llvm.org GIT mirror llvm / release_90 lib / Analysis / StackSafetyAnalysis.cpp
release_90

Tree @release_90 (Download .tar.gz)

StackSafetyAnalysis.cpp @release_90raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
//===- StackSafetyAnalysis.cpp - Stack memory safety analysis -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/StackSafetyAnalysis.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

#define DEBUG_TYPE "stack-safety"

static cl::opt<int> StackSafetyMaxIterations("stack-safety-max-iterations",
                                             cl::init(20), cl::Hidden);

namespace {

/// Rewrite an SCEV expression for a memory access address to an expression that
/// represents offset from the given alloca.
class AllocaOffsetRewriter : public SCEVRewriteVisitor<AllocaOffsetRewriter> {
  const Value *AllocaPtr;

public:
  AllocaOffsetRewriter(ScalarEvolution &SE, const Value *AllocaPtr)
      : SCEVRewriteVisitor(SE), AllocaPtr(AllocaPtr) {}

  const SCEV *visit(const SCEV *Expr) {
    // Only re-write the expression if the alloca is used in an addition
    // expression (it can be used in other types of expressions if it's cast to
    // an int and passed as an argument.)
    if (!isa<SCEVAddRecExpr>(Expr) && !isa<SCEVAddExpr>(Expr) &&
        !isa<SCEVUnknown>(Expr))
      return Expr;
    return SCEVRewriteVisitor<AllocaOffsetRewriter>::visit(Expr);
  }

  const SCEV *visitUnknown(const SCEVUnknown *Expr) {
    // FIXME: look through one or several levels of definitions?
    // This can be inttoptr(AllocaPtr) and SCEV would not unwrap
    // it for us.
    if (Expr->getValue() == AllocaPtr)
      return SE.getZero(Expr->getType());
    return Expr;
  }
};

/// Describes use of address in as a function call argument.
struct PassAsArgInfo {
  /// Function being called.
  const GlobalValue *Callee = nullptr;
  /// Index of argument which pass address.
  size_t ParamNo = 0;
  // Offset range of address from base address (alloca or calling function
  // argument).
  // Range should never set to empty-set, that is an invalid access range
  // that can cause empty-set to be propagated with ConstantRange::add
  ConstantRange Offset;
  PassAsArgInfo(const GlobalValue *Callee, size_t ParamNo, ConstantRange Offset)
      : Callee(Callee), ParamNo(ParamNo), Offset(Offset) {}

  StringRef getName() const { return Callee->getName(); }
};

raw_ostream &operator<<(raw_ostream &OS, const PassAsArgInfo &P) {
  return OS << "@" << P.getName() << "(arg" << P.ParamNo << ", " << P.Offset
            << ")";
}

/// Describe uses of address (alloca or parameter) inside of the function.
struct UseInfo {
  // Access range if the address (alloca or parameters).
  // It is allowed to be empty-set when there are no known accesses.
  ConstantRange Range;

  // List of calls which pass address as an argument.
  SmallVector<PassAsArgInfo, 4> Calls;

  explicit UseInfo(unsigned PointerSize) : Range{PointerSize, false} {}

  void updateRange(ConstantRange R) { Range = Range.unionWith(R); }
};

raw_ostream &operator<<(raw_ostream &OS, const UseInfo &U) {
  OS << U.Range;
  for (auto &Call : U.Calls)
    OS << ", " << Call;
  return OS;
}

struct AllocaInfo {
  const AllocaInst *AI = nullptr;
  uint64_t Size = 0;
  UseInfo Use;

  AllocaInfo(unsigned PointerSize, const AllocaInst *AI, uint64_t Size)
      : AI(AI), Size(Size), Use(PointerSize) {}

  StringRef getName() const { return AI->getName(); }
};

raw_ostream &operator<<(raw_ostream &OS, const AllocaInfo &A) {
  return OS << A.getName() << "[" << A.Size << "]: " << A.Use;
}

struct ParamInfo {
  const Argument *Arg = nullptr;
  UseInfo Use;

  explicit ParamInfo(unsigned PointerSize, const Argument *Arg)
      : Arg(Arg), Use(PointerSize) {}

  StringRef getName() const { return Arg ? Arg->getName() : "<N/A>"; }
};

raw_ostream &operator<<(raw_ostream &OS, const ParamInfo &P) {
  return OS << P.getName() << "[]: " << P.Use;
}

/// Calculate the allocation size of a given alloca. Returns 0 if the
/// size can not be statically determined.
uint64_t getStaticAllocaAllocationSize(const AllocaInst *AI) {
  const DataLayout &DL = AI->getModule()->getDataLayout();
  uint64_t Size = DL.getTypeAllocSize(AI->getAllocatedType());
  if (AI->isArrayAllocation()) {
    auto C = dyn_cast<ConstantInt>(AI->getArraySize());
    if (!C)
      return 0;
    Size *= C->getZExtValue();
  }
  return Size;
}

} // end anonymous namespace

/// Describes uses of allocas and parameters inside of a single function.
struct StackSafetyInfo::FunctionInfo {
  // May be a Function or a GlobalAlias
  const GlobalValue *GV = nullptr;
  // Informations about allocas uses.
  SmallVector<AllocaInfo, 4> Allocas;
  // Informations about parameters uses.
  SmallVector<ParamInfo, 4> Params;
  // TODO: describe return value as depending on one or more of its arguments.

  // StackSafetyDataFlowAnalysis counter stored here for faster access.
  int UpdateCount = 0;

  FunctionInfo(const StackSafetyInfo &SSI) : FunctionInfo(*SSI.Info) {}

  explicit FunctionInfo(const Function *F) : GV(F){};
  // Creates FunctionInfo that forwards all the parameters to the aliasee.
  explicit FunctionInfo(const GlobalAlias *A);

  FunctionInfo(FunctionInfo &&) = default;

  bool IsDSOLocal() const { return GV->isDSOLocal(); };

  bool IsInterposable() const { return GV->isInterposable(); };

  StringRef getName() const { return GV->getName(); }

  void print(raw_ostream &O) const {
    // TODO: Consider different printout format after
    // StackSafetyDataFlowAnalysis. Calls and parameters are irrelevant then.
    O << "  @" << getName() << (IsDSOLocal() ? "" : " dso_preemptable")
      << (IsInterposable() ? " interposable" : "") << "\n";
    O << "    args uses:\n";
    for (auto &P : Params)
      O << "      " << P << "\n";
    O << "    allocas uses:\n";
    for (auto &AS : Allocas)
      O << "      " << AS << "\n";
  }

private:
  FunctionInfo(const FunctionInfo &) = default;
};

StackSafetyInfo::FunctionInfo::FunctionInfo(const GlobalAlias *A) : GV(A) {
  unsigned PointerSize = A->getParent()->getDataLayout().getPointerSizeInBits();
  const GlobalObject *Aliasee = A->getBaseObject();
  const FunctionType *Type = cast<FunctionType>(Aliasee->getValueType());
  // 'Forward' all parameters to this alias to the aliasee
  for (unsigned ArgNo = 0; ArgNo < Type->getNumParams(); ArgNo++) {
    Params.emplace_back(PointerSize, nullptr);
    UseInfo &US = Params.back().Use;
    US.Calls.emplace_back(Aliasee, ArgNo, ConstantRange(APInt(PointerSize, 0)));
  }
}

namespace {

class StackSafetyLocalAnalysis {
  const Function &F;
  const DataLayout &DL;
  ScalarEvolution &SE;
  unsigned PointerSize = 0;

  const ConstantRange UnknownRange;

  ConstantRange offsetFromAlloca(Value *Addr, const Value *AllocaPtr);
  ConstantRange getAccessRange(Value *Addr, const Value *AllocaPtr,
                               uint64_t AccessSize);
  ConstantRange getMemIntrinsicAccessRange(const MemIntrinsic *MI, const Use &U,
                                           const Value *AllocaPtr);

  bool analyzeAllUses(const Value *Ptr, UseInfo &AS);

  ConstantRange getRange(uint64_t Lower, uint64_t Upper) const {
    return ConstantRange(APInt(PointerSize, Lower), APInt(PointerSize, Upper));
  }

public:
  StackSafetyLocalAnalysis(const Function &F, ScalarEvolution &SE)
      : F(F), DL(F.getParent()->getDataLayout()), SE(SE),
        PointerSize(DL.getPointerSizeInBits()),
        UnknownRange(PointerSize, true) {}

  // Run the transformation on the associated function.
  StackSafetyInfo run();
};

ConstantRange
StackSafetyLocalAnalysis::offsetFromAlloca(Value *Addr,
                                           const Value *AllocaPtr) {
  if (!SE.isSCEVable(Addr->getType()))
    return UnknownRange;

  AllocaOffsetRewriter Rewriter(SE, AllocaPtr);
  const SCEV *Expr = Rewriter.visit(SE.getSCEV(Addr));
  ConstantRange Offset = SE.getUnsignedRange(Expr).zextOrTrunc(PointerSize);
  assert(!Offset.isEmptySet());
  return Offset;
}

ConstantRange StackSafetyLocalAnalysis::getAccessRange(Value *Addr,
                                                       const Value *AllocaPtr,
                                                       uint64_t AccessSize) {
  if (!SE.isSCEVable(Addr->getType()))
    return UnknownRange;

  AllocaOffsetRewriter Rewriter(SE, AllocaPtr);
  const SCEV *Expr = Rewriter.visit(SE.getSCEV(Addr));

  ConstantRange AccessStartRange =
      SE.getUnsignedRange(Expr).zextOrTrunc(PointerSize);
  ConstantRange SizeRange = getRange(0, AccessSize);
  ConstantRange AccessRange = AccessStartRange.add(SizeRange);
  assert(!AccessRange.isEmptySet());
  return AccessRange;
}

ConstantRange StackSafetyLocalAnalysis::getMemIntrinsicAccessRange(
    const MemIntrinsic *MI, const Use &U, const Value *AllocaPtr) {
  if (auto MTI = dyn_cast<MemTransferInst>(MI)) {
    if (MTI->getRawSource() != U && MTI->getRawDest() != U)
      return getRange(0, 1);
  } else {
    if (MI->getRawDest() != U)
      return getRange(0, 1);
  }
  const auto *Len = dyn_cast<ConstantInt>(MI->getLength());
  // Non-constant size => unsafe. FIXME: try SCEV getRange.
  if (!Len)
    return UnknownRange;
  ConstantRange AccessRange = getAccessRange(U, AllocaPtr, Len->getZExtValue());
  return AccessRange;
}

/// The function analyzes all local uses of Ptr (alloca or argument) and
/// calculates local access range and all function calls where it was used.
bool StackSafetyLocalAnalysis::analyzeAllUses(const Value *Ptr, UseInfo &US) {
  SmallPtrSet<const Value *, 16> Visited;
  SmallVector<const Value *, 8> WorkList;
  WorkList.push_back(Ptr);

  // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc.
  while (!WorkList.empty()) {
    const Value *V = WorkList.pop_back_val();
    for (const Use &UI : V->uses()) {
      auto I = cast<const Instruction>(UI.getUser());
      assert(V == UI.get());

      switch (I->getOpcode()) {
      case Instruction::Load: {
        US.updateRange(
            getAccessRange(UI, Ptr, DL.getTypeStoreSize(I->getType())));
        break;
      }

      case Instruction::VAArg:
        // "va-arg" from a pointer is safe.
        break;
      case Instruction::Store: {
        if (V == I->getOperand(0)) {
          // Stored the pointer - conservatively assume it may be unsafe.
          US.updateRange(UnknownRange);
          return false;
        }
        US.updateRange(getAccessRange(
            UI, Ptr, DL.getTypeStoreSize(I->getOperand(0)->getType())));
        break;
      }

      case Instruction::Ret:
        // Information leak.
        // FIXME: Process parameters correctly. This is a leak only if we return
        // alloca.
        US.updateRange(UnknownRange);
        return false;

      case Instruction::Call:
      case Instruction::Invoke: {
        ImmutableCallSite CS(I);

        if (I->isLifetimeStartOrEnd())
          break;

        if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
          US.updateRange(getMemIntrinsicAccessRange(MI, UI, Ptr));
          break;
        }

        // FIXME: consult devirt?
        // Do not follow aliases, otherwise we could inadvertently follow
        // dso_preemptable aliases or aliases with interposable linkage.
        const GlobalValue *Callee = dyn_cast<GlobalValue>(
            CS.getCalledValue()->stripPointerCastsNoFollowAliases());
        if (!Callee) {
          US.updateRange(UnknownRange);
          return false;
        }

        assert(isa<Function>(Callee) || isa<GlobalAlias>(Callee));

        ImmutableCallSite::arg_iterator B = CS.arg_begin(), E = CS.arg_end();
        for (ImmutableCallSite::arg_iterator A = B; A != E; ++A) {
          if (A->get() == V) {
            ConstantRange Offset = offsetFromAlloca(UI, Ptr);
            US.Calls.emplace_back(Callee, A - B, Offset);
          }
        }

        break;
      }

      default:
        if (Visited.insert(I).second)
          WorkList.push_back(cast<const Instruction>(I));
      }
    }
  }

  return true;
}

StackSafetyInfo StackSafetyLocalAnalysis::run() {
  StackSafetyInfo::FunctionInfo Info(&F);
  assert(!F.isDeclaration() &&
         "Can't run StackSafety on a function declaration");

  LLVM_DEBUG(dbgs() << "[StackSafety] " << F.getName() << "\n");

  for (auto &I : instructions(F)) {
    if (auto AI = dyn_cast<AllocaInst>(&I)) {
      Info.Allocas.emplace_back(PointerSize, AI,
                                getStaticAllocaAllocationSize(AI));
      AllocaInfo &AS = Info.Allocas.back();
      analyzeAllUses(AI, AS.Use);
    }
  }

  for (const Argument &A : make_range(F.arg_begin(), F.arg_end())) {
    Info.Params.emplace_back(PointerSize, &A);
    ParamInfo &PS = Info.Params.back();
    analyzeAllUses(&A, PS.Use);
  }

  LLVM_DEBUG(dbgs() << "[StackSafety] done\n");
  LLVM_DEBUG(Info.print(dbgs()));
  return StackSafetyInfo(std::move(Info));
}

class StackSafetyDataFlowAnalysis {
  using FunctionMap =
      std::map<const GlobalValue *, StackSafetyInfo::FunctionInfo>;

  FunctionMap Functions;
  // Callee-to-Caller multimap.
  DenseMap<const GlobalValue *, SmallVector<const GlobalValue *, 4>> Callers;
  SetVector<const GlobalValue *> WorkList;

  unsigned PointerSize = 0;
  const ConstantRange UnknownRange;

  ConstantRange getArgumentAccessRange(const GlobalValue *Callee,
                                       unsigned ParamNo) const;
  bool updateOneUse(UseInfo &US, bool UpdateToFullSet);
  void updateOneNode(const GlobalValue *Callee,
                     StackSafetyInfo::FunctionInfo &FS);
  void updateOneNode(const GlobalValue *Callee) {
    updateOneNode(Callee, Functions.find(Callee)->second);
  }
  void updateAllNodes() {
    for (auto &F : Functions)
      updateOneNode(F.first, F.second);
  }
  void runDataFlow();
#ifndef NDEBUG
  void verifyFixedPoint();
#endif

public:
  StackSafetyDataFlowAnalysis(
      Module &M, std::function<const StackSafetyInfo &(Function &)> FI);
  StackSafetyGlobalInfo run();
};

StackSafetyDataFlowAnalysis::StackSafetyDataFlowAnalysis(
    Module &M, std::function<const StackSafetyInfo &(Function &)> FI)
    : PointerSize(M.getDataLayout().getPointerSizeInBits()),
      UnknownRange(PointerSize, true) {
  // Without ThinLTO, run the local analysis for every function in the TU and
  // then run the DFA.
  for (auto &F : M.functions())
    if (!F.isDeclaration())
      Functions.emplace(&F, FI(F));
  for (auto &A : M.aliases())
    if (isa<Function>(A.getBaseObject()))
      Functions.emplace(&A, StackSafetyInfo::FunctionInfo(&A));
}

ConstantRange
StackSafetyDataFlowAnalysis::getArgumentAccessRange(const GlobalValue *Callee,
                                                    unsigned ParamNo) const {
  auto IT = Functions.find(Callee);
  // Unknown callee (outside of LTO domain or an indirect call).
  if (IT == Functions.end())
    return UnknownRange;
  const StackSafetyInfo::FunctionInfo &FS = IT->second;
  // The definition of this symbol may not be the definition in this linkage
  // unit.
  if (!FS.IsDSOLocal() || FS.IsInterposable())
    return UnknownRange;
  if (ParamNo >= FS.Params.size()) // possibly vararg
    return UnknownRange;
  return FS.Params[ParamNo].Use.Range;
}

bool StackSafetyDataFlowAnalysis::updateOneUse(UseInfo &US,
                                               bool UpdateToFullSet) {
  bool Changed = false;
  for (auto &CS : US.Calls) {
    assert(!CS.Offset.isEmptySet() &&
           "Param range can't be empty-set, invalid offset range");

    ConstantRange CalleeRange = getArgumentAccessRange(CS.Callee, CS.ParamNo);
    CalleeRange = CalleeRange.add(CS.Offset);
    if (!US.Range.contains(CalleeRange)) {
      Changed = true;
      if (UpdateToFullSet)
        US.Range = UnknownRange;
      else
        US.Range = US.Range.unionWith(CalleeRange);
    }
  }
  return Changed;
}

void StackSafetyDataFlowAnalysis::updateOneNode(
    const GlobalValue *Callee, StackSafetyInfo::FunctionInfo &FS) {
  bool UpdateToFullSet = FS.UpdateCount > StackSafetyMaxIterations;
  bool Changed = false;
  for (auto &AS : FS.Allocas)
    Changed |= updateOneUse(AS.Use, UpdateToFullSet);
  for (auto &PS : FS.Params)
    Changed |= updateOneUse(PS.Use, UpdateToFullSet);

  if (Changed) {
    LLVM_DEBUG(dbgs() << "=== update [" << FS.UpdateCount
                      << (UpdateToFullSet ? ", full-set" : "") << "] "
                      << FS.getName() << "\n");
    // Callers of this function may need updating.
    for (auto &CallerID : Callers[Callee])
      WorkList.insert(CallerID);

    ++FS.UpdateCount;
  }
}

void StackSafetyDataFlowAnalysis::runDataFlow() {
  Callers.clear();
  WorkList.clear();

  SmallVector<const GlobalValue *, 16> Callees;
  for (auto &F : Functions) {
    Callees.clear();
    StackSafetyInfo::FunctionInfo &FS = F.second;
    for (auto &AS : FS.Allocas)
      for (auto &CS : AS.Use.Calls)
        Callees.push_back(CS.Callee);
    for (auto &PS : FS.Params)
      for (auto &CS : PS.Use.Calls)
        Callees.push_back(CS.Callee);

    llvm::sort(Callees);
    Callees.erase(std::unique(Callees.begin(), Callees.end()), Callees.end());

    for (auto &Callee : Callees)
      Callers[Callee].push_back(F.first);
  }

  updateAllNodes();

  while (!WorkList.empty()) {
    const GlobalValue *Callee = WorkList.back();
    WorkList.pop_back();
    updateOneNode(Callee);
  }
}

#ifndef NDEBUG
void StackSafetyDataFlowAnalysis::verifyFixedPoint() {
  WorkList.clear();
  updateAllNodes();
  assert(WorkList.empty());
}
#endif

StackSafetyGlobalInfo StackSafetyDataFlowAnalysis::run() {
  runDataFlow();
  LLVM_DEBUG(verifyFixedPoint());

  StackSafetyGlobalInfo SSI;
  for (auto &F : Functions)
    SSI.emplace(F.first, std::move(F.second));
  return SSI;
}

void print(const StackSafetyGlobalInfo &SSI, raw_ostream &O, const Module &M) {
  size_t Count = 0;
  for (auto &F : M.functions())
    if (!F.isDeclaration()) {
      SSI.find(&F)->second.print(O);
      O << "\n";
      ++Count;
    }
  for (auto &A : M.aliases()) {
    SSI.find(&A)->second.print(O);
    O << "\n";
    ++Count;
  }
  assert(Count == SSI.size() && "Unexpected functions in the result");
}

} // end anonymous namespace

StackSafetyInfo::StackSafetyInfo() = default;
StackSafetyInfo::StackSafetyInfo(StackSafetyInfo &&) = default;
StackSafetyInfo &StackSafetyInfo::operator=(StackSafetyInfo &&) = default;

StackSafetyInfo::StackSafetyInfo(FunctionInfo &&Info)
    : Info(new FunctionInfo(std::move(Info))) {}

StackSafetyInfo::~StackSafetyInfo() = default;

void StackSafetyInfo::print(raw_ostream &O) const { Info->print(O); }

AnalysisKey StackSafetyAnalysis::Key;

StackSafetyInfo StackSafetyAnalysis::run(Function &F,
                                         FunctionAnalysisManager &AM) {
  StackSafetyLocalAnalysis SSLA(F, AM.getResult<ScalarEvolutionAnalysis>(F));
  return SSLA.run();
}

PreservedAnalyses StackSafetyPrinterPass::run(Function &F,
                                              FunctionAnalysisManager &AM) {
  OS << "'Stack Safety Local Analysis' for function '" << F.getName() << "'\n";
  AM.getResult<StackSafetyAnalysis>(F).print(OS);
  return PreservedAnalyses::all();
}

char StackSafetyInfoWrapperPass::ID = 0;

StackSafetyInfoWrapperPass::StackSafetyInfoWrapperPass() : FunctionPass(ID) {
  initializeStackSafetyInfoWrapperPassPass(*PassRegistry::getPassRegistry());
}

void StackSafetyInfoWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.addRequired<ScalarEvolutionWrapperPass>();
  AU.setPreservesAll();
}

void StackSafetyInfoWrapperPass::print(raw_ostream &O, const Module *M) const {
  SSI.print(O);
}

bool StackSafetyInfoWrapperPass::runOnFunction(Function &F) {
  StackSafetyLocalAnalysis SSLA(
      F, getAnalysis<ScalarEvolutionWrapperPass>().getSE());
  SSI = StackSafetyInfo(SSLA.run());
  return false;
}

AnalysisKey StackSafetyGlobalAnalysis::Key;

StackSafetyGlobalInfo
StackSafetyGlobalAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
  FunctionAnalysisManager &FAM =
      AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();

  StackSafetyDataFlowAnalysis SSDFA(
      M, [&FAM](Function &F) -> const StackSafetyInfo & {
        return FAM.getResult<StackSafetyAnalysis>(F);
      });
  return SSDFA.run();
}

PreservedAnalyses StackSafetyGlobalPrinterPass::run(Module &M,
                                                    ModuleAnalysisManager &AM) {
  OS << "'Stack Safety Analysis' for module '" << M.getName() << "'\n";
  print(AM.getResult<StackSafetyGlobalAnalysis>(M), OS, M);
  return PreservedAnalyses::all();
}

char StackSafetyGlobalInfoWrapperPass::ID = 0;

StackSafetyGlobalInfoWrapperPass::StackSafetyGlobalInfoWrapperPass()
    : ModulePass(ID) {
  initializeStackSafetyGlobalInfoWrapperPassPass(
      *PassRegistry::getPassRegistry());
}

void StackSafetyGlobalInfoWrapperPass::print(raw_ostream &O,
                                             const Module *M) const {
  ::print(SSI, O, *M);
}

void StackSafetyGlobalInfoWrapperPass::getAnalysisUsage(
    AnalysisUsage &AU) const {
  AU.addRequired<StackSafetyInfoWrapperPass>();
}

bool StackSafetyGlobalInfoWrapperPass::runOnModule(Module &M) {
  StackSafetyDataFlowAnalysis SSDFA(
      M, [this](Function &F) -> const StackSafetyInfo & {
        return getAnalysis<StackSafetyInfoWrapperPass>(F).getResult();
      });
  SSI = SSDFA.run();
  return false;
}

static const char LocalPassArg[] = "stack-safety-local";
static const char LocalPassName[] = "Stack Safety Local Analysis";
INITIALIZE_PASS_BEGIN(StackSafetyInfoWrapperPass, LocalPassArg, LocalPassName,
                      false, true)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_END(StackSafetyInfoWrapperPass, LocalPassArg, LocalPassName,
                    false, true)

static const char GlobalPassName[] = "Stack Safety Analysis";
INITIALIZE_PASS_BEGIN(StackSafetyGlobalInfoWrapperPass, DEBUG_TYPE,
                      GlobalPassName, false, false)
INITIALIZE_PASS_DEPENDENCY(StackSafetyInfoWrapperPass)
INITIALIZE_PASS_END(StackSafetyGlobalInfoWrapperPass, DEBUG_TYPE,
                    GlobalPassName, false, false)