used for storing or loading, by inspecting the
      // memory operands.
      if (stores && loads) {
        for (auto *MMO : MI->memoperands()) {
          const PseudoSourceValue *PSV = MMO->getPseudoValue();
          if (PSV == nullptr) continue;
          const FixedStackPseudoSourceValue *Value =
            dyn_cast<FixedStackPseudoSourceValue>(PSV);
          if (Value == nullptr) continue;
          if (Value->getFrameIndex() != FI) continue;

          if (MMO->isStore())
            loads = false;
          else
            stores = false;
          break;
        }
        if (loads == stores)
          report("Missing fixed stack memoperand.", MI);
      }
      if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
        report("Instruction loads from dead spill slot", MO, MONum);
        errs() << "Live stack: " << LI << '\n';
      }
      if (stores && !LI.liveAt(Idx.getRegSlot())) {
        report("Instruction stores to dead spill slot", MO, MONum);
        errs() << "Live stack: " << LI << '\n';
      }
    }
    break;

  default:
    break;
  }
}

void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
    unsigned MONum, SlotIndex UseIdx, const LiveRange &LR, unsigned VRegOrUnit,
    LaneBitmask LaneMask) {
  LiveQueryResult LRQ = LR.Query(UseIdx);
  // Check if we have a segment at the use, note however that we only need one
  // live subregister range, the others may be dead.
  if (!LRQ.valueIn() && LaneMask.none()) {
    report("No live segment at use", MO, MONum);
    report_context_liverange(LR);
    report_context_vreg_regunit(VRegOrUnit);
    report_context(UseIdx);
  }
  if (MO->isKill() && !LRQ.isKill()) {
    report("Live range continues after kill flag", MO, MONum);
    report_context_liverange(LR);
    report_context_vreg_regunit(VRegOrUnit);
    if (LaneMask.any())
      report_context_lanemask(LaneMask);
    report_context(UseIdx);
  }
}

void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
    unsigned MONum, SlotIndex DefIdx, const LiveRange &LR, unsigned VRegOrUnit,
    bool SubRangeCheck, LaneBitmask LaneMask) {
  if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
    assert(VNI && "NULL valno is not allowed");
    if (VNI->def != DefIdx) {
      report("Inconsistent valno->def", MO, MONum);
      report_context_liverange(LR);
      report_context_vreg_regunit(VRegOrUnit);
      if (LaneMask.any())
        report_context_lanemask(LaneMask);
      report_context(*VNI);
      report_context(DefIdx);
    }
  } else {
    report("No live segment at def", MO, MONum);
    report_context_liverange(LR);
    report_context_vreg_regunit(VRegOrUnit);
    if (LaneMask.any())
      report_context_lanemask(LaneMask);
    report_context(DefIdx);
  }
  // Check that, if the dead def flag is present, LiveInts agree.
  if (MO->isDead()) {
    LiveQueryResult LRQ = LR.Query(DefIdx);
    if (!LRQ.isDeadDef()) {
      assert(TargetRegisterInfo::isVirtualRegister(VRegOrUnit) &&
             "Expecting a virtual register.");
      // A dead subreg def only tells us that the specific subreg is dead. There
      // could be other non-dead defs of other subregs, or we could have other
      // parts of the register being live through the instruction. So unless we
      // are checking liveness for a subrange it is ok for the live range to
      // continue, given that we have a dead def of a subregister.
      if (SubRangeCheck || MO->getSubReg() == 0) {
        report("Live range continues after dead def flag", MO, MONum);
        report_context_liverange(LR);
        report_context_vreg_regunit(VRegOrUnit);
        if (LaneMask.any())
          report_context_lanemask(LaneMask);
      }
    }
  }
}

void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
  const MachineInstr *MI = MO->getParent();
  const unsigned Reg = MO->getReg();

  // Both use and def operands can read a register.
  if (MO->readsReg()) {
    if (MO->isKill())
      addRegWithSubRegs(regsKilled, Reg);

    // Check that LiveVars knows this kill.
    if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
        MO->isKill()) {
      LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
      if (!is_contained(VI.Kills, MI))
        report("Kill missing from LiveVariables", MO, MONum);
    }

    // Check LiveInts liveness and kill.
    if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
      SlotIndex UseIdx = LiveInts->getInstructionIndex(*MI);
      // Check the cached regunit intervals.
      if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
        for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
          if (MRI->isReservedRegUnit(*Units))
            continue;
          if (const LiveRange *LR = LiveInts->getCachedRegUnit(*Units))
            checkLivenessAtUse(MO, MONum, UseIdx, *LR, *Units);
        }
      }

      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
        if (LiveInts->hasInterval(Reg)) {
          // This is a virtual register interval.
          const LiveInterval &LI = LiveInts->getInterval(Reg);
          checkLivenessAtUse(MO, MONum, UseIdx, LI, Reg);

          if (LI.hasSubRanges() && !MO->isDef()) {
            unsigned SubRegIdx = MO->getSubReg();
            LaneBitmask MOMask = SubRegIdx != 0
                               ? TRI->getSubRegIndexLaneMask(SubRegIdx)
                               : MRI->getMaxLaneMaskForVReg(Reg);
            LaneBitmask LiveInMask;
            for (const LiveInterval::SubRange &SR : LI.subranges()) {
              if ((MOMask & SR.LaneMask).none())
                continue;
              checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
              LiveQueryResult LRQ = SR.Query(UseIdx);
              if (LRQ.valueIn())
                LiveInMask |= SR.LaneMask;
            }
            // At least parts of the register has to be live at the use.
            if ((LiveInMask & MOMask).none()) {
              report("No live subrange at use", MO, MONum);
              report_context(LI);
              report_context(UseIdx);
            }
          }
        } else {
          report("Virtual register has no live interval", MO, MONum);
        }
      }
    }

    // Use of a dead register.
    if (!regsLive.count(Reg)) {
      if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
        // Reserved registers may be used even when 'dead'.
        bool Bad = !isReserved(Reg);
        // We are fine if just any subregister has a defined value.
        if (Bad) {
          for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid();
               ++SubRegs) {
            if (regsLive.count(*SubRegs)) {
              Bad = false;
              break;
            }
          }
        }
        // If there is an additional implicit-use of a super register we stop
        // here. By definition we are fine if the super register is not
        // (completely) dead, if the complete super register is dead we will
        // get a report for its operand.
        if (Bad) {
          for (const MachineOperand &MOP : MI->uses()) {
            if (!MOP.isReg() || !MOP.isImplicit())
              continue;

            if (!TargetRegisterInfo::isPhysicalRegister(MOP.getReg()))
              continue;

            for (MCSubRegIterator SubRegs(MOP.getReg(), TRI); SubRegs.isValid();
                 ++SubRegs) {
              if (*SubRegs == Reg) {
                Bad = false;
                break;
              }
            }
          }
        }
        if (Bad)
          report("Using an undefined physical register", MO, MONum);
      } else if (MRI->def_empty(Reg)) {
        report("Reading virtual register without a def", MO, MONum);
      } else {
        BBInfo &MInfo = MBBInfoMap[MI->getParent()];
        // We don't know which virtual registers are live in, so only complain
        // if vreg was killed in this MBB. Otherwise keep track of vregs that
        // must be live in. PHI instructions are handled separately.
        if (MInfo.regsKilled.count(Reg))
          report("Using a killed virtual register", MO, MONum);
        else if (!MI->isPHI())
          MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
      }
    }
  }

  if (MO->isDef()) {
    // Register defined.
    // TODO: verify that earlyclobber ops are not used.
    if (MO->isDead())
      addRegWithSubRegs(regsDead, Reg);
    else
      addRegWithSubRegs(regsDefined, Reg);

    // Verify SSA form.
    if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
        std::next(MRI->def_begin(Reg)) != MRI->def_end())
      report("Multiple virtual register defs in SSA form", MO, MONum);

    // Check LiveInts for a live segment, but only for virtual registers.
    if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
      SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
      DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());

      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
        if (LiveInts->hasInterval(Reg)) {
          const LiveInterval &LI = LiveInts->getInterval(Reg);
          checkLivenessAtDef(MO, MONum, DefIdx, LI, Reg);

          if (LI.hasSubRanges()) {
            unsigned SubRegIdx = MO->getSubReg();
            LaneBitmask MOMask = SubRegIdx != 0
              ? TRI->getSubRegIndexLaneMask(SubRegIdx)
              : MRI->getMaxLaneMaskForVReg(Reg);
            for (const LiveInterval::SubRange &SR : LI.subranges()) {
              if ((SR.LaneMask & MOMask).none())
                continue;
              checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
            }
          }
        } else {
          report("Virtual register has no Live interval", MO, MONum);
        }
      }
    }
  }
}

void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {}

// This function gets called after visiting all instructions in a bundle. The
// argument points to the bundle header.
// Normal stand-alone instructions are also considered 'bundles', and this
// function is called for all of them.
void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
  BBInfo &MInfo = MBBInfoMap[MI->getParent()];
  set_union(MInfo.regsKilled, regsKilled);
  set_subtract(regsLive, regsKilled); regsKilled.clear();
  // Kill any masked registers.
  while (!regMasks.empty()) {
    const uint32_t *Mask = regMasks.pop_back_val();
    for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
      if (TargetRegisterInfo::isPhysicalRegister(*I) &&
          MachineOperand::clobbersPhysReg(Mask, *I))
        regsDead.push_back(*I);
  }
  set_subtract(regsLive, regsDead);   regsDead.clear();
  set_union(regsLive, regsDefined);   regsDefined.clear();
}

void
MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
  MBBInfoMap[MBB].regsLiveOut = regsLive;
  regsLive.clear();

  if (Indexes) {
    SlotIndex stop = Indexes->getMBBEndIdx(MBB);
    if (!(stop > lastIndex)) {
      report("Block ends before last instruction index", MBB);
      errs() << "Block ends at " << stop
          << " last instruction was at " << lastIndex << '\n';
    }
    lastIndex = stop;
  }
}

// Calculate the largest possible vregsPassed sets. These are the registers that
// can pass through an MBB live, but may not be live every time. It is assumed
// that all vregsPassed sets are empty before the call.
void MachineVerifier::calcRegsPassed() {
  // First push live-out regs to successors' vregsPassed. Remember the MBBs that
  // have any vregsPassed.
  SmallPtrSet<const MachineBasicBlock*, 8> todo;
  for (const auto &MBB : *MF) {
    BBInfo &MInfo = MBBInfoMap[&MBB];
    if (!MInfo.reachable)
      continue;
    for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
           SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
      BBInfo &SInfo = MBBInfoMap[*SuI];
      if (SInfo.addPassed(MInfo.regsLiveOut))
        todo.insert(*SuI);
    }
  }

  // Iteratively push vregsPassed to successors. This will converge to the same
  // final state regardless of DenseSet iteration order.
  while (!todo.empty()) {
    const MachineBasicBlock *MBB = *todo.begin();
    todo.erase(MBB);
    BBInfo &MInfo = MBBInfoMap[MBB];
    for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
           SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
      if (*SuI == MBB)
        continue;
      BBInfo &SInfo = MBBInfoMap[*SuI];
      if (SInfo.addPassed(MInfo.vregsPassed))
        todo.insert(*SuI);
    }
  }
}

// Calculate the set of virtual registers that must be passed through each basic
// block in order to satisfy the requirements of successor blocks. This is very
// similar to calcRegsPassed, only backwards.
void MachineVerifier::calcRegsRequired() {
  // First push live-in regs to predecessors' vregsRequired.
  SmallPtrSet<const MachineBasicBlock*, 8> todo;
  for (const auto &MBB : *MF) {
    BBInfo &MInfo = MBBInfoMap[&MBB];
    for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
           PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
      BBInfo &PInfo = MBBInfoMap[*PrI];
      if (PInfo.addRequired(MInfo.vregsLiveIn))
        todo.insert(*PrI);
    }
  }

  // Iteratively push vregsRequired to predecessors. This will converge to the
  // same final state regardless of DenseSet iteration order.
  while (!todo.empty()) {
    const MachineBasicBlock *MBB = *todo.begin();
    todo.erase(MBB);
    BBInfo &MInfo = MBBInfoMap[MBB];
    for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
           PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
      if (*PrI == MBB)
        continue;
      BBInfo &SInfo = MBBInfoMap[*PrI];
      if (SInfo.addRequired(MInfo.vregsRequired))
        todo.insert(*PrI);
    }
  }
}

// Check PHI instructions at the beginning of MBB. It is assumed that
// calcRegsPassed has been run so BBInfo::isLiveOut is valid.
void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
  BBInfo &MInfo = MBBInfoMap[&MBB];

  SmallPtrSet<const MachineBasicBlock*, 8> seen;
  for (const MachineInstr &Phi : MBB) {
    if (!Phi.isPHI())
      break;
    seen.clear();

    const MachineOperand &MODef = Phi.getOperand(0);
    if (!MODef.isReg() || !MODef.isDef()) {
      report("Expected first PHI operand to be a register def", &MODef, 0);
      continue;
    }
    if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
        MODef.isEarlyClobber() || MODef.isDebug())
      report("Unexpected flag on PHI operand", &MODef, 0);
    unsigned DefReg = MODef.getReg();
    if (!TargetRegisterInfo::isVirtualRegister(DefReg))
      report("Expected first PHI operand to be a virtual register", &MODef, 0);

    for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
      const MachineOperand &MO0 = Phi.getOperand(I);
      if (!MO0.isReg()) {
        report("Expected PHI operand to be a register", &MO0, I);
        continue;
      }
      if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
          MO0.isDebug() || MO0.isTied())
        report("Unexpected flag on PHI operand", &MO0, I);

      const MachineOperand &MO1 = Phi.getOperand(I + 1);
      if (!MO1.isMBB()) {
        report("Expected PHI operand to be a basic block", &MO1, I + 1);
        continue;
      }

      const MachineBasicBlock &Pre = *MO1.getMBB();
      if (!Pre.isSuccessor(&MBB)) {
        report("PHI input is not a predecessor block", &MO1, I + 1);
        continue;
      }

      if (MInfo.reachable) {
        seen.insert(&Pre);
        BBInfo &PrInfo = MBBInfoMap[&Pre];
        if (!MO0.isUndef() && PrInfo.reachable &&
            !PrInfo.isLiveOut(MO0.getReg()))
          report("PHI operand is not live-out from predecessor", &MO0, I);
      }
    }

    // Did we see all predecessors?
    if (MInfo.reachable) {
      for (MachineBasicBlock *Pred : MBB.predecessors()) {
        if (!seen.count(Pred)) {
          report("Missing PHI operand", &Phi);
          errs() << printMBBReference(*Pred)
                 << " is a predecessor according to the CFG.\n";
        }
      }
    }
  }
}

void MachineVerifier::visitMachineFunctionAfter() {
  calcRegsPassed();

  for (const MachineBasicBlock &MBB : *MF)
    checkPHIOps(MBB);

  // Now check liveness info if available
  calcRegsRequired();

  // Check for killed virtual registers that should be live out.
  for (const auto &MBB : *MF) {
    BBInfo &MInfo = MBBInfoMap[&MBB];
    for (RegSet::iterator
         I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
         ++I)
      if (MInfo.regsKilled.count(*I)) {
        report("Virtual register killed in block, but needed live out.", &MBB);
        errs() << "Virtual register " << printReg(*I)
               << " is used after the block.\n";
      }
  }

  if (!MF->empty()) {
    BBInfo &MInfo = MBBInfoMap[&MF->front()];
    for (RegSet::iterator
         I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
         ++I) {
      report("Virtual register defs don't dominate all uses.", MF);
      report_context_vreg(*I);
    }
  }

  if (LiveVars)
    verifyLiveVariables();
  if (LiveInts)
    verifyLiveIntervals();

  for (auto CSInfo : MF->getCallSitesInfo())
    if (!CSInfo.first->isCall())
      report("Call site info referencing instruction that is not call", MF);
}

void MachineVerifier::verifyLiveVariables() {
  assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
    LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
    for (const auto &MBB : *MF) {
      BBInfo &MInfo = MBBInfoMap[&MBB];

      // Our vregsRequired should be identical to LiveVariables' AliveBlocks
      if (MInfo.vregsRequired.count(Reg)) {
        if (!VI.AliveBlocks.test(MBB.getNumber())) {
          report("LiveVariables: Block missing from AliveBlocks", &MBB);
          errs() << "Virtual register " << printReg(Reg)
                 << " must be live through the block.\n";
        }
      } else {
        if (VI.AliveBlocks.test(MBB.getNumber())) {
          report("LiveVariables: Block should not be in AliveBlocks", &MBB);
          errs() << "Virtual register " << printReg(Reg)
                 << " is not needed live through the block.\n";
        }
      }
    }
  }
}

void MachineVerifier::verifyLiveIntervals() {
  assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
  for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
    unsigned Reg = TargetRegisterInfo::index2VirtReg(i);

    // Spilling and splitting may leave unused registers around. Skip them.
    if (MRI->reg_nodbg_empty(Reg))
      continue;

    if (!LiveInts->hasInterval(Reg)) {
      report("Missing live interval for virtual register", MF);
      errs() << printReg(Reg, TRI) << " still has defs or uses\n";
      continue;
    }

    const LiveInterval &LI = LiveInts->getInterval(Reg);
    assert(Reg == LI.reg && "Invalid reg to interval mapping");
    verifyLiveInterval(LI);
  }

  // Verify all the cached regunit intervals.
  for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
    if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
      verifyLiveRange(*LR, i);
}

void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
                                           const VNInfo *VNI, unsigned Reg,
                                           LaneBitmask LaneMask) {
  if (VNI->isUnused())
    return;

  const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);

  if (!DefVNI) {
    report("Value not live at VNInfo def and not marked unused", MF);
    report_context(LR, Reg, LaneMask);
    report_context(*VNI);
    return;
  }

  if (DefVNI != VNI) {
    report("Live segment at def has different VNInfo", MF);
    report_context(LR, Reg, LaneMask);
    report_context(*VNI);
    return;
  }

  const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
  if (!MBB) {
    report("Invalid VNInfo definition index", MF);
    report_context(LR, Reg, LaneMask);
    report_context(*VNI);
    return;
  }

  if (VNI->isPHIDef()) {
    if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
      report("PHIDef VNInfo is not defined at MBB start", MBB);
      report_context(LR, Reg, LaneMask);
      report_context(*VNI);
    }
    return;
  }

  // Non-PHI def.
  const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
  if (!MI) {
    report("No instruction at VNInfo def index", MBB);
    report_context(LR, Reg, LaneMask);
    report_context(*VNI);
    return;
  }

  if (Reg != 0) {
    bool hasDef = false;
    bool isEarlyClobber = false;
    for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
      if (!MOI->isReg() || !MOI->isDef())
        continue;
      if (TargetRegisterInfo::isVirtualRegister(Reg)) {
        if (MOI->getReg() != Reg)
          continue;
      } else {
        if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
            !TRI->hasRegUnit(MOI->getReg(), Reg))
          continue;
      }
      if (LaneMask.any() &&
          (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
        continue;
      hasDef = true;
      if (MOI->isEarlyClobber())
        isEarlyClobber = true;
    }

    if (!hasDef) {
      report("Defining instruction does not modify register", MI);
      report_context(LR, Reg, LaneMask);
      report_context(*VNI);
    }

    // Early clobber defs begin at USE slots, but other defs must begin at
    // DEF slots.
    if (isEarlyClobber) {
      if (!VNI->def.isEarlyClobber()) {
        report("Early clobber def must be at an early-clobber slot", MBB);
        report_context(LR, Reg, LaneMask);
        report_context(*VNI);
      }
    } else if (!VNI->def.isRegister()) {
      report("Non-PHI, non-early clobber def must be at a register slot", MBB);
      report_context(LR, Reg, LaneMask);
      report_context(*VNI);
    }
  }
}

void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
                                             const LiveRange::const_iterator I,
                                             unsigned Reg, LaneBitmask LaneMask)
{
  const LiveRange::Segment &S = *I;
  const VNInfo *VNI = S.valno;
  assert(VNI && "Live segment has no valno");

  if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
    report("Foreign valno in live segment", MF);
    report_context(LR, Reg, LaneMask);
    report_context(S);
    report_context(*VNI);
  }

  if (VNI->isUnused()) {
    report("Live segment valno is marked unused", MF);
    report_context(LR, Reg, LaneMask);
    report_context(S);
  }

  const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
  if (!MBB) {
    report("Bad start of live segment, no basic block", MF);
    report_context(LR, Reg, LaneMask);
    report_context(S);
    return;
  }
  SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
  if (S.start != MBBStartIdx && S.start != VNI->def) {
    report("Live segment must begin at MBB entry or valno def", MBB);
    report_context(LR, Reg, LaneMask);
    report_context(S);
  }

  const MachineBasicBlock *EndMBB =
    LiveInts->getMBBFromIndex(S.end.getPrevSlot());
  if (!EndMBB) {
    report("Bad end of live segment, no basic block", MF);
    report_context(LR, Reg, LaneMask);
    report_context(S);
    return;
  }

  // No more checks for live-out segments.
  if (S.end == LiveInts->getMBBEndIdx(EndMBB))
    return;

  // RegUnit intervals are allowed dead phis.
  if (!TargetRegisterInfo::isVirtualRegister(Reg) && VNI->isPHIDef() &&
      S.start == VNI->def && S.end == VNI->def.getDeadSlot())
    return;

  // The live segment is ending inside EndMBB
  const MachineInstr *MI =
    LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
  if (!MI) {
    report("Live segment doesn't end at a valid instruction", EndMBB);
    report_context(LR, Reg, LaneMask);
    report_context(S);
    return;
  }

  // The block slot must refer to a basic block boundary.
  if (S.end.isBlock()) {
    report("Live segment ends at B slot of an instruction", EndMBB);
    report_context(LR, Reg, LaneMask);
    report_context(S);
  }

  if (S.end.isDead()) {
    // Segment ends on the dead slot.
    // That means there must be a dead def.
    if (!SlotIndex::isSameInstr(S.start, S.end)) {
      report("Live segment ending at dead slot spans instructions", EndMBB);
      report_context(LR, Reg, LaneMask);
      report_context(S);
    }
  }

  // A live segment can only end at an early-clobber slot if it is being
  // redefined by an early-clobber def.
  if (S.end.isEarlyClobber()) {
    if (I+1 == LR.end() || (I+1)->start != S.end) {
      report("Live segment ending at early clobber slot must be "
             "redefined by an EC def in the same instruction", EndMBB);
      report_context(LR, Reg, LaneMask);
      report_context(S);
    }
  }

  // The following checks only apply to virtual registers. Physreg liveness
  // is too weird to check.
  if (TargetRegisterInfo::isVirtualRegister(Reg)) {
    // A live segment can end with either a redefinition, a kill flag on a
    // use, or a dead flag on a def.
    bool hasRead = false;
    bool hasSubRegDef = false;
    bool hasDeadDef = false;
    for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
      if (!MOI->isReg() || MOI->getReg() != Reg)
        continue;
      unsigned Sub = MOI->getSubReg();
      LaneBitmask SLM = Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub)
                                 : LaneBitmask::getAll();
      if (MOI->isDef()) {
        if (Sub != 0) {
          hasSubRegDef = true;
          // An operand %0:sub0 reads %0:sub1..n. Invert the lane
          // mask for subregister defs. Read-undef defs will be handled by
          // readsReg below.
          SLM = ~SLM;
        }
        if (MOI->isDead())
          hasDeadDef = true;
      }
      if (LaneMask.any() && (LaneMask & SLM).none())
        continue;
      if (MOI->readsReg())
        hasRead = true;
    }
    if (S.end.isDead()) {
      // Make sure that the corresponding machine operand for a "dead" live
      // range has the dead flag. We cannot perform this check for subregister
      // liveranges as partially dead values are allowed.
      if (LaneMask.none() && !hasDeadDef) {
        report("Instruction ending live segment on dead slot has no dead flag",
               MI);
        report_context(LR, Reg, LaneMask);
        report_context(S);
      }
    } else {
      if (!hasRead) {
        // When tracking subregister liveness, the main range must start new
        // values on partial register writes, even if there is no read.
        if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
            !hasSubRegDef) {
          report("Instruction ending live segment doesn't read the register",
                 MI);
          report_context(LR, Reg, LaneMask);
          report_context(S);
        }
      }
    }
  }

  // Now check all the basic blocks in this live segment.
  MachineFunction::const_iterator MFI = MBB->getIterator();
  // Is this live segment the beginning of a non-PHIDef VN?
  if (S.start == VNI->def && !VNI->isPHIDef()) {
    // Not live-in to any blocks.
    if (MBB == EndMBB)
      return;
    // Skip this block.
    ++MFI;
  }

  SmallVector<SlotIndex, 4> Undefs;
  if (LaneMask.any()) {
    LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
    OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
  }

  while (true) {
    assert(LiveInts->isLiveInToMBB(LR, &*MFI));
    // We don't know how to track physregs into a landing pad.
    if (!TargetRegisterInfo::isVirtualRegister(Reg) &&
        MFI->isEHPad()) {
      if (&*MFI == EndMBB)
        break;
      ++MFI;
      continue;
    }

    // Is VNI a PHI-def in the current block?
    bool IsPHI = VNI->isPHIDef() &&
      VNI->def == LiveInts->getMBBStartIdx(&*MFI);

    // Check that VNI is live-out of all predecessors.
    for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
         PE = MFI->pred_end(); PI != PE; ++PI) {
      SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
      const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);

      // All predecessors must have a live-out value. However for a phi
      // instruction with subregister intervals
      // only one of the subregisters (not necessarily the current one) needs to
      // be defined.
      if (!PVNI && (LaneMask.none() || !IsPHI)) {
        if (LiveRangeCalc::isJointlyDominated(*PI, Undefs, *Indexes))
          continue;
        report("Register not marked live out of predecessor", *PI);
        report_context(LR, Reg, LaneMask);
        report_context(*VNI);
        errs() << " live into " << printMBBReference(*MFI) << '@'
               << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
               << PEnd << '\n';
        continue;
      }

      // Only PHI-defs can take different predecessor values.
      if (!IsPHI && PVNI != VNI) {
        report("Different value live out of predecessor", *PI);
        report_context(LR, Reg, LaneMask);
        errs() << "Valno #" << PVNI->id << " live out of "
               << printMBBReference(*(*PI)) << '@' << PEnd << "\nValno #"
               << VNI->id << " live into " << printMBBReference(*MFI) << '@'
               << LiveInts->getMBBStartIdx(&*MFI) << '\n';
      }
    }
    if (&*MFI == EndMBB)
      break;
    ++MFI;
  }
}

void MachineVerifier::verifyLiveRange(const LiveRange &LR, unsigned Reg,
                                      LaneBitmask LaneMask) {
  for (const VNInfo *VNI : LR.valnos)
    verifyLiveRangeValue(LR, VNI, Reg, LaneMask);

  for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
    verifyLiveRangeSegment(LR, I, Reg, LaneMask);
}

void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
  unsigned Reg = LI.reg;
  assert(TargetRegisterInfo::isVirtualRegister(Reg));
  verifyLiveRange(LI, Reg);

  LaneBitmask Mask;
  LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
  for (const LiveInterval::SubRange &SR : LI.subranges()) {
    if ((Mask & SR.LaneMask).any()) {
      report("Lane masks of sub ranges overlap in live interval", MF);
      report_context(LI);
    }
    if ((SR.LaneMask & ~MaxMask).any()) {
      report("Subrange lanemask is invalid", MF);
      report_context(LI);
    }
    if (SR.empty()) {
      report("Subrange must not be empty", MF);
      report_context(SR, LI.reg, SR.LaneMask);
    }
    Mask |= SR.LaneMask;
    verifyLiveRange(SR, LI.reg, SR.LaneMask);
    if (!LI.covers(SR)) {
      report("A Subrange is not covered by the main range", MF);
      report_context(LI);
    }
  }

  // Check the LI only has one connected component.
  ConnectedVNInfoEqClasses ConEQ(*LiveInts);
  unsigned NumComp = ConEQ.Classify(LI);
  if (NumComp > 1) {
    report("Multiple connected components in live interval", MF);
    report_context(LI);
    for (unsigned comp = 0; comp != NumComp; ++comp) {
      errs() << comp << ": valnos";
      for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
           E = LI.vni_end(); I!=E; ++I)
        if (comp == ConEQ.getEqClass(*I))
          errs() << ' ' << (*I)->id;
      errs() << '\n';
    }
  }
}

namespace {

  // FrameSetup and FrameDestroy can have zero adjustment, so using a single
  // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
  // value is zero.
  // We use a bool plus an integer to capture the stack state.
  struct StackStateOfBB {
    StackStateOfBB() = default;
    StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
      EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
      ExitIsSetup(ExitSetup) {}

    // Can be negative, which means we are setting up a frame.
    int EntryValue = 0;
    int ExitValue = 0;
    bool EntryIsSetup = false;
    bool ExitIsSetup = false;
  };

} // end anonymous namespace

/// Make sure on every path through the CFG, a FrameSetup <n> is always followed
/// by a FrameDestroy <n>, stack adjustments are identical on all
/// CFG edges to a merge point, and frame is destroyed at end of a return block.
void MachineVerifier::verifyStackFrame() {
  unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
  unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
  if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
    return;

  SmallVector<StackStateOfBB, 8> SPState;
  SPState.resize(MF->getNumBlockIDs());
  df_iterator_default_set<const MachineBasicBlock*> Reachable;

  // Visit the MBBs in DFS order.
  for (df_ext_iterator<const MachineFunction *,
                       df_iterator_default_set<const MachineBasicBlock *>>
       DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
       DFI != DFE; ++DFI) {
    const MachineBasicBlock *MBB = *DFI;

    StackStateOfBB BBState;
    // Check the exit state of the DFS stack predecessor.
    if (DFI.getPathLength() >= 2) {
      const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
      assert(Reachable.count(StackPred) &&
             "DFS stack predecessor is already visited.\n");
      BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
      BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
      BBState.ExitValue = BBState.EntryValue;
      BBState.ExitIsSetup = BBState.EntryIsSetup;
    }

    // Update stack state by checking contents of MBB.
    for (const auto &I : *MBB) {
      if (I.getOpcode() == FrameSetupOpcode) {
        if (BBState.ExitIsSetup)
          report("FrameSetup is after another FrameSetup", &I);
        BBState.ExitValue -= TII->getFrameTotalSize(I);
        BBState.ExitIsSetup = true;
      }

      if (I.getOpcode() == FrameDestroyOpcode) {
        int Size = TII->getFrameTotalSize(I);
        if (!BBState.ExitIsSetup)
          report("FrameDestroy is not after a FrameSetup", &I);
        int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
                                               BBState.ExitValue;
        if (BBState.ExitIsSetup && AbsSPAdj != Size) {
          report("FrameDestroy <n> is after FrameSetup <m>", &I);
          errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
              << AbsSPAdj << ">.\n";
        }
        BBState.ExitValue += Size;
        BBState.ExitIsSetup = false;
      }
    }
    SPState[MBB->getNumber()] = BBState;

    // Make sure the exit state of any predecessor is consistent with the entry
    // state.
    for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
         E = MBB->pred_end(); I != E; ++I) {
      if (Reachable.count(*I) &&
          (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
           SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
        report("The exit stack state of a predecessor is inconsistent.", MBB);
        errs() << "Predecessor " << printMBBReference(*(*I))
               << " has exit state (" << SPState[(*I)->getNumber()].ExitValue
               << ", " << SPState[(*I)->getNumber()].ExitIsSetup << "), while "
               << printMBBReference(*MBB) << " has entry state ("
               << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
      }
    }

    // Make sure the entry state of any successor is consistent with the exit
    // state.
    for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
         E = MBB->succ_end(); I != E; ++I) {
      if (Reachable.count(*I) &&
          (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
           SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
        report("The entry stack state of a successor is inconsistent.", MBB);
        errs() << "Successor " << printMBBReference(*(*I))
               << " has entry state (" << SPState[(*I)->getNumber()].EntryValue
               << ", " << SPState[(*I)->getNumber()].EntryIsSetup << "), while "
               << printMBBReference(*MBB) << " has exit state ("
               << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
      }
    }

    // Make sure a basic block with return ends with zero stack adjustment.
    if (!MBB->empty() && MBB->back().isReturn()) {
      if (BBState.ExitIsSetup)
        report("A return block ends with a FrameSetup.", MBB);
      if (BBState.ExitValue)
        report("A return block ends with a nonzero stack adjustment.", MBB);
    }
  }
}