llvm.org GIT mirror llvm / release_70 unittests / IR / PassManagerTest.cpp
release_70

Tree @release_70 (Download .tar.gz)

PassManagerTest.cpp @release_70raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
//===- llvm/unittest/IR/PassManager.cpp - PassManager tests ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/PassManager.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/SourceMgr.h"
#include "gtest/gtest.h"

using namespace llvm;

namespace {

class TestFunctionAnalysis : public AnalysisInfoMixin<TestFunctionAnalysis> {
public:
  struct Result {
    Result(int Count) : InstructionCount(Count) {}
    int InstructionCount;
  };

  TestFunctionAnalysis(int &Runs) : Runs(Runs) {}

  /// Run the analysis pass over the function and return a result.
  Result run(Function &F, FunctionAnalysisManager &AM) {
    ++Runs;
    int Count = 0;
    for (Function::iterator BBI = F.begin(), BBE = F.end(); BBI != BBE; ++BBI)
      for (BasicBlock::iterator II = BBI->begin(), IE = BBI->end(); II != IE;
           ++II)
        ++Count;
    return Result(Count);
  }

private:
  friend AnalysisInfoMixin<TestFunctionAnalysis>;
  static AnalysisKey Key;

  int &Runs;
};

AnalysisKey TestFunctionAnalysis::Key;

class TestModuleAnalysis : public AnalysisInfoMixin<TestModuleAnalysis> {
public:
  struct Result {
    Result(int Count) : FunctionCount(Count) {}
    int FunctionCount;
  };

  TestModuleAnalysis(int &Runs) : Runs(Runs) {}

  Result run(Module &M, ModuleAnalysisManager &AM) {
    ++Runs;
    int Count = 0;
    for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I)
      ++Count;
    return Result(Count);
  }

private:
  friend AnalysisInfoMixin<TestModuleAnalysis>;
  static AnalysisKey Key;

  int &Runs;
};

AnalysisKey TestModuleAnalysis::Key;

struct TestModulePass : PassInfoMixin<TestModulePass> {
  TestModulePass(int &RunCount) : RunCount(RunCount) {}

  PreservedAnalyses run(Module &M, ModuleAnalysisManager &) {
    ++RunCount;
    return PreservedAnalyses::none();
  }

  int &RunCount;
};

struct TestPreservingModulePass : PassInfoMixin<TestPreservingModulePass> {
  PreservedAnalyses run(Module &M, ModuleAnalysisManager &) {
    return PreservedAnalyses::all();
  }
};

struct TestFunctionPass : PassInfoMixin<TestFunctionPass> {
  TestFunctionPass(int &RunCount, int &AnalyzedInstrCount,
                   int &AnalyzedFunctionCount,
                   bool OnlyUseCachedResults = false)
      : RunCount(RunCount), AnalyzedInstrCount(AnalyzedInstrCount),
        AnalyzedFunctionCount(AnalyzedFunctionCount),
        OnlyUseCachedResults(OnlyUseCachedResults) {}

  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM) {
    ++RunCount;

    const ModuleAnalysisManager &MAM =
        AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
    if (TestModuleAnalysis::Result *TMA =
            MAM.getCachedResult<TestModuleAnalysis>(*F.getParent()))
      AnalyzedFunctionCount += TMA->FunctionCount;

    if (OnlyUseCachedResults) {
      // Hack to force the use of the cached interface.
      if (TestFunctionAnalysis::Result *AR =
              AM.getCachedResult<TestFunctionAnalysis>(F))
        AnalyzedInstrCount += AR->InstructionCount;
    } else {
      // Typical path just runs the analysis as needed.
      TestFunctionAnalysis::Result &AR = AM.getResult<TestFunctionAnalysis>(F);
      AnalyzedInstrCount += AR.InstructionCount;
    }

    return PreservedAnalyses::all();
  }

  int &RunCount;
  int &AnalyzedInstrCount;
  int &AnalyzedFunctionCount;
  bool OnlyUseCachedResults;
};

// A test function pass that invalidates all function analyses for a function
// with a specific name.
struct TestInvalidationFunctionPass
    : PassInfoMixin<TestInvalidationFunctionPass> {
  TestInvalidationFunctionPass(StringRef FunctionName) : Name(FunctionName) {}

  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM) {
    return F.getName() == Name ? PreservedAnalyses::none()
                               : PreservedAnalyses::all();
  }

  StringRef Name;
};

std::unique_ptr<Module> parseIR(LLVMContext &Context, const char *IR) {
  SMDiagnostic Err;
  return parseAssemblyString(IR, Err, Context);
}

class PassManagerTest : public ::testing::Test {
protected:
  LLVMContext Context;
  std::unique_ptr<Module> M;

public:
  PassManagerTest()
      : M(parseIR(Context, "define void @f() {\n"
                           "entry:\n"
                           "  call void @g()\n"
                           "  call void @h()\n"
                           "  ret void\n"
                           "}\n"
                           "define void @g() {\n"
                           "  ret void\n"
                           "}\n"
                           "define void @h() {\n"
                           "  ret void\n"
                           "}\n")) {}
};

TEST(PreservedAnalysesTest, Basic) {
  PreservedAnalyses PA1 = PreservedAnalyses();
  {
    auto PAC = PA1.getChecker<TestFunctionAnalysis>();
    EXPECT_FALSE(PAC.preserved());
    EXPECT_FALSE(PAC.preservedSet<AllAnalysesOn<Function>>());
  }
  {
    auto PAC = PA1.getChecker<TestModuleAnalysis>();
    EXPECT_FALSE(PAC.preserved());
    EXPECT_FALSE(PAC.preservedSet<AllAnalysesOn<Module>>());
  }
  auto PA2 = PreservedAnalyses::none();
  {
    auto PAC = PA2.getChecker<TestFunctionAnalysis>();
    EXPECT_FALSE(PAC.preserved());
    EXPECT_FALSE(PAC.preservedSet<AllAnalysesOn<Function>>());
  }
  auto PA3 = PreservedAnalyses::all();
  {
    auto PAC = PA3.getChecker<TestFunctionAnalysis>();
    EXPECT_TRUE(PAC.preserved());
    EXPECT_TRUE(PAC.preservedSet<AllAnalysesOn<Function>>());
  }
  PreservedAnalyses PA4 = PA1;
  {
    auto PAC = PA4.getChecker<TestFunctionAnalysis>();
    EXPECT_FALSE(PAC.preserved());
    EXPECT_FALSE(PAC.preservedSet<AllAnalysesOn<Function>>());
  }
  PA4 = PA3;
  {
    auto PAC = PA4.getChecker<TestFunctionAnalysis>();
    EXPECT_TRUE(PAC.preserved());
    EXPECT_TRUE(PAC.preservedSet<AllAnalysesOn<Function>>());
  }
  PA4 = std::move(PA2);
  {
    auto PAC = PA4.getChecker<TestFunctionAnalysis>();
    EXPECT_FALSE(PAC.preserved());
    EXPECT_FALSE(PAC.preservedSet<AllAnalysesOn<Function>>());
  }
  auto PA5 = PreservedAnalyses::allInSet<AllAnalysesOn<Function>>();
  {
    auto PAC = PA5.getChecker<TestFunctionAnalysis>();
    EXPECT_FALSE(PAC.preserved());
    EXPECT_TRUE(PAC.preservedSet<AllAnalysesOn<Function>>());
    EXPECT_FALSE(PAC.preservedSet<AllAnalysesOn<Module>>());
  }
}

TEST(PreservedAnalysesTest, Preserve) {
  auto PA = PreservedAnalyses::none();
  PA.preserve<TestFunctionAnalysis>();
  EXPECT_TRUE(PA.getChecker<TestFunctionAnalysis>().preserved());
  EXPECT_FALSE(PA.getChecker<TestModuleAnalysis>().preserved());
  PA.preserve<TestModuleAnalysis>();
  EXPECT_TRUE(PA.getChecker<TestFunctionAnalysis>().preserved());
  EXPECT_TRUE(PA.getChecker<TestModuleAnalysis>().preserved());

  // Redundant calls are fine.
  PA.preserve<TestFunctionAnalysis>();
  EXPECT_TRUE(PA.getChecker<TestFunctionAnalysis>().preserved());
  EXPECT_TRUE(PA.getChecker<TestModuleAnalysis>().preserved());
}

TEST(PreservedAnalysesTest, PreserveSets) {
  auto PA = PreservedAnalyses::none();
  PA.preserveSet<AllAnalysesOn<Function>>();
  EXPECT_TRUE(PA.getChecker<TestFunctionAnalysis>()
                  .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_FALSE(PA.getChecker<TestModuleAnalysis>()
                   .preservedSet<AllAnalysesOn<Module>>());
  PA.preserveSet<AllAnalysesOn<Module>>();
  EXPECT_TRUE(PA.getChecker<TestFunctionAnalysis>()
                  .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_TRUE(PA.getChecker<TestModuleAnalysis>()
                  .preservedSet<AllAnalysesOn<Module>>());

  // Mixing is fine.
  PA.preserve<TestFunctionAnalysis>();
  EXPECT_TRUE(PA.getChecker<TestFunctionAnalysis>()
                  .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_TRUE(PA.getChecker<TestModuleAnalysis>()
                  .preservedSet<AllAnalysesOn<Module>>());

  // Redundant calls are fine.
  PA.preserveSet<AllAnalysesOn<Module>>();
  EXPECT_TRUE(PA.getChecker<TestFunctionAnalysis>()
                  .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_TRUE(PA.getChecker<TestModuleAnalysis>()
                  .preservedSet<AllAnalysesOn<Module>>());
}

TEST(PreservedAnalysisTest, Intersect) {
  // Setup the initial sets.
  auto PA1 = PreservedAnalyses::none();
  PA1.preserve<TestFunctionAnalysis>();
  PA1.preserveSet<AllAnalysesOn<Module>>();
  auto PA2 = PreservedAnalyses::none();
  PA2.preserve<TestFunctionAnalysis>();
  PA2.preserveSet<AllAnalysesOn<Function>>();
  PA2.preserve<TestModuleAnalysis>();
  PA2.preserveSet<AllAnalysesOn<Module>>();
  auto PA3 = PreservedAnalyses::none();
  PA3.preserve<TestModuleAnalysis>();
  PA3.preserveSet<AllAnalysesOn<Function>>();

  // Self intersection is a no-op.
  auto Intersected = PA1;
  Intersected.intersect(PA1);
  EXPECT_TRUE(Intersected.getChecker<TestFunctionAnalysis>().preserved());
  EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>()
                   .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>().preserved());
  EXPECT_TRUE(Intersected.getChecker<TestModuleAnalysis>()
                  .preservedSet<AllAnalysesOn<Module>>());

  // Intersecting with all is a no-op.
  Intersected.intersect(PreservedAnalyses::all());
  EXPECT_TRUE(Intersected.getChecker<TestFunctionAnalysis>().preserved());
  EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>()
                   .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>().preserved());
  EXPECT_TRUE(Intersected.getChecker<TestModuleAnalysis>()
                  .preservedSet<AllAnalysesOn<Module>>());

  // Intersecting a narrow set with a more broad set is the narrow set.
  Intersected.intersect(PA2);
  EXPECT_TRUE(Intersected.getChecker<TestFunctionAnalysis>().preserved());
  EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>()
                   .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>().preserved());
  EXPECT_TRUE(Intersected.getChecker<TestModuleAnalysis>()
                  .preservedSet<AllAnalysesOn<Module>>());

  // Intersecting a broad set with a more narrow set is the narrow set.
  Intersected = PA2;
  Intersected.intersect(PA1);
  EXPECT_TRUE(Intersected.getChecker<TestFunctionAnalysis>().preserved());
  EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>()
                   .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>().preserved());
  EXPECT_TRUE(Intersected.getChecker<TestModuleAnalysis>()
                  .preservedSet<AllAnalysesOn<Module>>());

  // Intersecting with empty clears.
  Intersected.intersect(PreservedAnalyses::none());
  EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>().preserved());
  EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>()
                   .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>().preserved());
  EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>()
                   .preservedSet<AllAnalysesOn<Module>>());

  // Intersecting non-overlapping clears.
  Intersected = PA1;
  Intersected.intersect(PA3);
  EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>().preserved());
  EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>()
                   .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>().preserved());
  EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>()
                   .preservedSet<AllAnalysesOn<Module>>());

  // Intersecting with moves works in when there is storage on both sides.
  Intersected = PA1;
  auto Tmp = PA2;
  Intersected.intersect(std::move(Tmp));
  EXPECT_TRUE(Intersected.getChecker<TestFunctionAnalysis>().preserved());
  EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>()
                   .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>().preserved());
  EXPECT_TRUE(Intersected.getChecker<TestModuleAnalysis>()
                  .preservedSet<AllAnalysesOn<Module>>());

  // Intersecting with move works for incoming all and existing all.
  auto Tmp2 = PreservedAnalyses::all();
  Intersected.intersect(std::move(Tmp2));
  EXPECT_TRUE(Intersected.getChecker<TestFunctionAnalysis>().preserved());
  EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>()
                   .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>().preserved());
  EXPECT_TRUE(Intersected.getChecker<TestModuleAnalysis>()
                  .preservedSet<AllAnalysesOn<Module>>());
  Intersected = PreservedAnalyses::all();
  auto Tmp3 = PA1;
  Intersected.intersect(std::move(Tmp3));
  EXPECT_TRUE(Intersected.getChecker<TestFunctionAnalysis>().preserved());
  EXPECT_FALSE(Intersected.getChecker<TestFunctionAnalysis>()
                   .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_FALSE(Intersected.getChecker<TestModuleAnalysis>().preserved());
  EXPECT_TRUE(Intersected.getChecker<TestModuleAnalysis>()
                  .preservedSet<AllAnalysesOn<Module>>());
}

TEST(PreservedAnalysisTest, Abandon) {
  auto PA = PreservedAnalyses::none();

  // We can abandon things after they are preserved.
  PA.preserve<TestFunctionAnalysis>();
  PA.abandon<TestFunctionAnalysis>();
  EXPECT_FALSE(PA.getChecker<TestFunctionAnalysis>().preserved());

  // Repeated is fine, and abandoning if they were never preserved is fine.
  PA.abandon<TestFunctionAnalysis>();
  EXPECT_FALSE(PA.getChecker<TestFunctionAnalysis>().preserved());
  PA.abandon<TestModuleAnalysis>();
  EXPECT_FALSE(PA.getChecker<TestModuleAnalysis>().preserved());

  // Even if the sets are preserved, the abandoned analyses' checker won't
  // return true for those sets.
  PA.preserveSet<AllAnalysesOn<Function>>();
  PA.preserveSet<AllAnalysesOn<Module>>();
  EXPECT_FALSE(PA.getChecker<TestFunctionAnalysis>()
                   .preservedSet<AllAnalysesOn<Function>>());
  EXPECT_FALSE(PA.getChecker<TestModuleAnalysis>()
                   .preservedSet<AllAnalysesOn<Module>>());

  // But an arbitrary (opaque) analysis will still observe the sets as
  // preserved. This also checks that we can use an explicit ID rather than
  // a type.
  AnalysisKey FakeKey, *FakeID = &FakeKey;
  EXPECT_TRUE(PA.getChecker(FakeID).preservedSet<AllAnalysesOn<Function>>());
  EXPECT_TRUE(PA.getChecker(FakeID).preservedSet<AllAnalysesOn<Module>>());
}

TEST_F(PassManagerTest, Basic) {
  FunctionAnalysisManager FAM(/*DebugLogging*/ true);
  int FunctionAnalysisRuns = 0;
  FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });

  ModuleAnalysisManager MAM(/*DebugLogging*/ true);
  int ModuleAnalysisRuns = 0;
  MAM.registerPass([&] { return TestModuleAnalysis(ModuleAnalysisRuns); });
  MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); });
  FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); });

  ModulePassManager MPM;

  // Count the runs over a Function.
  int FunctionPassRunCount1 = 0;
  int AnalyzedInstrCount1 = 0;
  int AnalyzedFunctionCount1 = 0;
  {
    // Pointless scoped copy to test move assignment.
    ModulePassManager NestedMPM(/*DebugLogging*/ true);
    FunctionPassManager FPM;
    {
      // Pointless scope to test move assignment.
      FunctionPassManager NestedFPM(/*DebugLogging*/ true);
      NestedFPM.addPass(TestFunctionPass(
          FunctionPassRunCount1, AnalyzedInstrCount1, AnalyzedFunctionCount1));
      FPM = std::move(NestedFPM);
    }
    NestedMPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
    MPM = std::move(NestedMPM);
  }

  // Count the runs over a module.
  int ModulePassRunCount = 0;
  MPM.addPass(TestModulePass(ModulePassRunCount));

  // Count the runs over a Function in a separate manager.
  int FunctionPassRunCount2 = 0;
  int AnalyzedInstrCount2 = 0;
  int AnalyzedFunctionCount2 = 0;
  {
    FunctionPassManager FPM(/*DebugLogging*/ true);
    FPM.addPass(TestFunctionPass(FunctionPassRunCount2, AnalyzedInstrCount2,
                                 AnalyzedFunctionCount2));
    MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
  }

  // A third function pass manager but with only preserving intervening passes
  // and with a function pass that invalidates exactly one analysis.
  MPM.addPass(TestPreservingModulePass());
  int FunctionPassRunCount3 = 0;
  int AnalyzedInstrCount3 = 0;
  int AnalyzedFunctionCount3 = 0;
  {
    FunctionPassManager FPM(/*DebugLogging*/ true);
    FPM.addPass(TestFunctionPass(FunctionPassRunCount3, AnalyzedInstrCount3,
                                 AnalyzedFunctionCount3));
    FPM.addPass(TestInvalidationFunctionPass("f"));
    MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
  }

  // A fourth function pass manager but with only preserving intervening
  // passes but triggering the module analysis.
  MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
  int FunctionPassRunCount4 = 0;
  int AnalyzedInstrCount4 = 0;
  int AnalyzedFunctionCount4 = 0;
  {
    FunctionPassManager FPM;
    FPM.addPass(TestFunctionPass(FunctionPassRunCount4, AnalyzedInstrCount4,
                                 AnalyzedFunctionCount4));
    MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
  }

  // A fifth function pass manager which invalidates one function first but
  // uses only cached results.
  int FunctionPassRunCount5 = 0;
  int AnalyzedInstrCount5 = 0;
  int AnalyzedFunctionCount5 = 0;
  {
    FunctionPassManager FPM(/*DebugLogging*/ true);
    FPM.addPass(TestInvalidationFunctionPass("f"));
    FPM.addPass(TestFunctionPass(FunctionPassRunCount5, AnalyzedInstrCount5,
                                 AnalyzedFunctionCount5,
                                 /*OnlyUseCachedResults=*/true));
    MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
  }

  MPM.run(*M, MAM);

  // Validate module pass counters.
  EXPECT_EQ(1, ModulePassRunCount);

  // Validate all function pass counter sets are the same.
  EXPECT_EQ(3, FunctionPassRunCount1);
  EXPECT_EQ(5, AnalyzedInstrCount1);
  EXPECT_EQ(0, AnalyzedFunctionCount1);
  EXPECT_EQ(3, FunctionPassRunCount2);
  EXPECT_EQ(5, AnalyzedInstrCount2);
  EXPECT_EQ(0, AnalyzedFunctionCount2);
  EXPECT_EQ(3, FunctionPassRunCount3);
  EXPECT_EQ(5, AnalyzedInstrCount3);
  EXPECT_EQ(0, AnalyzedFunctionCount3);
  EXPECT_EQ(3, FunctionPassRunCount4);
  EXPECT_EQ(5, AnalyzedInstrCount4);
  EXPECT_EQ(9, AnalyzedFunctionCount4);
  EXPECT_EQ(3, FunctionPassRunCount5);
  EXPECT_EQ(2, AnalyzedInstrCount5); // Only 'g' and 'h' were cached.
  EXPECT_EQ(9, AnalyzedFunctionCount5);

  // Validate the analysis counters:
  //   first run over 3 functions, then module pass invalidates
  //   second run over 3 functions, nothing invalidates
  //   third run over 0 functions, but 1 function invalidated
  //   fourth run over 1 function
  //   fifth run invalidates 1 function first, but runs over 0 functions
  EXPECT_EQ(7, FunctionAnalysisRuns);

  EXPECT_EQ(1, ModuleAnalysisRuns);
}

// A customized pass manager that passes extra arguments through the
// infrastructure.
typedef AnalysisManager<Function, int> CustomizedAnalysisManager;
typedef PassManager<Function, CustomizedAnalysisManager, int, int &>
    CustomizedPassManager;

class CustomizedAnalysis : public AnalysisInfoMixin<CustomizedAnalysis> {
public:
  struct Result {
    Result(int I) : I(I) {}
    int I;
  };

  Result run(Function &F, CustomizedAnalysisManager &AM, int I) {
    return Result(I);
  }

private:
  friend AnalysisInfoMixin<CustomizedAnalysis>;
  static AnalysisKey Key;
};

AnalysisKey CustomizedAnalysis::Key;

struct CustomizedPass : PassInfoMixin<CustomizedPass> {
  std::function<void(CustomizedAnalysis::Result &, int &)> Callback;

  template <typename CallbackT>
  CustomizedPass(CallbackT Callback) : Callback(Callback) {}

  PreservedAnalyses run(Function &F, CustomizedAnalysisManager &AM, int I,
                        int &O) {
    Callback(AM.getResult<CustomizedAnalysis>(F, I), O);
    return PreservedAnalyses::none();
  }
};

TEST_F(PassManagerTest, CustomizedPassManagerArgs) {
  CustomizedAnalysisManager AM;
  AM.registerPass([&] { return CustomizedAnalysis(); });

  CustomizedPassManager PM;

  // Add an instance of the customized pass that just accumulates the input
  // after it is round-tripped through the analysis.
  int Result = 0;
  PM.addPass(
      CustomizedPass([](CustomizedAnalysis::Result &R, int &O) { O += R.I; }));

  // Run this over every function with the input of 42.
  for (Function &F : *M)
    PM.run(F, AM, 42, Result);

  // And ensure that we accumulated the correct result.
  EXPECT_EQ(42 * (int)M->size(), Result);
}

/// A test analysis pass which caches in its result another analysis pass and
/// uses it to serve queries. This requires the result to invalidate itself
/// when its dependency is invalidated.
struct TestIndirectFunctionAnalysis
    : public AnalysisInfoMixin<TestIndirectFunctionAnalysis> {
  struct Result {
    Result(TestFunctionAnalysis::Result &FDep, TestModuleAnalysis::Result &MDep)
        : FDep(FDep), MDep(MDep) {}
    TestFunctionAnalysis::Result &FDep;
    TestModuleAnalysis::Result &MDep;

    bool invalidate(Function &F, const PreservedAnalyses &PA,
                    FunctionAnalysisManager::Invalidator &Inv) {
      auto PAC = PA.getChecker<TestIndirectFunctionAnalysis>();
      return !(PAC.preserved() ||
               PAC.preservedSet<AllAnalysesOn<Function>>()) ||
             Inv.invalidate<TestFunctionAnalysis>(F, PA);
    }
  };

  TestIndirectFunctionAnalysis(int &Runs) : Runs(Runs) {}

  /// Run the analysis pass over the function and return a result.
  Result run(Function &F, FunctionAnalysisManager &AM) {
    ++Runs;
    auto &FDep = AM.getResult<TestFunctionAnalysis>(F);
    auto &Proxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
    const ModuleAnalysisManager &MAM = Proxy.getManager();
    // For the test, we insist that the module analysis starts off in the
    // cache.
    auto &MDep = *MAM.getCachedResult<TestModuleAnalysis>(*F.getParent());
    // And register the dependency as module analysis dependencies have to be
    // pre-registered on the proxy.
    Proxy.registerOuterAnalysisInvalidation<TestModuleAnalysis,
                                            TestIndirectFunctionAnalysis>();
    return Result(FDep, MDep);
  }

private:
  friend AnalysisInfoMixin<TestIndirectFunctionAnalysis>;
  static AnalysisKey Key;

  int &Runs;
};

AnalysisKey TestIndirectFunctionAnalysis::Key;

/// A test analysis pass which chaches in its result the result from the above
/// indirect analysis pass.
///
/// This allows us to ensure that whenever an analysis pass is invalidated due
/// to dependencies (especially dependencies across IR units that trigger
/// asynchronous invalidation) we correctly detect that this may in turn cause
/// other analysis to be invalidated.
struct TestDoublyIndirectFunctionAnalysis
    : public AnalysisInfoMixin<TestDoublyIndirectFunctionAnalysis> {
  struct Result {
    Result(TestIndirectFunctionAnalysis::Result &IDep) : IDep(IDep) {}
    TestIndirectFunctionAnalysis::Result &IDep;

    bool invalidate(Function &F, const PreservedAnalyses &PA,
                    FunctionAnalysisManager::Invalidator &Inv) {
      auto PAC = PA.getChecker<TestDoublyIndirectFunctionAnalysis>();
      return !(PAC.preserved() ||
               PAC.preservedSet<AllAnalysesOn<Function>>()) ||
             Inv.invalidate<TestIndirectFunctionAnalysis>(F, PA);
    }
  };

  TestDoublyIndirectFunctionAnalysis(int &Runs) : Runs(Runs) {}

  /// Run the analysis pass over the function and return a result.
  Result run(Function &F, FunctionAnalysisManager &AM) {
    ++Runs;
    auto &IDep = AM.getResult<TestIndirectFunctionAnalysis>(F);
    return Result(IDep);
  }

private:
  friend AnalysisInfoMixin<TestDoublyIndirectFunctionAnalysis>;
  static AnalysisKey Key;

  int &Runs;
};

AnalysisKey TestDoublyIndirectFunctionAnalysis::Key;

struct LambdaPass : public PassInfoMixin<LambdaPass> {
  using FuncT = std::function<PreservedAnalyses(Function &, FunctionAnalysisManager &)>;

  LambdaPass(FuncT Func) : Func(std::move(Func)) {}

  PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM) {
    return Func(F, AM);
  }

  FuncT Func;
};

TEST_F(PassManagerTest, IndirectAnalysisInvalidation) {
  FunctionAnalysisManager FAM(/*DebugLogging*/ true);
  int FunctionAnalysisRuns = 0, ModuleAnalysisRuns = 0,
      IndirectAnalysisRuns = 0, DoublyIndirectAnalysisRuns = 0;
  FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
  FAM.registerPass(
      [&] { return TestIndirectFunctionAnalysis(IndirectAnalysisRuns); });
  FAM.registerPass([&] {
    return TestDoublyIndirectFunctionAnalysis(DoublyIndirectAnalysisRuns);
  });

  ModuleAnalysisManager MAM(/*DebugLogging*/ true);
  MAM.registerPass([&] { return TestModuleAnalysis(ModuleAnalysisRuns); });
  MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); });
  FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); });

  int InstrCount = 0, FunctionCount = 0;
  ModulePassManager MPM(/*DebugLogging*/ true);
  FunctionPassManager FPM(/*DebugLogging*/ true);
  // First just use the analysis to get the instruction count, and preserve
  // everything.
  FPM.addPass(LambdaPass([&](Function &F, FunctionAnalysisManager &AM) {
    auto &DoublyIndirectResult =
        AM.getResult<TestDoublyIndirectFunctionAnalysis>(F);
    auto &IndirectResult = DoublyIndirectResult.IDep;
    InstrCount += IndirectResult.FDep.InstructionCount;
    FunctionCount += IndirectResult.MDep.FunctionCount;
    return PreservedAnalyses::all();
  }));
  // Next, invalidate
  //   - both analyses for "f",
  //   - just the underlying (indirect) analysis for "g", and
  //   - just the direct analysis for "h".
  FPM.addPass(LambdaPass([&](Function &F, FunctionAnalysisManager &AM) {
    auto &DoublyIndirectResult =
        AM.getResult<TestDoublyIndirectFunctionAnalysis>(F);
    auto &IndirectResult = DoublyIndirectResult.IDep;
    InstrCount += IndirectResult.FDep.InstructionCount;
    FunctionCount += IndirectResult.MDep.FunctionCount;
    auto PA = PreservedAnalyses::none();
    if (F.getName() == "g")
      PA.preserve<TestFunctionAnalysis>();
    else if (F.getName() == "h")
      PA.preserve<TestIndirectFunctionAnalysis>();
    return PA;
  }));
  // Finally, use the analysis again on each function, forcing re-computation
  // for all of them.
  FPM.addPass(LambdaPass([&](Function &F, FunctionAnalysisManager &AM) {
    auto &DoublyIndirectResult =
        AM.getResult<TestDoublyIndirectFunctionAnalysis>(F);
    auto &IndirectResult = DoublyIndirectResult.IDep;
    InstrCount += IndirectResult.FDep.InstructionCount;
    FunctionCount += IndirectResult.MDep.FunctionCount;
    return PreservedAnalyses::all();
  }));

  // Create a second function pass manager. This will cause the module-level
  // invalidation to occur, which will force yet another invalidation of the
  // indirect function-level analysis as the module analysis it depends on gets
  // invalidated.
  FunctionPassManager FPM2(/*DebugLogging*/ true);
  FPM2.addPass(LambdaPass([&](Function &F, FunctionAnalysisManager &AM) {
    auto &DoublyIndirectResult =
        AM.getResult<TestDoublyIndirectFunctionAnalysis>(F);
    auto &IndirectResult = DoublyIndirectResult.IDep;
    InstrCount += IndirectResult.FDep.InstructionCount;
    FunctionCount += IndirectResult.MDep.FunctionCount;
    return PreservedAnalyses::all();
  }));

  // Add a requires pass to populate the module analysis and then our function
  // pass pipeline.
  MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
  MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM)));
  // Now require the module analysis again (it will have been invalidated once)
  // and then use it again from a function pass manager.
  MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
  MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM2)));
  MPM.run(*M, MAM);

  // There are generally two possible runs for each of the three functions. But
  // for one function, we only invalidate the indirect analysis so the base one
  // only gets run five times.
  EXPECT_EQ(5, FunctionAnalysisRuns);
  // The module analysis pass should be run twice here.
  EXPECT_EQ(2, ModuleAnalysisRuns);
  // The indirect analysis is invalidated for each function (either directly or
  // indirectly) and run twice for each.
  EXPECT_EQ(9, IndirectAnalysisRuns);
  EXPECT_EQ(9, DoublyIndirectAnalysisRuns);

  // There are five instructions in the module and we add the count four
  // times.
  EXPECT_EQ(5 * 4, InstrCount);

  // There are three functions and we count them four times for each of the
  // three functions.
  EXPECT_EQ(3 * 4 * 3, FunctionCount);
}
}