llvm.org GIT mirror llvm / release_80 lib / Support / Host.cpp
release_80

Tree @release_80 (Download .tar.gz)

Host.cpp @release_80raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
//===-- Host.cpp - Implement OS Host Concept --------------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//  This file implements the operating system Host concept.
//
//===----------------------------------------------------------------------===//

#include "llvm/Support/Host.h"
#include "llvm/Support/TargetParser.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Config/llvm-config.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Support/raw_ostream.h"
#include <assert.h>
#include <string.h>

// Include the platform-specific parts of this class.
#ifdef LLVM_ON_UNIX
#include "Unix/Host.inc"
#endif
#ifdef _WIN32
#include "Windows/Host.inc"
#endif
#ifdef _MSC_VER
#include <intrin.h>
#endif
#if defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
#include <mach/host_info.h>
#include <mach/mach.h>
#include <mach/mach_host.h>
#include <mach/machine.h>
#endif

#define DEBUG_TYPE "host-detection"

//===----------------------------------------------------------------------===//
//
//  Implementations of the CPU detection routines
//
//===----------------------------------------------------------------------===//

using namespace llvm;

static std::unique_ptr<llvm::MemoryBuffer>
    LLVM_ATTRIBUTE_UNUSED getProcCpuinfoContent() {
  llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
      llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
  if (std::error_code EC = Text.getError()) {
    llvm::errs() << "Can't read "
                 << "/proc/cpuinfo: " << EC.message() << "\n";
    return nullptr;
  }
  return std::move(*Text);
}

StringRef sys::detail::getHostCPUNameForPowerPC(StringRef ProcCpuinfoContent) {
  // Access to the Processor Version Register (PVR) on PowerPC is privileged,
  // and so we must use an operating-system interface to determine the current
  // processor type. On Linux, this is exposed through the /proc/cpuinfo file.
  const char *generic = "generic";

  // The cpu line is second (after the 'processor: 0' line), so if this
  // buffer is too small then something has changed (or is wrong).
  StringRef::const_iterator CPUInfoStart = ProcCpuinfoContent.begin();
  StringRef::const_iterator CPUInfoEnd = ProcCpuinfoContent.end();

  StringRef::const_iterator CIP = CPUInfoStart;

  StringRef::const_iterator CPUStart = 0;
  size_t CPULen = 0;

  // We need to find the first line which starts with cpu, spaces, and a colon.
  // After the colon, there may be some additional spaces and then the cpu type.
  while (CIP < CPUInfoEnd && CPUStart == 0) {
    if (CIP < CPUInfoEnd && *CIP == '\n')
      ++CIP;

    if (CIP < CPUInfoEnd && *CIP == 'c') {
      ++CIP;
      if (CIP < CPUInfoEnd && *CIP == 'p') {
        ++CIP;
        if (CIP < CPUInfoEnd && *CIP == 'u') {
          ++CIP;
          while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
            ++CIP;

          if (CIP < CPUInfoEnd && *CIP == ':') {
            ++CIP;
            while (CIP < CPUInfoEnd && (*CIP == ' ' || *CIP == '\t'))
              ++CIP;

            if (CIP < CPUInfoEnd) {
              CPUStart = CIP;
              while (CIP < CPUInfoEnd && (*CIP != ' ' && *CIP != '\t' &&
                                          *CIP != ',' && *CIP != '\n'))
                ++CIP;
              CPULen = CIP - CPUStart;
            }
          }
        }
      }
    }

    if (CPUStart == 0)
      while (CIP < CPUInfoEnd && *CIP != '\n')
        ++CIP;
  }

  if (CPUStart == 0)
    return generic;

  return StringSwitch<const char *>(StringRef(CPUStart, CPULen))
      .Case("604e", "604e")
      .Case("604", "604")
      .Case("7400", "7400")
      .Case("7410", "7400")
      .Case("7447", "7400")
      .Case("7455", "7450")
      .Case("G4", "g4")
      .Case("POWER4", "970")
      .Case("PPC970FX", "970")
      .Case("PPC970MP", "970")
      .Case("G5", "g5")
      .Case("POWER5", "g5")
      .Case("A2", "a2")
      .Case("POWER6", "pwr6")
      .Case("POWER7", "pwr7")
      .Case("POWER8", "pwr8")
      .Case("POWER8E", "pwr8")
      .Case("POWER8NVL", "pwr8")
      .Case("POWER9", "pwr9")
      .Default(generic);
}

StringRef sys::detail::getHostCPUNameForARM(StringRef ProcCpuinfoContent) {
  // The cpuid register on arm is not accessible from user space. On Linux,
  // it is exposed through the /proc/cpuinfo file.

  // Read 32 lines from /proc/cpuinfo, which should contain the CPU part line
  // in all cases.
  SmallVector<StringRef, 32> Lines;
  ProcCpuinfoContent.split(Lines, "\n");

  // Look for the CPU implementer line.
  StringRef Implementer;
  StringRef Hardware;
  for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
    if (Lines[I].startswith("CPU implementer"))
      Implementer = Lines[I].substr(15).ltrim("\t :");
    if (Lines[I].startswith("Hardware"))
      Hardware = Lines[I].substr(8).ltrim("\t :");
  }

  if (Implementer == "0x41") { // ARM Ltd.
    // MSM8992/8994 may give cpu part for the core that the kernel is running on,
    // which is undeterministic and wrong. Always return cortex-a53 for these SoC.
    if (Hardware.endswith("MSM8994") || Hardware.endswith("MSM8996"))
      return "cortex-a53";


    // Look for the CPU part line.
    for (unsigned I = 0, E = Lines.size(); I != E; ++I)
      if (Lines[I].startswith("CPU part"))
        // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
        // values correspond to the "Part number" in the CP15/c0 register. The
        // contents are specified in the various processor manuals.
        return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
            .Case("0x926", "arm926ej-s")
            .Case("0xb02", "mpcore")
            .Case("0xb36", "arm1136j-s")
            .Case("0xb56", "arm1156t2-s")
            .Case("0xb76", "arm1176jz-s")
            .Case("0xc08", "cortex-a8")
            .Case("0xc09", "cortex-a9")
            .Case("0xc0f", "cortex-a15")
            .Case("0xc20", "cortex-m0")
            .Case("0xc23", "cortex-m3")
            .Case("0xc24", "cortex-m4")
            .Case("0xd04", "cortex-a35")
            .Case("0xd03", "cortex-a53")
            .Case("0xd07", "cortex-a57")
            .Case("0xd08", "cortex-a72")
            .Case("0xd09", "cortex-a73")
            .Default("generic");
  }

  if (Implementer == "0x42" || Implementer == "0x43") { // Broadcom | Cavium.
    for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
      if (Lines[I].startswith("CPU part")) {
        return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
          .Case("0x516", "thunderx2t99")
          .Case("0x0516", "thunderx2t99")
          .Case("0xaf", "thunderx2t99")
          .Case("0x0af", "thunderx2t99")
          .Case("0xa1", "thunderxt88")
          .Case("0x0a1", "thunderxt88")
          .Default("generic");
      }
    }
  }

  if (Implementer == "0x48") // HiSilicon Technologies, Inc.
    // Look for the CPU part line.
    for (unsigned I = 0, E = Lines.size(); I != E; ++I)
      if (Lines[I].startswith("CPU part"))
        // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
        // values correspond to the "Part number" in the CP15/c0 register. The
        // contents are specified in the various processor manuals.
        return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
          .Case("0xd01", "tsv110")
          .Default("generic");

  if (Implementer == "0x51") // Qualcomm Technologies, Inc.
    // Look for the CPU part line.
    for (unsigned I = 0, E = Lines.size(); I != E; ++I)
      if (Lines[I].startswith("CPU part"))
        // The CPU part is a 3 digit hexadecimal number with a 0x prefix. The
        // values correspond to the "Part number" in the CP15/c0 register. The
        // contents are specified in the various processor manuals.
        return StringSwitch<const char *>(Lines[I].substr(8).ltrim("\t :"))
            .Case("0x06f", "krait") // APQ8064
            .Case("0x201", "kryo")
            .Case("0x205", "kryo")
            .Case("0x211", "kryo")
            .Case("0x800", "cortex-a73")
            .Case("0x801", "cortex-a73")
            .Case("0xc00", "falkor")
            .Case("0xc01", "saphira")
            .Default("generic");

  if (Implementer == "0x53") { // Samsung Electronics Co., Ltd.
    // The Exynos chips have a convoluted ID scheme that doesn't seem to follow
    // any predictive pattern across variants and parts.
    unsigned Variant = 0, Part = 0;

    // Look for the CPU variant line, whose value is a 1 digit hexadecimal
    // number, corresponding to the Variant bits in the CP15/C0 register.
    for (auto I : Lines)
      if (I.consume_front("CPU variant"))
        I.ltrim("\t :").getAsInteger(0, Variant);

    // Look for the CPU part line, whose value is a 3 digit hexadecimal
    // number, corresponding to the PartNum bits in the CP15/C0 register.
    for (auto I : Lines)
      if (I.consume_front("CPU part"))
        I.ltrim("\t :").getAsInteger(0, Part);

    unsigned Exynos = (Variant << 12) | Part;
    switch (Exynos) {
    default:
      // Default by falling through to Exynos M1.
      LLVM_FALLTHROUGH;

    case 0x1001:
      return "exynos-m1";

    case 0x4001:
      return "exynos-m2";
    }
  }

  return "generic";
}

StringRef sys::detail::getHostCPUNameForS390x(StringRef ProcCpuinfoContent) {
  // STIDP is a privileged operation, so use /proc/cpuinfo instead.

  // The "processor 0:" line comes after a fair amount of other information,
  // including a cache breakdown, but this should be plenty.
  SmallVector<StringRef, 32> Lines;
  ProcCpuinfoContent.split(Lines, "\n");

  // Look for the CPU features.
  SmallVector<StringRef, 32> CPUFeatures;
  for (unsigned I = 0, E = Lines.size(); I != E; ++I)
    if (Lines[I].startswith("features")) {
      size_t Pos = Lines[I].find(":");
      if (Pos != StringRef::npos) {
        Lines[I].drop_front(Pos + 1).split(CPUFeatures, ' ');
        break;
      }
    }

  // We need to check for the presence of vector support independently of
  // the machine type, since we may only use the vector register set when
  // supported by the kernel (and hypervisor).
  bool HaveVectorSupport = false;
  for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
    if (CPUFeatures[I] == "vx")
      HaveVectorSupport = true;
  }

  // Now check the processor machine type.
  for (unsigned I = 0, E = Lines.size(); I != E; ++I) {
    if (Lines[I].startswith("processor ")) {
      size_t Pos = Lines[I].find("machine = ");
      if (Pos != StringRef::npos) {
        Pos += sizeof("machine = ") - 1;
        unsigned int Id;
        if (!Lines[I].drop_front(Pos).getAsInteger(10, Id)) {
          if (Id >= 3906 && HaveVectorSupport)
            return "z14";
          if (Id >= 2964 && HaveVectorSupport)
            return "z13";
          if (Id >= 2827)
            return "zEC12";
          if (Id >= 2817)
            return "z196";
        }
      }
      break;
    }
  }

  return "generic";
}

StringRef sys::detail::getHostCPUNameForBPF() {
#if !defined(__linux__) || !defined(__x86_64__)
  return "generic";
#else
  uint8_t insns[40] __attribute__ ((aligned (8))) =
      /* BPF_MOV64_IMM(BPF_REG_0, 0) */
    { 0xb7, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0,
      /* BPF_MOV64_IMM(BPF_REG_2, 1) */
      0xb7, 0x2, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
      /* BPF_JMP_REG(BPF_JLT, BPF_REG_0, BPF_REG_2, 1) */
      0xad, 0x20, 0x1, 0x0, 0x0, 0x0, 0x0, 0x0,
      /* BPF_MOV64_IMM(BPF_REG_0, 1) */
      0xb7, 0x0, 0x0, 0x0, 0x1, 0x0, 0x0, 0x0,
      /* BPF_EXIT_INSN() */
      0x95, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0, 0x0 };

  struct bpf_prog_load_attr {
    uint32_t prog_type;
    uint32_t insn_cnt;
    uint64_t insns;
    uint64_t license;
    uint32_t log_level;
    uint32_t log_size;
    uint64_t log_buf;
    uint32_t kern_version;
    uint32_t prog_flags;
  } attr = {};
  attr.prog_type = 1; /* BPF_PROG_TYPE_SOCKET_FILTER */
  attr.insn_cnt = 5;
  attr.insns = (uint64_t)insns;
  attr.license = (uint64_t)"DUMMY";

  int fd = syscall(321 /* __NR_bpf */, 5 /* BPF_PROG_LOAD */, &attr, sizeof(attr));
  if (fd >= 0) {
    close(fd);
    return "v2";
  }
  return "v1";
#endif
}

#if defined(__i386__) || defined(_M_IX86) || \
    defined(__x86_64__) || defined(_M_X64)

enum VendorSignatures {
  SIG_INTEL = 0x756e6547 /* Genu */,
  SIG_AMD = 0x68747541 /* Auth */
};

// The check below for i386 was copied from clang's cpuid.h (__get_cpuid_max).
// Check motivated by bug reports for OpenSSL crashing on CPUs without CPUID
// support. Consequently, for i386, the presence of CPUID is checked first
// via the corresponding eflags bit.
// Removal of cpuid.h header motivated by PR30384
// Header cpuid.h and method __get_cpuid_max are not used in llvm, clang, openmp
// or test-suite, but are used in external projects e.g. libstdcxx
static bool isCpuIdSupported() {
#if defined(__GNUC__) || defined(__clang__)
#if defined(__i386__)
  int __cpuid_supported;
  __asm__("  pushfl\n"
          "  popl   %%eax\n"
          "  movl   %%eax,%%ecx\n"
          "  xorl   $0x00200000,%%eax\n"
          "  pushl  %%eax\n"
          "  popfl\n"
          "  pushfl\n"
          "  popl   %%eax\n"
          "  movl   $0,%0\n"
          "  cmpl   %%eax,%%ecx\n"
          "  je     1f\n"
          "  movl   $1,%0\n"
          "1:"
          : "=r"(__cpuid_supported)
          :
          : "eax", "ecx");
  if (!__cpuid_supported)
    return false;
#endif
  return true;
#endif
  return true;
}

/// getX86CpuIDAndInfo - Execute the specified cpuid and return the 4 values in
/// the specified arguments.  If we can't run cpuid on the host, return true.
static bool getX86CpuIDAndInfo(unsigned value, unsigned *rEAX, unsigned *rEBX,
                               unsigned *rECX, unsigned *rEDX) {
#if defined(__GNUC__) || defined(__clang__)
#if defined(__x86_64__)
  // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
  // FIXME: should we save this for Clang?
  __asm__("movq\t%%rbx, %%rsi\n\t"
          "cpuid\n\t"
          "xchgq\t%%rbx, %%rsi\n\t"
          : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
          : "a"(value));
  return false;
#elif defined(__i386__)
  __asm__("movl\t%%ebx, %%esi\n\t"
          "cpuid\n\t"
          "xchgl\t%%ebx, %%esi\n\t"
          : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
          : "a"(value));
  return false;
#else
  return true;
#endif
#elif defined(_MSC_VER)
  // The MSVC intrinsic is portable across x86 and x64.
  int registers[4];
  __cpuid(registers, value);
  *rEAX = registers[0];
  *rEBX = registers[1];
  *rECX = registers[2];
  *rEDX = registers[3];
  return false;
#else
  return true;
#endif
}

/// getX86CpuIDAndInfoEx - Execute the specified cpuid with subleaf and return
/// the 4 values in the specified arguments.  If we can't run cpuid on the host,
/// return true.
static bool getX86CpuIDAndInfoEx(unsigned value, unsigned subleaf,
                                 unsigned *rEAX, unsigned *rEBX, unsigned *rECX,
                                 unsigned *rEDX) {
#if defined(__GNUC__) || defined(__clang__)
#if defined(__x86_64__)
  // gcc doesn't know cpuid would clobber ebx/rbx. Preserve it manually.
  // FIXME: should we save this for Clang?
  __asm__("movq\t%%rbx, %%rsi\n\t"
          "cpuid\n\t"
          "xchgq\t%%rbx, %%rsi\n\t"
          : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
          : "a"(value), "c"(subleaf));
  return false;
#elif defined(__i386__)
  __asm__("movl\t%%ebx, %%esi\n\t"
          "cpuid\n\t"
          "xchgl\t%%ebx, %%esi\n\t"
          : "=a"(*rEAX), "=S"(*rEBX), "=c"(*rECX), "=d"(*rEDX)
          : "a"(value), "c"(subleaf));
  return false;
#else
  return true;
#endif
#elif defined(_MSC_VER)
  int registers[4];
  __cpuidex(registers, value, subleaf);
  *rEAX = registers[0];
  *rEBX = registers[1];
  *rECX = registers[2];
  *rEDX = registers[3];
  return false;
#else
  return true;
#endif
}

// Read control register 0 (XCR0). Used to detect features such as AVX.
static bool getX86XCR0(unsigned *rEAX, unsigned *rEDX) {
#if defined(__GNUC__) || defined(__clang__)
  // Check xgetbv; this uses a .byte sequence instead of the instruction
  // directly because older assemblers do not include support for xgetbv and
  // there is no easy way to conditionally compile based on the assembler used.
  __asm__(".byte 0x0f, 0x01, 0xd0" : "=a"(*rEAX), "=d"(*rEDX) : "c"(0));
  return false;
#elif defined(_MSC_FULL_VER) && defined(_XCR_XFEATURE_ENABLED_MASK)
  unsigned long long Result = _xgetbv(_XCR_XFEATURE_ENABLED_MASK);
  *rEAX = Result;
  *rEDX = Result >> 32;
  return false;
#else
  return true;
#endif
}

static void detectX86FamilyModel(unsigned EAX, unsigned *Family,
                                 unsigned *Model) {
  *Family = (EAX >> 8) & 0xf; // Bits 8 - 11
  *Model = (EAX >> 4) & 0xf;  // Bits 4 - 7
  if (*Family == 6 || *Family == 0xf) {
    if (*Family == 0xf)
      // Examine extended family ID if family ID is F.
      *Family += (EAX >> 20) & 0xff; // Bits 20 - 27
    // Examine extended model ID if family ID is 6 or F.
    *Model += ((EAX >> 16) & 0xf) << 4; // Bits 16 - 19
  }
}

static void
getIntelProcessorTypeAndSubtype(unsigned Family, unsigned Model,
                                unsigned Brand_id, unsigned Features,
                                unsigned Features2, unsigned Features3,
                                unsigned *Type, unsigned *Subtype) {
  if (Brand_id != 0)
    return;
  switch (Family) {
  case 3:
    *Type = X86::INTEL_i386;
    break;
  case 4:
    *Type = X86::INTEL_i486;
    break;
  case 5:
    if (Features & (1 << X86::FEATURE_MMX)) {
      *Type = X86::INTEL_PENTIUM_MMX;
      break;
    }
    *Type = X86::INTEL_PENTIUM;
    break;
  case 6:
    switch (Model) {
    case 0x01: // Pentium Pro processor
      *Type = X86::INTEL_PENTIUM_PRO;
      break;
    case 0x03: // Intel Pentium II OverDrive processor, Pentium II processor,
               // model 03
    case 0x05: // Pentium II processor, model 05, Pentium II Xeon processor,
               // model 05, and Intel Celeron processor, model 05
    case 0x06: // Celeron processor, model 06
      *Type = X86::INTEL_PENTIUM_II;
      break;
    case 0x07: // Pentium III processor, model 07, and Pentium III Xeon
               // processor, model 07
    case 0x08: // Pentium III processor, model 08, Pentium III Xeon processor,
               // model 08, and Celeron processor, model 08
    case 0x0a: // Pentium III Xeon processor, model 0Ah
    case 0x0b: // Pentium III processor, model 0Bh
      *Type = X86::INTEL_PENTIUM_III;
      break;
    case 0x09: // Intel Pentium M processor, Intel Celeron M processor model 09.
    case 0x0d: // Intel Pentium M processor, Intel Celeron M processor, model
               // 0Dh. All processors are manufactured using the 90 nm process.
    case 0x15: // Intel EP80579 Integrated Processor and Intel EP80579
               // Integrated Processor with Intel QuickAssist Technology
      *Type = X86::INTEL_PENTIUM_M;
      break;
    case 0x0e: // Intel Core Duo processor, Intel Core Solo processor, model
               // 0Eh. All processors are manufactured using the 65 nm process.
      *Type = X86::INTEL_CORE_DUO;
      break;   // yonah
    case 0x0f: // Intel Core 2 Duo processor, Intel Core 2 Duo mobile
               // processor, Intel Core 2 Quad processor, Intel Core 2 Quad
               // mobile processor, Intel Core 2 Extreme processor, Intel
               // Pentium Dual-Core processor, Intel Xeon processor, model
               // 0Fh. All processors are manufactured using the 65 nm process.
    case 0x16: // Intel Celeron processor model 16h. All processors are
               // manufactured using the 65 nm process
      *Type = X86::INTEL_CORE2; // "core2"
      *Subtype = X86::INTEL_CORE2_65;
      break;
    case 0x17: // Intel Core 2 Extreme processor, Intel Xeon processor, model
               // 17h. All processors are manufactured using the 45 nm process.
               //
               // 45nm: Penryn , Wolfdale, Yorkfield (XE)
    case 0x1d: // Intel Xeon processor MP. All processors are manufactured using
               // the 45 nm process.
      *Type = X86::INTEL_CORE2; // "penryn"
      *Subtype = X86::INTEL_CORE2_45;
      break;
    case 0x1a: // Intel Core i7 processor and Intel Xeon processor. All
               // processors are manufactured using the 45 nm process.
    case 0x1e: // Intel(R) Core(TM) i7 CPU         870  @ 2.93GHz.
               // As found in a Summer 2010 model iMac.
    case 0x1f:
    case 0x2e:             // Nehalem EX
      *Type = X86::INTEL_COREI7; // "nehalem"
      *Subtype = X86::INTEL_COREI7_NEHALEM;
      break;
    case 0x25: // Intel Core i7, laptop version.
    case 0x2c: // Intel Core i7 processor and Intel Xeon processor. All
               // processors are manufactured using the 32 nm process.
    case 0x2f: // Westmere EX
      *Type = X86::INTEL_COREI7; // "westmere"
      *Subtype = X86::INTEL_COREI7_WESTMERE;
      break;
    case 0x2a: // Intel Core i7 processor. All processors are manufactured
               // using the 32 nm process.
    case 0x2d:
      *Type = X86::INTEL_COREI7; //"sandybridge"
      *Subtype = X86::INTEL_COREI7_SANDYBRIDGE;
      break;
    case 0x3a:
    case 0x3e:             // Ivy Bridge EP
      *Type = X86::INTEL_COREI7; // "ivybridge"
      *Subtype = X86::INTEL_COREI7_IVYBRIDGE;
      break;

    // Haswell:
    case 0x3c:
    case 0x3f:
    case 0x45:
    case 0x46:
      *Type = X86::INTEL_COREI7; // "haswell"
      *Subtype = X86::INTEL_COREI7_HASWELL;
      break;

    // Broadwell:
    case 0x3d:
    case 0x47:
    case 0x4f:
    case 0x56:
      *Type = X86::INTEL_COREI7; // "broadwell"
      *Subtype = X86::INTEL_COREI7_BROADWELL;
      break;

    // Skylake:
    case 0x4e: // Skylake mobile
    case 0x5e: // Skylake desktop
    case 0x8e: // Kaby Lake mobile
    case 0x9e: // Kaby Lake desktop
      *Type = X86::INTEL_COREI7; // "skylake"
      *Subtype = X86::INTEL_COREI7_SKYLAKE;
      break;

    // Skylake Xeon:
    case 0x55:
      *Type = X86::INTEL_COREI7;
      *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512; // "skylake-avx512"
      break;

    // Cannonlake:
    case 0x66:
      *Type = X86::INTEL_COREI7;
      *Subtype = X86::INTEL_COREI7_CANNONLAKE; // "cannonlake"
      break;

    case 0x1c: // Most 45 nm Intel Atom processors
    case 0x26: // 45 nm Atom Lincroft
    case 0x27: // 32 nm Atom Medfield
    case 0x35: // 32 nm Atom Midview
    case 0x36: // 32 nm Atom Midview
      *Type = X86::INTEL_BONNELL;
      break; // "bonnell"

    // Atom Silvermont codes from the Intel software optimization guide.
    case 0x37:
    case 0x4a:
    case 0x4d:
    case 0x5a:
    case 0x5d:
    case 0x4c: // really airmont
      *Type = X86::INTEL_SILVERMONT;
      break; // "silvermont"
    // Goldmont:
    case 0x5c: // Apollo Lake
    case 0x5f: // Denverton
      *Type = X86::INTEL_GOLDMONT;
      break; // "goldmont"
    case 0x7a:
      *Type = X86::INTEL_GOLDMONT_PLUS;
      break;
    case 0x57:
      *Type = X86::INTEL_KNL; // knl
      break;
    case 0x85:
      *Type = X86::INTEL_KNM; // knm
      break;

    default: // Unknown family 6 CPU, try to guess.
      if (Features & (1 << X86::FEATURE_AVX512VBMI2)) {
        *Type = X86::INTEL_COREI7;
        *Subtype = X86::INTEL_COREI7_ICELAKE_CLIENT;
        break;
      }

      if (Features & (1 << X86::FEATURE_AVX512VBMI)) {
        *Type = X86::INTEL_COREI7;
        *Subtype = X86::INTEL_COREI7_CANNONLAKE;
        break;
      }

      if (Features2 & (1 << (X86::FEATURE_AVX512VNNI - 32))) {
        *Type = X86::INTEL_COREI7;
        *Subtype = X86::INTEL_COREI7_CASCADELAKE;
        break;
      }

      if (Features & (1 << X86::FEATURE_AVX512VL)) {
        *Type = X86::INTEL_COREI7;
        *Subtype = X86::INTEL_COREI7_SKYLAKE_AVX512;
        break;
      }

      if (Features & (1 << X86::FEATURE_AVX512ER)) {
        *Type = X86::INTEL_KNL; // knl
        break;
      }

      if (Features3 & (1 << (X86::FEATURE_CLFLUSHOPT - 64))) {
        if (Features3 & (1 << (X86::FEATURE_SHA - 64))) {
          *Type = X86::INTEL_GOLDMONT;
        } else {
          *Type = X86::INTEL_COREI7;
          *Subtype = X86::INTEL_COREI7_SKYLAKE;
        }
        break;
      }
      if (Features3 & (1 << (X86::FEATURE_ADX - 64))) {
        *Type = X86::INTEL_COREI7;
        *Subtype = X86::INTEL_COREI7_BROADWELL;
        break;
      }
      if (Features & (1 << X86::FEATURE_AVX2)) {
        *Type = X86::INTEL_COREI7;
        *Subtype = X86::INTEL_COREI7_HASWELL;
        break;
      }
      if (Features & (1 << X86::FEATURE_AVX)) {
        *Type = X86::INTEL_COREI7;
        *Subtype = X86::INTEL_COREI7_SANDYBRIDGE;
        break;
      }
      if (Features & (1 << X86::FEATURE_SSE4_2)) {
        if (Features3 & (1 << (X86::FEATURE_MOVBE - 64))) {
          *Type = X86::INTEL_SILVERMONT;
        } else {
          *Type = X86::INTEL_COREI7;
          *Subtype = X86::INTEL_COREI7_NEHALEM;
        }
        break;
      }
      if (Features & (1 << X86::FEATURE_SSE4_1)) {
        *Type = X86::INTEL_CORE2; // "penryn"
        *Subtype = X86::INTEL_CORE2_45;
        break;
      }
      if (Features & (1 << X86::FEATURE_SSSE3)) {
        if (Features3 & (1 << (X86::FEATURE_MOVBE - 64))) {
          *Type = X86::INTEL_BONNELL; // "bonnell"
        } else {
          *Type = X86::INTEL_CORE2; // "core2"
          *Subtype = X86::INTEL_CORE2_65;
        }
        break;
      }
      if (Features3 & (1 << (X86::FEATURE_EM64T - 64))) {
        *Type = X86::INTEL_CORE2; // "core2"
        *Subtype = X86::INTEL_CORE2_65;
        break;
      }
      if (Features & (1 << X86::FEATURE_SSE3)) {
        *Type = X86::INTEL_CORE_DUO;
        break;
      }
      if (Features & (1 << X86::FEATURE_SSE2)) {
        *Type = X86::INTEL_PENTIUM_M;
        break;
      }
      if (Features & (1 << X86::FEATURE_SSE)) {
        *Type = X86::INTEL_PENTIUM_III;
        break;
      }
      if (Features & (1 << X86::FEATURE_MMX)) {
        *Type = X86::INTEL_PENTIUM_II;
        break;
      }
      *Type = X86::INTEL_PENTIUM_PRO;
      break;
    }
    break;
  case 15: {
    if (Features3 & (1 << (X86::FEATURE_EM64T - 64))) {
      *Type = X86::INTEL_NOCONA;
      break;
    }
    if (Features & (1 << X86::FEATURE_SSE3)) {
      *Type = X86::INTEL_PRESCOTT;
      break;
    }
    *Type = X86::INTEL_PENTIUM_IV;
    break;
  }
  default:
    break; /*"generic"*/
  }
}

static void getAMDProcessorTypeAndSubtype(unsigned Family, unsigned Model,
                                          unsigned Features, unsigned *Type,
                                          unsigned *Subtype) {
  // FIXME: this poorly matches the generated SubtargetFeatureKV table.  There
  // appears to be no way to generate the wide variety of AMD-specific targets
  // from the information returned from CPUID.
  switch (Family) {
  case 4:
    *Type = X86::AMD_i486;
    break;
  case 5:
    *Type = X86::AMDPENTIUM;
    switch (Model) {
    case 6:
    case 7:
      *Subtype = X86::AMDPENTIUM_K6;
      break; // "k6"
    case 8:
      *Subtype = X86::AMDPENTIUM_K62;
      break; // "k6-2"
    case 9:
    case 13:
      *Subtype = X86::AMDPENTIUM_K63;
      break; // "k6-3"
    case 10:
      *Subtype = X86::AMDPENTIUM_GEODE;
      break; // "geode"
    }
    break;
  case 6:
    if (Features & (1 << X86::FEATURE_SSE)) {
      *Type = X86::AMD_ATHLON_XP;
      break; // "athlon-xp"
    }
    *Type = X86::AMD_ATHLON;
    break; // "athlon"
  case 15:
    if (Features & (1 << X86::FEATURE_SSE3)) {
      *Type = X86::AMD_K8SSE3;
      break; // "k8-sse3"
    }
    *Type = X86::AMD_K8;
    break; // "k8"
  case 16:
    *Type = X86::AMDFAM10H; // "amdfam10"
    switch (Model) {
    case 2:
      *Subtype = X86::AMDFAM10H_BARCELONA;
      break;
    case 4:
      *Subtype = X86::AMDFAM10H_SHANGHAI;
      break;
    case 8:
      *Subtype = X86::AMDFAM10H_ISTANBUL;
      break;
    }
    break;
  case 20:
    *Type = X86::AMD_BTVER1;
    break; // "btver1";
  case 21:
    *Type = X86::AMDFAM15H;
    if (Model >= 0x60 && Model <= 0x7f) {
      *Subtype = X86::AMDFAM15H_BDVER4;
      break; // "bdver4"; 60h-7Fh: Excavator
    }
    if (Model >= 0x30 && Model <= 0x3f) {
      *Subtype = X86::AMDFAM15H_BDVER3;
      break; // "bdver3"; 30h-3Fh: Steamroller
    }
    if ((Model >= 0x10 && Model <= 0x1f) || Model == 0x02) {
      *Subtype = X86::AMDFAM15H_BDVER2;
      break; // "bdver2"; 02h, 10h-1Fh: Piledriver
    }
    if (Model <= 0x0f) {
      *Subtype = X86::AMDFAM15H_BDVER1;
      break; // "bdver1"; 00h-0Fh: Bulldozer
    }
    break;
  case 22:
    *Type = X86::AMD_BTVER2;
    break; // "btver2"
  case 23:
    *Type = X86::AMDFAM17H;
    *Subtype = X86::AMDFAM17H_ZNVER1;
    break;
  default:
    break; // "generic"
  }
}

static void getAvailableFeatures(unsigned ECX, unsigned EDX, unsigned MaxLeaf,
                                 unsigned *FeaturesOut, unsigned *Features2Out,
                                 unsigned *Features3Out) {
  unsigned Features = 0;
  unsigned Features2 = 0;
  unsigned Features3 = 0;
  unsigned EAX, EBX;

  auto setFeature = [&](unsigned F) {
    if (F < 32)
      Features |= 1U << (F & 0x1f);
    else if (F < 64)
      Features2 |= 1U << ((F - 32) & 0x1f);
    else if (F < 96)
      Features3 |= 1U << ((F - 64) & 0x1f);
    else
      llvm_unreachable("Unexpected FeatureBit");
  };

  if ((EDX >> 15) & 1)
    setFeature(X86::FEATURE_CMOV);
  if ((EDX >> 23) & 1)
    setFeature(X86::FEATURE_MMX);
  if ((EDX >> 25) & 1)
    setFeature(X86::FEATURE_SSE);
  if ((EDX >> 26) & 1)
    setFeature(X86::FEATURE_SSE2);

  if ((ECX >> 0) & 1)
    setFeature(X86::FEATURE_SSE3);
  if ((ECX >> 1) & 1)
    setFeature(X86::FEATURE_PCLMUL);
  if ((ECX >> 9) & 1)
    setFeature(X86::FEATURE_SSSE3);
  if ((ECX >> 12) & 1)
    setFeature(X86::FEATURE_FMA);
  if ((ECX >> 19) & 1)
    setFeature(X86::FEATURE_SSE4_1);
  if ((ECX >> 20) & 1)
    setFeature(X86::FEATURE_SSE4_2);
  if ((ECX >> 23) & 1)
    setFeature(X86::FEATURE_POPCNT);
  if ((ECX >> 25) & 1)
    setFeature(X86::FEATURE_AES);

  if ((ECX >> 22) & 1)
    setFeature(X86::FEATURE_MOVBE);

  // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
  // indicates that the AVX registers will be saved and restored on context
  // switch, then we have full AVX support.
  const unsigned AVXBits = (1 << 27) | (1 << 28);
  bool HasAVX = ((ECX & AVXBits) == AVXBits) && !getX86XCR0(&EAX, &EDX) &&
                ((EAX & 0x6) == 0x6);
  bool HasAVX512Save = HasAVX && ((EAX & 0xe0) == 0xe0);

  if (HasAVX)
    setFeature(X86::FEATURE_AVX);

  bool HasLeaf7 =
      MaxLeaf >= 0x7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);

  if (HasLeaf7 && ((EBX >> 3) & 1))
    setFeature(X86::FEATURE_BMI);
  if (HasLeaf7 && ((EBX >> 5) & 1) && HasAVX)
    setFeature(X86::FEATURE_AVX2);
  if (HasLeaf7 && ((EBX >> 9) & 1))
    setFeature(X86::FEATURE_BMI2);
  if (HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512F);
  if (HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512DQ);
  if (HasLeaf7 && ((EBX >> 19) & 1))
    setFeature(X86::FEATURE_ADX);
  if (HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512IFMA);
  if (HasLeaf7 && ((EBX >> 23) & 1))
    setFeature(X86::FEATURE_CLFLUSHOPT);
  if (HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512PF);
  if (HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512ER);
  if (HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512CD);
  if (HasLeaf7 && ((EBX >> 29) & 1))
    setFeature(X86::FEATURE_SHA);
  if (HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512BW);
  if (HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512VL);

  if (HasLeaf7 && ((ECX >> 1) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512VBMI);
  if (HasLeaf7 && ((ECX >> 6) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512VBMI2);
  if (HasLeaf7 && ((ECX >> 8) & 1))
    setFeature(X86::FEATURE_GFNI);
  if (HasLeaf7 && ((ECX >> 10) & 1) && HasAVX)
    setFeature(X86::FEATURE_VPCLMULQDQ);
  if (HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512VNNI);
  if (HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512BITALG);
  if (HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX512VPOPCNTDQ);

  if (HasLeaf7 && ((EDX >> 2) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX5124VNNIW);
  if (HasLeaf7 && ((EDX >> 3) & 1) && HasAVX512Save)
    setFeature(X86::FEATURE_AVX5124FMAPS);

  unsigned MaxExtLevel;
  getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);

  bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
                     !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
  if (HasExtLeaf1 && ((ECX >> 6) & 1))
    setFeature(X86::FEATURE_SSE4_A);
  if (HasExtLeaf1 && ((ECX >> 11) & 1))
    setFeature(X86::FEATURE_XOP);
  if (HasExtLeaf1 && ((ECX >> 16) & 1))
    setFeature(X86::FEATURE_FMA4);

  if (HasExtLeaf1 && ((EDX >> 29) & 1))
    setFeature(X86::FEATURE_EM64T);

  *FeaturesOut  = Features;
  *Features2Out = Features2;
  *Features3Out = Features3;
}

StringRef sys::getHostCPUName() {
  unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
  unsigned MaxLeaf, Vendor;

#if defined(__GNUC__) || defined(__clang__)
  //FIXME: include cpuid.h from clang or copy __get_cpuid_max here
  // and simplify it to not invoke __cpuid (like cpu_model.c in
  // compiler-rt/lib/builtins/cpu_model.c?
  // Opting for the second option.
  if(!isCpuIdSupported())
    return "generic";
#endif
  if (getX86CpuIDAndInfo(0, &MaxLeaf, &Vendor, &ECX, &EDX) || MaxLeaf < 1)
    return "generic";
  getX86CpuIDAndInfo(0x1, &EAX, &EBX, &ECX, &EDX);

  unsigned Brand_id = EBX & 0xff;
  unsigned Family = 0, Model = 0;
  unsigned Features = 0, Features2 = 0, Features3 = 0;
  detectX86FamilyModel(EAX, &Family, &Model);
  getAvailableFeatures(ECX, EDX, MaxLeaf, &Features, &Features2, &Features3);

  unsigned Type = 0;
  unsigned Subtype = 0;

  if (Vendor == SIG_INTEL) {
    getIntelProcessorTypeAndSubtype(Family, Model, Brand_id, Features,
                                    Features2, Features3, &Type, &Subtype);
  } else if (Vendor == SIG_AMD) {
    getAMDProcessorTypeAndSubtype(Family, Model, Features, &Type, &Subtype);
  }

  // Check subtypes first since those are more specific.
#define X86_CPU_SUBTYPE(ARCHNAME, ENUM) \
  if (Subtype == X86::ENUM) \
    return ARCHNAME;
#include "llvm/Support/X86TargetParser.def"

  // Now check types.
#define X86_CPU_TYPE(ARCHNAME, ENUM) \
  if (Type == X86::ENUM) \
    return ARCHNAME;
#include "llvm/Support/X86TargetParser.def"

  return "generic";
}

#elif defined(__APPLE__) && (defined(__ppc__) || defined(__powerpc__))
StringRef sys::getHostCPUName() {
  host_basic_info_data_t hostInfo;
  mach_msg_type_number_t infoCount;

  infoCount = HOST_BASIC_INFO_COUNT;
  mach_port_t hostPort = mach_host_self();
  host_info(hostPort, HOST_BASIC_INFO, (host_info_t)&hostInfo,
            &infoCount);
  mach_port_deallocate(mach_task_self(), hostPort);

  if (hostInfo.cpu_type != CPU_TYPE_POWERPC)
    return "generic";

  switch (hostInfo.cpu_subtype) {
  case CPU_SUBTYPE_POWERPC_601:
    return "601";
  case CPU_SUBTYPE_POWERPC_602:
    return "602";
  case CPU_SUBTYPE_POWERPC_603:
    return "603";
  case CPU_SUBTYPE_POWERPC_603e:
    return "603e";
  case CPU_SUBTYPE_POWERPC_603ev:
    return "603ev";
  case CPU_SUBTYPE_POWERPC_604:
    return "604";
  case CPU_SUBTYPE_POWERPC_604e:
    return "604e";
  case CPU_SUBTYPE_POWERPC_620:
    return "620";
  case CPU_SUBTYPE_POWERPC_750:
    return "750";
  case CPU_SUBTYPE_POWERPC_7400:
    return "7400";
  case CPU_SUBTYPE_POWERPC_7450:
    return "7450";
  case CPU_SUBTYPE_POWERPC_970:
    return "970";
  default:;
  }

  return "generic";
}
#elif defined(__linux__) && (defined(__ppc__) || defined(__powerpc__))
StringRef sys::getHostCPUName() {
  std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
  StringRef Content = P ? P->getBuffer() : "";
  return detail::getHostCPUNameForPowerPC(Content);
}
#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
StringRef sys::getHostCPUName() {
  std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
  StringRef Content = P ? P->getBuffer() : "";
  return detail::getHostCPUNameForARM(Content);
}
#elif defined(__linux__) && defined(__s390x__)
StringRef sys::getHostCPUName() {
  std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
  StringRef Content = P ? P->getBuffer() : "";
  return detail::getHostCPUNameForS390x(Content);
}
#else
StringRef sys::getHostCPUName() { return "generic"; }
#endif

#if defined(__linux__) && defined(__x86_64__)
// On Linux, the number of physical cores can be computed from /proc/cpuinfo,
// using the number of unique physical/core id pairs. The following
// implementation reads the /proc/cpuinfo format on an x86_64 system.
static int computeHostNumPhysicalCores() {
  // Read /proc/cpuinfo as a stream (until EOF reached). It cannot be
  // mmapped because it appears to have 0 size.
  llvm::ErrorOr<std::unique_ptr<llvm::MemoryBuffer>> Text =
      llvm::MemoryBuffer::getFileAsStream("/proc/cpuinfo");
  if (std::error_code EC = Text.getError()) {
    llvm::errs() << "Can't read "
                 << "/proc/cpuinfo: " << EC.message() << "\n";
    return -1;
  }
  SmallVector<StringRef, 8> strs;
  (*Text)->getBuffer().split(strs, "\n", /*MaxSplit=*/-1,
                             /*KeepEmpty=*/false);
  int CurPhysicalId = -1;
  int CurCoreId = -1;
  SmallSet<std::pair<int, int>, 32> UniqueItems;
  for (auto &Line : strs) {
    Line = Line.trim();
    if (!Line.startswith("physical id") && !Line.startswith("core id"))
      continue;
    std::pair<StringRef, StringRef> Data = Line.split(':');
    auto Name = Data.first.trim();
    auto Val = Data.second.trim();
    if (Name == "physical id") {
      assert(CurPhysicalId == -1 &&
             "Expected a core id before seeing another physical id");
      Val.getAsInteger(10, CurPhysicalId);
    }
    if (Name == "core id") {
      assert(CurCoreId == -1 &&
             "Expected a physical id before seeing another core id");
      Val.getAsInteger(10, CurCoreId);
    }
    if (CurPhysicalId != -1 && CurCoreId != -1) {
      UniqueItems.insert(std::make_pair(CurPhysicalId, CurCoreId));
      CurPhysicalId = -1;
      CurCoreId = -1;
    }
  }
  return UniqueItems.size();
}
#elif defined(__APPLE__) && defined(__x86_64__)
#include <sys/param.h>
#include <sys/sysctl.h>

// Gets the number of *physical cores* on the machine.
static int computeHostNumPhysicalCores() {
  uint32_t count;
  size_t len = sizeof(count);
  sysctlbyname("hw.physicalcpu", &count, &len, NULL, 0);
  if (count < 1) {
    int nm[2];
    nm[0] = CTL_HW;
    nm[1] = HW_AVAILCPU;
    sysctl(nm, 2, &count, &len, NULL, 0);
    if (count < 1)
      return -1;
  }
  return count;
}
#else
// On other systems, return -1 to indicate unknown.
static int computeHostNumPhysicalCores() { return -1; }
#endif

int sys::getHostNumPhysicalCores() {
  static int NumCores = computeHostNumPhysicalCores();
  return NumCores;
}

#if defined(__i386__) || defined(_M_IX86) || \
    defined(__x86_64__) || defined(_M_X64)
bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
  unsigned EAX = 0, EBX = 0, ECX = 0, EDX = 0;
  unsigned MaxLevel;
  union {
    unsigned u[3];
    char c[12];
  } text;

  if (getX86CpuIDAndInfo(0, &MaxLevel, text.u + 0, text.u + 2, text.u + 1) ||
      MaxLevel < 1)
    return false;

  getX86CpuIDAndInfo(1, &EAX, &EBX, &ECX, &EDX);

  Features["cmov"]   = (EDX >> 15) & 1;
  Features["mmx"]    = (EDX >> 23) & 1;
  Features["sse"]    = (EDX >> 25) & 1;
  Features["sse2"]   = (EDX >> 26) & 1;

  Features["sse3"]   = (ECX >>  0) & 1;
  Features["pclmul"] = (ECX >>  1) & 1;
  Features["ssse3"]  = (ECX >>  9) & 1;
  Features["cx16"]   = (ECX >> 13) & 1;
  Features["sse4.1"] = (ECX >> 19) & 1;
  Features["sse4.2"] = (ECX >> 20) & 1;
  Features["movbe"]  = (ECX >> 22) & 1;
  Features["popcnt"] = (ECX >> 23) & 1;
  Features["aes"]    = (ECX >> 25) & 1;
  Features["rdrnd"]  = (ECX >> 30) & 1;

  // If CPUID indicates support for XSAVE, XRESTORE and AVX, and XGETBV
  // indicates that the AVX registers will be saved and restored on context
  // switch, then we have full AVX support.
  bool HasAVXSave = ((ECX >> 27) & 1) && ((ECX >> 28) & 1) &&
                    !getX86XCR0(&EAX, &EDX) && ((EAX & 0x6) == 0x6);
  // AVX512 requires additional context to be saved by the OS.
  bool HasAVX512Save = HasAVXSave && ((EAX & 0xe0) == 0xe0);

  Features["avx"]   = HasAVXSave;
  Features["fma"]   = ((ECX >> 12) & 1) && HasAVXSave;
  // Only enable XSAVE if OS has enabled support for saving YMM state.
  Features["xsave"] = ((ECX >> 26) & 1) && HasAVXSave;
  Features["f16c"]  = ((ECX >> 29) & 1) && HasAVXSave;

  unsigned MaxExtLevel;
  getX86CpuIDAndInfo(0x80000000, &MaxExtLevel, &EBX, &ECX, &EDX);

  bool HasExtLeaf1 = MaxExtLevel >= 0x80000001 &&
                     !getX86CpuIDAndInfo(0x80000001, &EAX, &EBX, &ECX, &EDX);
  Features["sahf"]   = HasExtLeaf1 && ((ECX >>  0) & 1);
  Features["lzcnt"]  = HasExtLeaf1 && ((ECX >>  5) & 1);
  Features["sse4a"]  = HasExtLeaf1 && ((ECX >>  6) & 1);
  Features["prfchw"] = HasExtLeaf1 && ((ECX >>  8) & 1);
  Features["xop"]    = HasExtLeaf1 && ((ECX >> 11) & 1) && HasAVXSave;
  Features["lwp"]    = HasExtLeaf1 && ((ECX >> 15) & 1);
  Features["fma4"]   = HasExtLeaf1 && ((ECX >> 16) & 1) && HasAVXSave;
  Features["tbm"]    = HasExtLeaf1 && ((ECX >> 21) & 1);
  Features["mwaitx"] = HasExtLeaf1 && ((ECX >> 29) & 1);

  Features["64bit"]  = HasExtLeaf1 && ((EDX >> 29) & 1);

  // Miscellaneous memory related features, detected by
  // using the 0x80000008 leaf of the CPUID instruction
  bool HasExtLeaf8 = MaxExtLevel >= 0x80000008 &&
                     !getX86CpuIDAndInfo(0x80000008, &EAX, &EBX, &ECX, &EDX);
  Features["clzero"]   = HasExtLeaf8 && ((EBX >> 0) & 1);
  Features["wbnoinvd"] = HasExtLeaf8 && ((EBX >> 9) & 1);

  bool HasLeaf7 =
      MaxLevel >= 7 && !getX86CpuIDAndInfoEx(0x7, 0x0, &EAX, &EBX, &ECX, &EDX);

  Features["fsgsbase"]   = HasLeaf7 && ((EBX >>  0) & 1);
  Features["sgx"]        = HasLeaf7 && ((EBX >>  2) & 1);
  Features["bmi"]        = HasLeaf7 && ((EBX >>  3) & 1);
  // AVX2 is only supported if we have the OS save support from AVX.
  Features["avx2"]       = HasLeaf7 && ((EBX >>  5) & 1) && HasAVXSave;
  Features["bmi2"]       = HasLeaf7 && ((EBX >>  8) & 1);
  Features["invpcid"]    = HasLeaf7 && ((EBX >> 10) & 1);
  Features["rtm"]        = HasLeaf7 && ((EBX >> 11) & 1);
  // AVX512 is only supported if the OS supports the context save for it.
  Features["avx512f"]    = HasLeaf7 && ((EBX >> 16) & 1) && HasAVX512Save;
  Features["avx512dq"]   = HasLeaf7 && ((EBX >> 17) & 1) && HasAVX512Save;
  Features["rdseed"]     = HasLeaf7 && ((EBX >> 18) & 1);
  Features["adx"]        = HasLeaf7 && ((EBX >> 19) & 1);
  Features["avx512ifma"] = HasLeaf7 && ((EBX >> 21) & 1) && HasAVX512Save;
  Features["clflushopt"] = HasLeaf7 && ((EBX >> 23) & 1);
  Features["clwb"]       = HasLeaf7 && ((EBX >> 24) & 1);
  Features["avx512pf"]   = HasLeaf7 && ((EBX >> 26) & 1) && HasAVX512Save;
  Features["avx512er"]   = HasLeaf7 && ((EBX >> 27) & 1) && HasAVX512Save;
  Features["avx512cd"]   = HasLeaf7 && ((EBX >> 28) & 1) && HasAVX512Save;
  Features["sha"]        = HasLeaf7 && ((EBX >> 29) & 1);
  Features["avx512bw"]   = HasLeaf7 && ((EBX >> 30) & 1) && HasAVX512Save;
  Features["avx512vl"]   = HasLeaf7 && ((EBX >> 31) & 1) && HasAVX512Save;

  Features["prefetchwt1"]     = HasLeaf7 && ((ECX >>  0) & 1);
  Features["avx512vbmi"]      = HasLeaf7 && ((ECX >>  1) & 1) && HasAVX512Save;
  Features["pku"]             = HasLeaf7 && ((ECX >>  4) & 1);
  Features["waitpkg"]         = HasLeaf7 && ((ECX >>  5) & 1);
  Features["avx512vbmi2"]     = HasLeaf7 && ((ECX >>  6) & 1) && HasAVX512Save;
  Features["shstk"]           = HasLeaf7 && ((ECX >>  7) & 1);
  Features["gfni"]            = HasLeaf7 && ((ECX >>  8) & 1);
  Features["vaes"]            = HasLeaf7 && ((ECX >>  9) & 1) && HasAVXSave;
  Features["vpclmulqdq"]      = HasLeaf7 && ((ECX >> 10) & 1) && HasAVXSave;
  Features["avx512vnni"]      = HasLeaf7 && ((ECX >> 11) & 1) && HasAVX512Save;
  Features["avx512bitalg"]    = HasLeaf7 && ((ECX >> 12) & 1) && HasAVX512Save;
  Features["avx512vpopcntdq"] = HasLeaf7 && ((ECX >> 14) & 1) && HasAVX512Save;
  Features["rdpid"]           = HasLeaf7 && ((ECX >> 22) & 1);
  Features["cldemote"]        = HasLeaf7 && ((ECX >> 25) & 1);
  Features["movdiri"]         = HasLeaf7 && ((ECX >> 27) & 1);
  Features["movdir64b"]       = HasLeaf7 && ((ECX >> 28) & 1);

  // There are two CPUID leafs which information associated with the pconfig
  // instruction:
  // EAX=0x7, ECX=0x0 indicates the availability of the instruction (via the 18th
  // bit of EDX), while the EAX=0x1b leaf returns information on the
  // availability of specific pconfig leafs.
  // The target feature here only refers to the the first of these two.
  // Users might need to check for the availability of specific pconfig
  // leaves using cpuid, since that information is ignored while
  // detecting features using the "-march=native" flag.
  // For more info, see X86 ISA docs.
  Features["pconfig"] = HasLeaf7 && ((EDX >> 18) & 1);

  bool HasLeafD = MaxLevel >= 0xd &&
                  !getX86CpuIDAndInfoEx(0xd, 0x1, &EAX, &EBX, &ECX, &EDX);

  // Only enable XSAVE if OS has enabled support for saving YMM state.
  Features["xsaveopt"] = HasLeafD && ((EAX >> 0) & 1) && HasAVXSave;
  Features["xsavec"]   = HasLeafD && ((EAX >> 1) & 1) && HasAVXSave;
  Features["xsaves"]   = HasLeafD && ((EAX >> 3) & 1) && HasAVXSave;

  bool HasLeaf14 = MaxLevel >= 0x14 &&
                  !getX86CpuIDAndInfoEx(0x14, 0x0, &EAX, &EBX, &ECX, &EDX);

  Features["ptwrite"] = HasLeaf14 && ((EBX >> 4) & 1);

  return true;
}
#elif defined(__linux__) && (defined(__arm__) || defined(__aarch64__))
bool sys::getHostCPUFeatures(StringMap<bool> &Features) {
  std::unique_ptr<llvm::MemoryBuffer> P = getProcCpuinfoContent();
  if (!P)
    return false;

  SmallVector<StringRef, 32> Lines;
  P->getBuffer().split(Lines, "\n");

  SmallVector<StringRef, 32> CPUFeatures;

  // Look for the CPU features.
  for (unsigned I = 0, E = Lines.size(); I != E; ++I)
    if (Lines[I].startswith("Features")) {
      Lines[I].split(CPUFeatures, ' ');
      break;
    }

#if defined(__aarch64__)
  // Keep track of which crypto features we have seen
  enum { CAP_AES = 0x1, CAP_PMULL = 0x2, CAP_SHA1 = 0x4, CAP_SHA2 = 0x8 };
  uint32_t crypto = 0;
#endif

  for (unsigned I = 0, E = CPUFeatures.size(); I != E; ++I) {
    StringRef LLVMFeatureStr = StringSwitch<StringRef>(CPUFeatures[I])
#if defined(__aarch64__)
                                   .Case("asimd", "neon")
                                   .Case("fp", "fp-armv8")
                                   .Case("crc32", "crc")
#else
                                   .Case("half", "fp16")
                                   .Case("neon", "neon")
                                   .Case("vfpv3", "vfp3")
                                   .Case("vfpv3d16", "d16")
                                   .Case("vfpv4", "vfp4")
                                   .Case("idiva", "hwdiv-arm")
                                   .Case("idivt", "hwdiv")
#endif
                                   .Default("");

#if defined(__aarch64__)
    // We need to check crypto separately since we need all of the crypto
    // extensions to enable the subtarget feature
    if (CPUFeatures[I] == "aes")
      crypto |= CAP_AES;
    else if (CPUFeatures[I] == "pmull")
      crypto |= CAP_PMULL;
    else if (CPUFeatures[I] == "sha1")
      crypto |= CAP_SHA1;
    else if (CPUFeatures[I] == "sha2")
      crypto |= CAP_SHA2;
#endif

    if (LLVMFeatureStr != "")
      Features[LLVMFeatureStr] = true;
  }

#if defined(__aarch64__)
  // If we have all crypto bits we can add the feature
  if (crypto == (CAP_AES | CAP_PMULL | CAP_SHA1 | CAP_SHA2))
    Features["crypto"] = true;
#endif

  return true;
}
#else
bool sys::getHostCPUFeatures(StringMap<bool> &Features) { return false; }
#endif

std::string sys::getProcessTriple() {
  std::string TargetTripleString = updateTripleOSVersion(LLVM_HOST_TRIPLE);
  Triple PT(Triple::normalize(TargetTripleString));

  if (sizeof(void *) == 8 && PT.isArch32Bit())
    PT = PT.get64BitArchVariant();
  if (sizeof(void *) == 4 && PT.isArch64Bit())
    PT = PT.get32BitArchVariant();

  return PT.str();
}