llvm.org GIT mirror llvm / release_70 lib / Transforms / Utils / SimplifyLibCalls.cpp
release_70

Tree @release_70 (Download .tar.gz)

SimplifyLibCalls.cpp @release_70raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
//===------ SimplifyLibCalls.cpp - Library calls simplifier ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the library calls simplifier. It does not implement
// any pass, but can't be used by other passes to do simplifications.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/SimplifyLibCalls.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/ConstantFolding.h"
#include "llvm/Analysis/OptimizationRemarkEmitter.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Transforms/Utils/BuildLibCalls.h"

using namespace llvm;
using namespace PatternMatch;

static cl::opt<bool>
    EnableUnsafeFPShrink("enable-double-float-shrink", cl::Hidden,
                         cl::init(false),
                         cl::desc("Enable unsafe double to float "
                                  "shrinking for math lib calls"));


//===----------------------------------------------------------------------===//
// Helper Functions
//===----------------------------------------------------------------------===//

static bool ignoreCallingConv(LibFunc Func) {
  return Func == LibFunc_abs || Func == LibFunc_labs ||
         Func == LibFunc_llabs || Func == LibFunc_strlen;
}

static bool isCallingConvCCompatible(CallInst *CI) {
  switch(CI->getCallingConv()) {
  default:
    return false;
  case llvm::CallingConv::C:
    return true;
  case llvm::CallingConv::ARM_APCS:
  case llvm::CallingConv::ARM_AAPCS:
  case llvm::CallingConv::ARM_AAPCS_VFP: {

    // The iOS ABI diverges from the standard in some cases, so for now don't
    // try to simplify those calls.
    if (Triple(CI->getModule()->getTargetTriple()).isiOS())
      return false;

    auto *FuncTy = CI->getFunctionType();

    if (!FuncTy->getReturnType()->isPointerTy() &&
        !FuncTy->getReturnType()->isIntegerTy() &&
        !FuncTy->getReturnType()->isVoidTy())
      return false;

    for (auto Param : FuncTy->params()) {
      if (!Param->isPointerTy() && !Param->isIntegerTy())
        return false;
    }
    return true;
  }
  }
  return false;
}

/// Return true if it is only used in equality comparisons with With.
static bool isOnlyUsedInEqualityComparison(Value *V, Value *With) {
  for (User *U : V->users()) {
    if (ICmpInst *IC = dyn_cast<ICmpInst>(U))
      if (IC->isEquality() && IC->getOperand(1) == With)
        continue;
    // Unknown instruction.
    return false;
  }
  return true;
}

static bool callHasFloatingPointArgument(const CallInst *CI) {
  return any_of(CI->operands(), [](const Use &OI) {
    return OI->getType()->isFloatingPointTy();
  });
}

static Value *convertStrToNumber(CallInst *CI, StringRef &Str, int64_t Base) {
  if (Base < 2 || Base > 36)
    // handle special zero base
    if (Base != 0)
      return nullptr;

  char *End;
  std::string nptr = Str.str();
  errno = 0;
  long long int Result = strtoll(nptr.c_str(), &End, Base);
  if (errno)
    return nullptr;

  // if we assume all possible target locales are ASCII supersets,
  // then if strtoll successfully parses a number on the host,
  // it will also successfully parse the same way on the target
  if (*End != '\0')
    return nullptr;

  if (!isIntN(CI->getType()->getPrimitiveSizeInBits(), Result))
    return nullptr;

  return ConstantInt::get(CI->getType(), Result);
}

static bool isLocallyOpenedFile(Value *File, CallInst *CI, IRBuilder<> &B,
                                const TargetLibraryInfo *TLI) {
  CallInst *FOpen = dyn_cast<CallInst>(File);
  if (!FOpen)
    return false;

  Function *InnerCallee = FOpen->getCalledFunction();
  if (!InnerCallee)
    return false;

  LibFunc Func;
  if (!TLI->getLibFunc(*InnerCallee, Func) || !TLI->has(Func) ||
      Func != LibFunc_fopen)
    return false;

  inferLibFuncAttributes(*CI->getCalledFunction(), *TLI);
  if (PointerMayBeCaptured(File, true, true))
    return false;

  return true;
}

//===----------------------------------------------------------------------===//
// String and Memory Library Call Optimizations
//===----------------------------------------------------------------------===//

Value *LibCallSimplifier::optimizeStrCat(CallInst *CI, IRBuilder<> &B) {
  // Extract some information from the instruction
  Value *Dst = CI->getArgOperand(0);
  Value *Src = CI->getArgOperand(1);

  // See if we can get the length of the input string.
  uint64_t Len = GetStringLength(Src);
  if (Len == 0)
    return nullptr;
  --Len; // Unbias length.

  // Handle the simple, do-nothing case: strcat(x, "") -> x
  if (Len == 0)
    return Dst;

  return emitStrLenMemCpy(Src, Dst, Len, B);
}

Value *LibCallSimplifier::emitStrLenMemCpy(Value *Src, Value *Dst, uint64_t Len,
                                           IRBuilder<> &B) {
  // We need to find the end of the destination string.  That's where the
  // memory is to be moved to. We just generate a call to strlen.
  Value *DstLen = emitStrLen(Dst, B, DL, TLI);
  if (!DstLen)
    return nullptr;

  // Now that we have the destination's length, we must index into the
  // destination's pointer to get the actual memcpy destination (end of
  // the string .. we're concatenating).
  Value *CpyDst = B.CreateGEP(B.getInt8Ty(), Dst, DstLen, "endptr");

  // We have enough information to now generate the memcpy call to do the
  // concatenation for us.  Make a memcpy to copy the nul byte with align = 1.
  B.CreateMemCpy(CpyDst, 1, Src, 1,
                 ConstantInt::get(DL.getIntPtrType(Src->getContext()), Len + 1));
  return Dst;
}

Value *LibCallSimplifier::optimizeStrNCat(CallInst *CI, IRBuilder<> &B) {
  // Extract some information from the instruction.
  Value *Dst = CI->getArgOperand(0);
  Value *Src = CI->getArgOperand(1);
  uint64_t Len;

  // We don't do anything if length is not constant.
  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
    Len = LengthArg->getZExtValue();
  else
    return nullptr;

  // See if we can get the length of the input string.
  uint64_t SrcLen = GetStringLength(Src);
  if (SrcLen == 0)
    return nullptr;
  --SrcLen; // Unbias length.

  // Handle the simple, do-nothing cases:
  // strncat(x, "", c) -> x
  // strncat(x,  c, 0) -> x
  if (SrcLen == 0 || Len == 0)
    return Dst;

  // We don't optimize this case.
  if (Len < SrcLen)
    return nullptr;

  // strncat(x, s, c) -> strcat(x, s)
  // s is constant so the strcat can be optimized further.
  return emitStrLenMemCpy(Src, Dst, SrcLen, B);
}

Value *LibCallSimplifier::optimizeStrChr(CallInst *CI, IRBuilder<> &B) {
  Function *Callee = CI->getCalledFunction();
  FunctionType *FT = Callee->getFunctionType();
  Value *SrcStr = CI->getArgOperand(0);

  // If the second operand is non-constant, see if we can compute the length
  // of the input string and turn this into memchr.
  ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
  if (!CharC) {
    uint64_t Len = GetStringLength(SrcStr);
    if (Len == 0 || !FT->getParamType(1)->isIntegerTy(32)) // memchr needs i32.
      return nullptr;

    return emitMemChr(SrcStr, CI->getArgOperand(1), // include nul.
                      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len),
                      B, DL, TLI);
  }

  // Otherwise, the character is a constant, see if the first argument is
  // a string literal.  If so, we can constant fold.
  StringRef Str;
  if (!getConstantStringInfo(SrcStr, Str)) {
    if (CharC->isZero()) // strchr(p, 0) -> p + strlen(p)
      return B.CreateGEP(B.getInt8Ty(), SrcStr, emitStrLen(SrcStr, B, DL, TLI),
                         "strchr");
    return nullptr;
  }

  // Compute the offset, make sure to handle the case when we're searching for
  // zero (a weird way to spell strlen).
  size_t I = (0xFF & CharC->getSExtValue()) == 0
                 ? Str.size()
                 : Str.find(CharC->getSExtValue());
  if (I == StringRef::npos) // Didn't find the char.  strchr returns null.
    return Constant::getNullValue(CI->getType());

  // strchr(s+n,c)  -> gep(s+n+i,c)
  return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strchr");
}

Value *LibCallSimplifier::optimizeStrRChr(CallInst *CI, IRBuilder<> &B) {
  Value *SrcStr = CI->getArgOperand(0);
  ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));

  // Cannot fold anything if we're not looking for a constant.
  if (!CharC)
    return nullptr;

  StringRef Str;
  if (!getConstantStringInfo(SrcStr, Str)) {
    // strrchr(s, 0) -> strchr(s, 0)
    if (CharC->isZero())
      return emitStrChr(SrcStr, '\0', B, TLI);
    return nullptr;
  }

  // Compute the offset.
  size_t I = (0xFF & CharC->getSExtValue()) == 0
                 ? Str.size()
                 : Str.rfind(CharC->getSExtValue());
  if (I == StringRef::npos) // Didn't find the char. Return null.
    return Constant::getNullValue(CI->getType());

  // strrchr(s+n,c) -> gep(s+n+i,c)
  return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "strrchr");
}

Value *LibCallSimplifier::optimizeStrCmp(CallInst *CI, IRBuilder<> &B) {
  Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
  if (Str1P == Str2P) // strcmp(x,x)  -> 0
    return ConstantInt::get(CI->getType(), 0);

  StringRef Str1, Str2;
  bool HasStr1 = getConstantStringInfo(Str1P, Str1);
  bool HasStr2 = getConstantStringInfo(Str2P, Str2);

  // strcmp(x, y)  -> cnst  (if both x and y are constant strings)
  if (HasStr1 && HasStr2)
    return ConstantInt::get(CI->getType(), Str1.compare(Str2));

  if (HasStr1 && Str1.empty()) // strcmp("", x) -> -*x
    return B.CreateNeg(
        B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));

  if (HasStr2 && Str2.empty()) // strcmp(x,"") -> *x
    return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());

  // strcmp(P, "x") -> memcmp(P, "x", 2)
  uint64_t Len1 = GetStringLength(Str1P);
  uint64_t Len2 = GetStringLength(Str2P);
  if (Len1 && Len2) {
    return emitMemCmp(Str1P, Str2P,
                      ConstantInt::get(DL.getIntPtrType(CI->getContext()),
                                       std::min(Len1, Len2)),
                      B, DL, TLI);
  }

  return nullptr;
}

Value *LibCallSimplifier::optimizeStrNCmp(CallInst *CI, IRBuilder<> &B) {
  Value *Str1P = CI->getArgOperand(0), *Str2P = CI->getArgOperand(1);
  if (Str1P == Str2P) // strncmp(x,x,n)  -> 0
    return ConstantInt::get(CI->getType(), 0);

  // Get the length argument if it is constant.
  uint64_t Length;
  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(CI->getArgOperand(2)))
    Length = LengthArg->getZExtValue();
  else
    return nullptr;

  if (Length == 0) // strncmp(x,y,0)   -> 0
    return ConstantInt::get(CI->getType(), 0);

  if (Length == 1) // strncmp(x,y,1) -> memcmp(x,y,1)
    return emitMemCmp(Str1P, Str2P, CI->getArgOperand(2), B, DL, TLI);

  StringRef Str1, Str2;
  bool HasStr1 = getConstantStringInfo(Str1P, Str1);
  bool HasStr2 = getConstantStringInfo(Str2P, Str2);

  // strncmp(x, y)  -> cnst  (if both x and y are constant strings)
  if (HasStr1 && HasStr2) {
    StringRef SubStr1 = Str1.substr(0, Length);
    StringRef SubStr2 = Str2.substr(0, Length);
    return ConstantInt::get(CI->getType(), SubStr1.compare(SubStr2));
  }

  if (HasStr1 && Str1.empty()) // strncmp("", x, n) -> -*x
    return B.CreateNeg(
        B.CreateZExt(B.CreateLoad(Str2P, "strcmpload"), CI->getType()));

  if (HasStr2 && Str2.empty()) // strncmp(x, "", n) -> *x
    return B.CreateZExt(B.CreateLoad(Str1P, "strcmpload"), CI->getType());

  return nullptr;
}

Value *LibCallSimplifier::optimizeStrCpy(CallInst *CI, IRBuilder<> &B) {
  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
  if (Dst == Src) // strcpy(x,x)  -> x
    return Src;

  // See if we can get the length of the input string.
  uint64_t Len = GetStringLength(Src);
  if (Len == 0)
    return nullptr;

  // We have enough information to now generate the memcpy call to do the
  // copy for us.  Make a memcpy to copy the nul byte with align = 1.
  B.CreateMemCpy(Dst, 1, Src, 1,
                 ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len));
  return Dst;
}

Value *LibCallSimplifier::optimizeStpCpy(CallInst *CI, IRBuilder<> &B) {
  Function *Callee = CI->getCalledFunction();
  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1);
  if (Dst == Src) { // stpcpy(x,x)  -> x+strlen(x)
    Value *StrLen = emitStrLen(Src, B, DL, TLI);
    return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
  }

  // See if we can get the length of the input string.
  uint64_t Len = GetStringLength(Src);
  if (Len == 0)
    return nullptr;

  Type *PT = Callee->getFunctionType()->getParamType(0);
  Value *LenV = ConstantInt::get(DL.getIntPtrType(PT), Len);
  Value *DstEnd = B.CreateGEP(B.getInt8Ty(), Dst,
                              ConstantInt::get(DL.getIntPtrType(PT), Len - 1));

  // We have enough information to now generate the memcpy call to do the
  // copy for us.  Make a memcpy to copy the nul byte with align = 1.
  B.CreateMemCpy(Dst, 1, Src, 1, LenV);
  return DstEnd;
}

Value *LibCallSimplifier::optimizeStrNCpy(CallInst *CI, IRBuilder<> &B) {
  Function *Callee = CI->getCalledFunction();
  Value *Dst = CI->getArgOperand(0);
  Value *Src = CI->getArgOperand(1);
  Value *LenOp = CI->getArgOperand(2);

  // See if we can get the length of the input string.
  uint64_t SrcLen = GetStringLength(Src);
  if (SrcLen == 0)
    return nullptr;
  --SrcLen;

  if (SrcLen == 0) {
    // strncpy(x, "", y) -> memset(align 1 x, '\0', y)
    B.CreateMemSet(Dst, B.getInt8('\0'), LenOp, 1);
    return Dst;
  }

  uint64_t Len;
  if (ConstantInt *LengthArg = dyn_cast<ConstantInt>(LenOp))
    Len = LengthArg->getZExtValue();
  else
    return nullptr;

  if (Len == 0)
    return Dst; // strncpy(x, y, 0) -> x

  // Let strncpy handle the zero padding
  if (Len > SrcLen + 1)
    return nullptr;

  Type *PT = Callee->getFunctionType()->getParamType(0);
  // strncpy(x, s, c) -> memcpy(align 1 x, align 1 s, c) [s and c are constant]
  B.CreateMemCpy(Dst, 1, Src, 1, ConstantInt::get(DL.getIntPtrType(PT), Len));

  return Dst;
}

Value *LibCallSimplifier::optimizeStringLength(CallInst *CI, IRBuilder<> &B,
                                               unsigned CharSize) {
  Value *Src = CI->getArgOperand(0);

  // Constant folding: strlen("xyz") -> 3
  if (uint64_t Len = GetStringLength(Src, CharSize))
    return ConstantInt::get(CI->getType(), Len - 1);

  // If s is a constant pointer pointing to a string literal, we can fold
  // strlen(s + x) to strlen(s) - x, when x is known to be in the range
  // [0, strlen(s)] or the string has a single null terminator '\0' at the end.
  // We only try to simplify strlen when the pointer s points to an array
  // of i8. Otherwise, we would need to scale the offset x before doing the
  // subtraction. This will make the optimization more complex, and it's not
  // very useful because calling strlen for a pointer of other types is
  // very uncommon.
  if (GEPOperator *GEP = dyn_cast<GEPOperator>(Src)) {
    if (!isGEPBasedOnPointerToString(GEP, CharSize))
      return nullptr;

    ConstantDataArraySlice Slice;
    if (getConstantDataArrayInfo(GEP->getOperand(0), Slice, CharSize)) {
      uint64_t NullTermIdx;
      if (Slice.Array == nullptr) {
        NullTermIdx = 0;
      } else {
        NullTermIdx = ~((uint64_t)0);
        for (uint64_t I = 0, E = Slice.Length; I < E; ++I) {
          if (Slice.Array->getElementAsInteger(I + Slice.Offset) == 0) {
            NullTermIdx = I;
            break;
          }
        }
        // If the string does not have '\0', leave it to strlen to compute
        // its length.
        if (NullTermIdx == ~((uint64_t)0))
          return nullptr;
      }

      Value *Offset = GEP->getOperand(2);
      KnownBits Known = computeKnownBits(Offset, DL, 0, nullptr, CI, nullptr);
      Known.Zero.flipAllBits();
      uint64_t ArrSize =
             cast<ArrayType>(GEP->getSourceElementType())->getNumElements();

      // KnownZero's bits are flipped, so zeros in KnownZero now represent
      // bits known to be zeros in Offset, and ones in KnowZero represent
      // bits unknown in Offset. Therefore, Offset is known to be in range
      // [0, NullTermIdx] when the flipped KnownZero is non-negative and
      // unsigned-less-than NullTermIdx.
      //
      // If Offset is not provably in the range [0, NullTermIdx], we can still
      // optimize if we can prove that the program has undefined behavior when
      // Offset is outside that range. That is the case when GEP->getOperand(0)
      // is a pointer to an object whose memory extent is NullTermIdx+1.
      if ((Known.Zero.isNonNegative() && Known.Zero.ule(NullTermIdx)) ||
          (GEP->isInBounds() && isa<GlobalVariable>(GEP->getOperand(0)) &&
           NullTermIdx == ArrSize - 1)) {
        Offset = B.CreateSExtOrTrunc(Offset, CI->getType());
        return B.CreateSub(ConstantInt::get(CI->getType(), NullTermIdx),
                           Offset);
      }
    }

    return nullptr;
  }

  // strlen(x?"foo":"bars") --> x ? 3 : 4
  if (SelectInst *SI = dyn_cast<SelectInst>(Src)) {
    uint64_t LenTrue = GetStringLength(SI->getTrueValue(), CharSize);
    uint64_t LenFalse = GetStringLength(SI->getFalseValue(), CharSize);
    if (LenTrue && LenFalse) {
      ORE.emit([&]() {
        return OptimizationRemark("instcombine", "simplify-libcalls", CI)
               << "folded strlen(select) to select of constants";
      });
      return B.CreateSelect(SI->getCondition(),
                            ConstantInt::get(CI->getType(), LenTrue - 1),
                            ConstantInt::get(CI->getType(), LenFalse - 1));
    }
  }

  // strlen(x) != 0 --> *x != 0
  // strlen(x) == 0 --> *x == 0
  if (isOnlyUsedInZeroEqualityComparison(CI))
    return B.CreateZExt(B.CreateLoad(Src, "strlenfirst"), CI->getType());

  return nullptr;
}

Value *LibCallSimplifier::optimizeStrLen(CallInst *CI, IRBuilder<> &B) {
  return optimizeStringLength(CI, B, 8);
}

Value *LibCallSimplifier::optimizeWcslen(CallInst *CI, IRBuilder<> &B) {
  Module &M = *CI->getModule();
  unsigned WCharSize = TLI->getWCharSize(M) * 8;
  // We cannot perform this optimization without wchar_size metadata.
  if (WCharSize == 0)
    return nullptr;

  return optimizeStringLength(CI, B, WCharSize);
}

Value *LibCallSimplifier::optimizeStrPBrk(CallInst *CI, IRBuilder<> &B) {
  StringRef S1, S2;
  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);

  // strpbrk(s, "") -> nullptr
  // strpbrk("", s) -> nullptr
  if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
    return Constant::getNullValue(CI->getType());

  // Constant folding.
  if (HasS1 && HasS2) {
    size_t I = S1.find_first_of(S2);
    if (I == StringRef::npos) // No match.
      return Constant::getNullValue(CI->getType());

    return B.CreateGEP(B.getInt8Ty(), CI->getArgOperand(0), B.getInt64(I),
                       "strpbrk");
  }

  // strpbrk(s, "a") -> strchr(s, 'a')
  if (HasS2 && S2.size() == 1)
    return emitStrChr(CI->getArgOperand(0), S2[0], B, TLI);

  return nullptr;
}

Value *LibCallSimplifier::optimizeStrTo(CallInst *CI, IRBuilder<> &B) {
  Value *EndPtr = CI->getArgOperand(1);
  if (isa<ConstantPointerNull>(EndPtr)) {
    // With a null EndPtr, this function won't capture the main argument.
    // It would be readonly too, except that it still may write to errno.
    CI->addParamAttr(0, Attribute::NoCapture);
  }

  return nullptr;
}

Value *LibCallSimplifier::optimizeStrSpn(CallInst *CI, IRBuilder<> &B) {
  StringRef S1, S2;
  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);

  // strspn(s, "") -> 0
  // strspn("", s) -> 0
  if ((HasS1 && S1.empty()) || (HasS2 && S2.empty()))
    return Constant::getNullValue(CI->getType());

  // Constant folding.
  if (HasS1 && HasS2) {
    size_t Pos = S1.find_first_not_of(S2);
    if (Pos == StringRef::npos)
      Pos = S1.size();
    return ConstantInt::get(CI->getType(), Pos);
  }

  return nullptr;
}

Value *LibCallSimplifier::optimizeStrCSpn(CallInst *CI, IRBuilder<> &B) {
  StringRef S1, S2;
  bool HasS1 = getConstantStringInfo(CI->getArgOperand(0), S1);
  bool HasS2 = getConstantStringInfo(CI->getArgOperand(1), S2);

  // strcspn("", s) -> 0
  if (HasS1 && S1.empty())
    return Constant::getNullValue(CI->getType());

  // Constant folding.
  if (HasS1 && HasS2) {
    size_t Pos = S1.find_first_of(S2);
    if (Pos == StringRef::npos)
      Pos = S1.size();
    return ConstantInt::get(CI->getType(), Pos);
  }

  // strcspn(s, "") -> strlen(s)
  if (HasS2 && S2.empty())
    return emitStrLen(CI->getArgOperand(0), B, DL, TLI);

  return nullptr;
}

Value *LibCallSimplifier::optimizeStrStr(CallInst *CI, IRBuilder<> &B) {
  // fold strstr(x, x) -> x.
  if (CI->getArgOperand(0) == CI->getArgOperand(1))
    return B.CreateBitCast(CI->getArgOperand(0), CI->getType());

  // fold strstr(a, b) == a -> strncmp(a, b, strlen(b)) == 0
  if (isOnlyUsedInEqualityComparison(CI, CI->getArgOperand(0))) {
    Value *StrLen = emitStrLen(CI->getArgOperand(1), B, DL, TLI);
    if (!StrLen)
      return nullptr;
    Value *StrNCmp = emitStrNCmp(CI->getArgOperand(0), CI->getArgOperand(1),
                                 StrLen, B, DL, TLI);
    if (!StrNCmp)
      return nullptr;
    for (auto UI = CI->user_begin(), UE = CI->user_end(); UI != UE;) {
      ICmpInst *Old = cast<ICmpInst>(*UI++);
      Value *Cmp =
          B.CreateICmp(Old->getPredicate(), StrNCmp,
                       ConstantInt::getNullValue(StrNCmp->getType()), "cmp");
      replaceAllUsesWith(Old, Cmp);
    }
    return CI;
  }

  // See if either input string is a constant string.
  StringRef SearchStr, ToFindStr;
  bool HasStr1 = getConstantStringInfo(CI->getArgOperand(0), SearchStr);
  bool HasStr2 = getConstantStringInfo(CI->getArgOperand(1), ToFindStr);

  // fold strstr(x, "") -> x.
  if (HasStr2 && ToFindStr.empty())
    return B.CreateBitCast(CI->getArgOperand(0), CI->getType());

  // If both strings are known, constant fold it.
  if (HasStr1 && HasStr2) {
    size_t Offset = SearchStr.find(ToFindStr);

    if (Offset == StringRef::npos) // strstr("foo", "bar") -> null
      return Constant::getNullValue(CI->getType());

    // strstr("abcd", "bc") -> gep((char*)"abcd", 1)
    Value *Result = castToCStr(CI->getArgOperand(0), B);
    Result = B.CreateConstInBoundsGEP1_64(Result, Offset, "strstr");
    return B.CreateBitCast(Result, CI->getType());
  }

  // fold strstr(x, "y") -> strchr(x, 'y').
  if (HasStr2 && ToFindStr.size() == 1) {
    Value *StrChr = emitStrChr(CI->getArgOperand(0), ToFindStr[0], B, TLI);
    return StrChr ? B.CreateBitCast(StrChr, CI->getType()) : nullptr;
  }
  return nullptr;
}

Value *LibCallSimplifier::optimizeMemChr(CallInst *CI, IRBuilder<> &B) {
  Value *SrcStr = CI->getArgOperand(0);
  ConstantInt *CharC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
  ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));

  // memchr(x, y, 0) -> null
  if (LenC && LenC->isZero())
    return Constant::getNullValue(CI->getType());

  // From now on we need at least constant length and string.
  StringRef Str;
  if (!LenC || !getConstantStringInfo(SrcStr, Str, 0, /*TrimAtNul=*/false))
    return nullptr;

  // Truncate the string to LenC. If Str is smaller than LenC we will still only
  // scan the string, as reading past the end of it is undefined and we can just
  // return null if we don't find the char.
  Str = Str.substr(0, LenC->getZExtValue());

  // If the char is variable but the input str and length are not we can turn
  // this memchr call into a simple bit field test. Of course this only works
  // when the return value is only checked against null.
  //
  // It would be really nice to reuse switch lowering here but we can't change
  // the CFG at this point.
  //
  // memchr("\r\n", C, 2) != nullptr -> (C & ((1 << '\r') | (1 << '\n'))) != 0
  //   after bounds check.
  if (!CharC && !Str.empty() && isOnlyUsedInZeroEqualityComparison(CI)) {
    unsigned char Max =
        *std::max_element(reinterpret_cast<const unsigned char *>(Str.begin()),
                          reinterpret_cast<const unsigned char *>(Str.end()));

    // Make sure the bit field we're about to create fits in a register on the
    // target.
    // FIXME: On a 64 bit architecture this prevents us from using the
    // interesting range of alpha ascii chars. We could do better by emitting
    // two bitfields or shifting the range by 64 if no lower chars are used.
    if (!DL.fitsInLegalInteger(Max + 1))
      return nullptr;

    // For the bit field use a power-of-2 type with at least 8 bits to avoid
    // creating unnecessary illegal types.
    unsigned char Width = NextPowerOf2(std::max((unsigned char)7, Max));

    // Now build the bit field.
    APInt Bitfield(Width, 0);
    for (char C : Str)
      Bitfield.setBit((unsigned char)C);
    Value *BitfieldC = B.getInt(Bitfield);

    // First check that the bit field access is within bounds.
    Value *C = B.CreateZExtOrTrunc(CI->getArgOperand(1), BitfieldC->getType());
    Value *Bounds = B.CreateICmp(ICmpInst::ICMP_ULT, C, B.getIntN(Width, Width),
                                 "memchr.bounds");

    // Create code that checks if the given bit is set in the field.
    Value *Shl = B.CreateShl(B.getIntN(Width, 1ULL), C);
    Value *Bits = B.CreateIsNotNull(B.CreateAnd(Shl, BitfieldC), "memchr.bits");

    // Finally merge both checks and cast to pointer type. The inttoptr
    // implicitly zexts the i1 to intptr type.
    return B.CreateIntToPtr(B.CreateAnd(Bounds, Bits, "memchr"), CI->getType());
  }

  // Check if all arguments are constants.  If so, we can constant fold.
  if (!CharC)
    return nullptr;

  // Compute the offset.
  size_t I = Str.find(CharC->getSExtValue() & 0xFF);
  if (I == StringRef::npos) // Didn't find the char.  memchr returns null.
    return Constant::getNullValue(CI->getType());

  // memchr(s+n,c,l) -> gep(s+n+i,c)
  return B.CreateGEP(B.getInt8Ty(), SrcStr, B.getInt64(I), "memchr");
}

Value *LibCallSimplifier::optimizeMemCmp(CallInst *CI, IRBuilder<> &B) {
  Value *LHS = CI->getArgOperand(0), *RHS = CI->getArgOperand(1);

  if (LHS == RHS) // memcmp(s,s,x) -> 0
    return Constant::getNullValue(CI->getType());

  // Make sure we have a constant length.
  ConstantInt *LenC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
  if (!LenC)
    return nullptr;

  uint64_t Len = LenC->getZExtValue();
  if (Len == 0) // memcmp(s1,s2,0) -> 0
    return Constant::getNullValue(CI->getType());

  // memcmp(S1,S2,1) -> *(unsigned char*)LHS - *(unsigned char*)RHS
  if (Len == 1) {
    Value *LHSV = B.CreateZExt(B.CreateLoad(castToCStr(LHS, B), "lhsc"),
                               CI->getType(), "lhsv");
    Value *RHSV = B.CreateZExt(B.CreateLoad(castToCStr(RHS, B), "rhsc"),
                               CI->getType(), "rhsv");
    return B.CreateSub(LHSV, RHSV, "chardiff");
  }

  // memcmp(S1,S2,N/8)==0 -> (*(intN_t*)S1 != *(intN_t*)S2)==0
  // TODO: The case where both inputs are constants does not need to be limited
  // to legal integers or equality comparison. See block below this.
  if (DL.isLegalInteger(Len * 8) && isOnlyUsedInZeroEqualityComparison(CI)) {
    IntegerType *IntType = IntegerType::get(CI->getContext(), Len * 8);
    unsigned PrefAlignment = DL.getPrefTypeAlignment(IntType);

    // First, see if we can fold either argument to a constant.
    Value *LHSV = nullptr;
    if (auto *LHSC = dyn_cast<Constant>(LHS)) {
      LHSC = ConstantExpr::getBitCast(LHSC, IntType->getPointerTo());
      LHSV = ConstantFoldLoadFromConstPtr(LHSC, IntType, DL);
    }
    Value *RHSV = nullptr;
    if (auto *RHSC = dyn_cast<Constant>(RHS)) {
      RHSC = ConstantExpr::getBitCast(RHSC, IntType->getPointerTo());
      RHSV = ConstantFoldLoadFromConstPtr(RHSC, IntType, DL);
    }

    // Don't generate unaligned loads. If either source is constant data,
    // alignment doesn't matter for that source because there is no load.
    if ((LHSV || getKnownAlignment(LHS, DL, CI) >= PrefAlignment) &&
        (RHSV || getKnownAlignment(RHS, DL, CI) >= PrefAlignment)) {
      if (!LHSV) {
        Type *LHSPtrTy =
            IntType->getPointerTo(LHS->getType()->getPointerAddressSpace());
        LHSV = B.CreateLoad(B.CreateBitCast(LHS, LHSPtrTy), "lhsv");
      }
      if (!RHSV) {
        Type *RHSPtrTy =
            IntType->getPointerTo(RHS->getType()->getPointerAddressSpace());
        RHSV = B.CreateLoad(B.CreateBitCast(RHS, RHSPtrTy), "rhsv");
      }
      return B.CreateZExt(B.CreateICmpNE(LHSV, RHSV), CI->getType(), "memcmp");
    }
  }

  // Constant folding: memcmp(x, y, Len) -> constant (all arguments are const).
  // TODO: This is limited to i8 arrays.
  StringRef LHSStr, RHSStr;
  if (getConstantStringInfo(LHS, LHSStr) &&
      getConstantStringInfo(RHS, RHSStr)) {
    // Make sure we're not reading out-of-bounds memory.
    if (Len > LHSStr.size() || Len > RHSStr.size())
      return nullptr;
    // Fold the memcmp and normalize the result.  This way we get consistent
    // results across multiple platforms.
    uint64_t Ret = 0;
    int Cmp = memcmp(LHSStr.data(), RHSStr.data(), Len);
    if (Cmp < 0)
      Ret = -1;
    else if (Cmp > 0)
      Ret = 1;
    return ConstantInt::get(CI->getType(), Ret);
  }

  return nullptr;
}

Value *LibCallSimplifier::optimizeMemCpy(CallInst *CI, IRBuilder<> &B) {
  // memcpy(x, y, n) -> llvm.memcpy(align 1 x, align 1 y, n)
  B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
                 CI->getArgOperand(2));
  return CI->getArgOperand(0);
}

Value *LibCallSimplifier::optimizeMemMove(CallInst *CI, IRBuilder<> &B) {
  // memmove(x, y, n) -> llvm.memmove(align 1 x, align 1 y, n)
  B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
                  CI->getArgOperand(2));
  return CI->getArgOperand(0);
}

/// Fold memset[_chk](malloc(n), 0, n) --> calloc(1, n).
static Value *foldMallocMemset(CallInst *Memset, IRBuilder<> &B,
                               const TargetLibraryInfo &TLI) {
  // This has to be a memset of zeros (bzero).
  auto *FillValue = dyn_cast<ConstantInt>(Memset->getArgOperand(1));
  if (!FillValue || FillValue->getZExtValue() != 0)
    return nullptr;

  // TODO: We should handle the case where the malloc has more than one use.
  // This is necessary to optimize common patterns such as when the result of
  // the malloc is checked against null or when a memset intrinsic is used in
  // place of a memset library call.
  auto *Malloc = dyn_cast<CallInst>(Memset->getArgOperand(0));
  if (!Malloc || !Malloc->hasOneUse())
    return nullptr;

  // Is the inner call really malloc()?
  Function *InnerCallee = Malloc->getCalledFunction();
  if (!InnerCallee)
    return nullptr;

  LibFunc Func;
  if (!TLI.getLibFunc(*InnerCallee, Func) || !TLI.has(Func) ||
      Func != LibFunc_malloc)
    return nullptr;

  // The memset must cover the same number of bytes that are malloc'd.
  if (Memset->getArgOperand(2) != Malloc->getArgOperand(0))
    return nullptr;

  // Replace the malloc with a calloc. We need the data layout to know what the
  // actual size of a 'size_t' parameter is.
  B.SetInsertPoint(Malloc->getParent(), ++Malloc->getIterator());
  const DataLayout &DL = Malloc->getModule()->getDataLayout();
  IntegerType *SizeType = DL.getIntPtrType(B.GetInsertBlock()->getContext());
  Value *Calloc = emitCalloc(ConstantInt::get(SizeType, 1),
                             Malloc->getArgOperand(0), Malloc->getAttributes(),
                             B, TLI);
  if (!Calloc)
    return nullptr;

  Malloc->replaceAllUsesWith(Calloc);
  Malloc->eraseFromParent();

  return Calloc;
}

Value *LibCallSimplifier::optimizeMemSet(CallInst *CI, IRBuilder<> &B) {
  if (auto *Calloc = foldMallocMemset(CI, B, *TLI))
    return Calloc;

  // memset(p, v, n) -> llvm.memset(align 1 p, v, n)
  Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
  B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
  return CI->getArgOperand(0);
}

Value *LibCallSimplifier::optimizeRealloc(CallInst *CI, IRBuilder<> &B) {
  if (isa<ConstantPointerNull>(CI->getArgOperand(0)))
    return emitMalloc(CI->getArgOperand(1), B, DL, TLI);

  return nullptr;
}

//===----------------------------------------------------------------------===//
// Math Library Optimizations
//===----------------------------------------------------------------------===//

/// Return a variant of Val with float type.
/// Currently this works in two cases: If Val is an FPExtension of a float
/// value to something bigger, simply return the operand.
/// If Val is a ConstantFP but can be converted to a float ConstantFP without
/// loss of precision do so.
static Value *valueHasFloatPrecision(Value *Val) {
  if (FPExtInst *Cast = dyn_cast<FPExtInst>(Val)) {
    Value *Op = Cast->getOperand(0);
    if (Op->getType()->isFloatTy())
      return Op;
  }
  if (ConstantFP *Const = dyn_cast<ConstantFP>(Val)) {
    APFloat F = Const->getValueAPF();
    bool losesInfo;
    (void)F.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
                    &losesInfo);
    if (!losesInfo)
      return ConstantFP::get(Const->getContext(), F);
  }
  return nullptr;
}

/// Shrink double -> float for unary functions like 'floor'.
static Value *optimizeUnaryDoubleFP(CallInst *CI, IRBuilder<> &B,
                                    bool CheckRetType) {
  Function *Callee = CI->getCalledFunction();
  // We know this libcall has a valid prototype, but we don't know which.
  if (!CI->getType()->isDoubleTy())
    return nullptr;

  if (CheckRetType) {
    // Check if all the uses for function like 'sin' are converted to float.
    for (User *U : CI->users()) {
      FPTruncInst *Cast = dyn_cast<FPTruncInst>(U);
      if (!Cast || !Cast->getType()->isFloatTy())
        return nullptr;
    }
  }

  // If this is something like 'floor((double)floatval)', convert to floorf.
  Value *V = valueHasFloatPrecision(CI->getArgOperand(0));
  if (V == nullptr)
    return nullptr;

  // If call isn't an intrinsic, check that it isn't within a function with the
  // same name as the float version of this call.
  //
  // e.g. inline float expf(float val) { return (float) exp((double) val); }
  //
  // A similar such definition exists in the MinGW-w64 math.h header file which
  // when compiled with -O2 -ffast-math causes the generation of infinite loops
  // where expf is called.
  if (!Callee->isIntrinsic()) {
    const Function *F = CI->getFunction();
    StringRef FName = F->getName();
    StringRef CalleeName = Callee->getName();
    if ((FName.size() == (CalleeName.size() + 1)) &&
        (FName.back() == 'f') &&
        FName.startswith(CalleeName))
      return nullptr;
  }

  // Propagate fast-math flags from the existing call to the new call.
  IRBuilder<>::FastMathFlagGuard Guard(B);
  B.setFastMathFlags(CI->getFastMathFlags());

  // floor((double)floatval) -> (double)floorf(floatval)
  if (Callee->isIntrinsic()) {
    Module *M = CI->getModule();
    Intrinsic::ID IID = Callee->getIntrinsicID();
    Function *F = Intrinsic::getDeclaration(M, IID, B.getFloatTy());
    V = B.CreateCall(F, V);
  } else {
    // The call is a library call rather than an intrinsic.
    V = emitUnaryFloatFnCall(V, Callee->getName(), B, Callee->getAttributes());
  }

  return B.CreateFPExt(V, B.getDoubleTy());
}

// Replace a libcall \p CI with a call to intrinsic \p IID
static Value *replaceUnaryCall(CallInst *CI, IRBuilder<> &B, Intrinsic::ID IID) {
  // Propagate fast-math flags from the existing call to the new call.
  IRBuilder<>::FastMathFlagGuard Guard(B);
  B.setFastMathFlags(CI->getFastMathFlags());

  Module *M = CI->getModule();
  Value *V = CI->getArgOperand(0);
  Function *F = Intrinsic::getDeclaration(M, IID, CI->getType());
  CallInst *NewCall = B.CreateCall(F, V);
  NewCall->takeName(CI);
  return NewCall;
}

/// Shrink double -> float for binary functions like 'fmin/fmax'.
static Value *optimizeBinaryDoubleFP(CallInst *CI, IRBuilder<> &B) {
  Function *Callee = CI->getCalledFunction();
  // We know this libcall has a valid prototype, but we don't know which.
  if (!CI->getType()->isDoubleTy())
    return nullptr;

  // If this is something like 'fmin((double)floatval1, (double)floatval2)',
  // or fmin(1.0, (double)floatval), then we convert it to fminf.
  Value *V1 = valueHasFloatPrecision(CI->getArgOperand(0));
  if (V1 == nullptr)
    return nullptr;
  Value *V2 = valueHasFloatPrecision(CI->getArgOperand(1));
  if (V2 == nullptr)
    return nullptr;

  // Propagate fast-math flags from the existing call to the new call.
  IRBuilder<>::FastMathFlagGuard Guard(B);
  B.setFastMathFlags(CI->getFastMathFlags());

  // fmin((double)floatval1, (double)floatval2)
  //                      -> (double)fminf(floatval1, floatval2)
  // TODO: Handle intrinsics in the same way as in optimizeUnaryDoubleFP().
  Value *V = emitBinaryFloatFnCall(V1, V2, Callee->getName(), B,
                                   Callee->getAttributes());
  return B.CreateFPExt(V, B.getDoubleTy());
}

// cabs(z) -> sqrt((creal(z)*creal(z)) + (cimag(z)*cimag(z)))
Value *LibCallSimplifier::optimizeCAbs(CallInst *CI, IRBuilder<> &B) {
  if (!CI->isFast())
    return nullptr;

  // Propagate fast-math flags from the existing call to new instructions.
  IRBuilder<>::FastMathFlagGuard Guard(B);
  B.setFastMathFlags(CI->getFastMathFlags());

  Value *Real, *Imag;
  if (CI->getNumArgOperands() == 1) {
    Value *Op = CI->getArgOperand(0);
    assert(Op->getType()->isArrayTy() && "Unexpected signature for cabs!");
    Real = B.CreateExtractValue(Op, 0, "real");
    Imag = B.CreateExtractValue(Op, 1, "imag");
  } else {
    assert(CI->getNumArgOperands() == 2 && "Unexpected signature for cabs!");
    Real = CI->getArgOperand(0);
    Imag = CI->getArgOperand(1);
  }

  Value *RealReal = B.CreateFMul(Real, Real);
  Value *ImagImag = B.CreateFMul(Imag, Imag);

  Function *FSqrt = Intrinsic::getDeclaration(CI->getModule(), Intrinsic::sqrt,
                                              CI->getType());
  return B.CreateCall(FSqrt, B.CreateFAdd(RealReal, ImagImag), "cabs");
}

Value *LibCallSimplifier::optimizeCos(CallInst *CI, IRBuilder<> &B) {
  Function *Callee = CI->getCalledFunction();
  Value *Ret = nullptr;
  StringRef Name = Callee->getName();
  if (UnsafeFPShrink && Name == "cos" && hasFloatVersion(Name))
    Ret = optimizeUnaryDoubleFP(CI, B, true);

  // cos(-x) -> cos(x)
  Value *Op1 = CI->getArgOperand(0);
  if (BinaryOperator::isFNeg(Op1)) {
    BinaryOperator *BinExpr = cast<BinaryOperator>(Op1);
    return B.CreateCall(Callee, BinExpr->getOperand(1), "cos");
  }
  return Ret;
}

static Value *getPow(Value *InnerChain[33], unsigned Exp, IRBuilder<> &B) {
  // Multiplications calculated using Addition Chains.
  // Refer: http://wwwhomes.uni-bielefeld.de/achim/addition_chain.html

  assert(Exp != 0 && "Incorrect exponent 0 not handled");

  if (InnerChain[Exp])
    return InnerChain[Exp];

  static const unsigned AddChain[33][2] = {
      {0, 0}, // Unused.
      {0, 0}, // Unused (base case = pow1).
      {1, 1}, // Unused (pre-computed).
      {1, 2},  {2, 2},   {2, 3},  {3, 3},   {2, 5},  {4, 4},
      {1, 8},  {5, 5},   {1, 10}, {6, 6},   {4, 9},  {7, 7},
      {3, 12}, {8, 8},   {8, 9},  {2, 16},  {1, 18}, {10, 10},
      {6, 15}, {11, 11}, {3, 20}, {12, 12}, {8, 17}, {13, 13},
      {3, 24}, {14, 14}, {4, 25}, {15, 15}, {3, 28}, {16, 16},
  };

  InnerChain[Exp] = B.CreateFMul(getPow(InnerChain, AddChain[Exp][0], B),
                                 getPow(InnerChain, AddChain[Exp][1], B));
  return InnerChain[Exp];
}

/// Use square root in place of pow(x, +/-0.5).
Value *LibCallSimplifier::replacePowWithSqrt(CallInst *Pow, IRBuilder<> &B) {
  // TODO: There is some subset of 'fast' under which these transforms should
  // be allowed.
  if (!Pow->isFast())
    return nullptr;

  Value *Sqrt, *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
  Type *Ty = Pow->getType();

  const APFloat *ExpoF;
  if (!match(Expo, m_APFloat(ExpoF)) ||
      (!ExpoF->isExactlyValue(0.5) && !ExpoF->isExactlyValue(-0.5)))
    return nullptr;

  // If errno is never set, then use the intrinsic for sqrt().
  if (Pow->hasFnAttr(Attribute::ReadNone)) {
    Function *SqrtFn = Intrinsic::getDeclaration(Pow->getModule(),
                                                 Intrinsic::sqrt, Ty);
    Sqrt = B.CreateCall(SqrtFn, Base);
  }
  // Otherwise, use the libcall for sqrt().
  else if (hasUnaryFloatFn(TLI, Ty, LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl))
    // TODO: We also should check that the target can in fact lower the sqrt()
    // libcall. We currently have no way to ask this question, so we ask if
    // the target has a sqrt() libcall, which is not exactly the same.
    Sqrt = emitUnaryFloatFnCall(Base, TLI->getName(LibFunc_sqrt), B,
                                Pow->getCalledFunction()->getAttributes());
  else
    return nullptr;

  // If the exponent is negative, then get the reciprocal.
  if (ExpoF->isNegative())
    Sqrt = B.CreateFDiv(ConstantFP::get(Ty, 1.0), Sqrt, "reciprocal");

  return Sqrt;
}

Value *LibCallSimplifier::optimizePow(CallInst *Pow, IRBuilder<> &B) {
  Value *Base = Pow->getArgOperand(0), *Expo = Pow->getArgOperand(1);
  Function *Callee = Pow->getCalledFunction();
  AttributeList Attrs = Callee->getAttributes();
  StringRef Name = Callee->getName();
  Module *Module = Pow->getModule();
  Type *Ty = Pow->getType();
  Value *Shrunk = nullptr;
  bool Ignored;

  if (UnsafeFPShrink &&
      Name == TLI->getName(LibFunc_pow) && hasFloatVersion(Name))
    Shrunk = optimizeUnaryDoubleFP(Pow, B, true);

  // Propagate the math semantics from the call to any created instructions.
  IRBuilder<>::FastMathFlagGuard Guard(B);
  B.setFastMathFlags(Pow->getFastMathFlags());

  // Evaluate special cases related to the base.

  // pow(1.0, x) -> 1.0
  if (match(Base, m_SpecificFP(1.0)))
    return Base;

  // pow(2.0, x) -> exp2(x)
  if (match(Base, m_SpecificFP(2.0))) {
    Value *Exp2 = Intrinsic::getDeclaration(Module, Intrinsic::exp2, Ty);
    return B.CreateCall(Exp2, Expo, "exp2");
  }

  // pow(10.0, x) -> exp10(x)
  if (ConstantFP *BaseC = dyn_cast<ConstantFP>(Base))
    // There's no exp10 intrinsic yet, but, maybe, some day there shall be one.
    if (BaseC->isExactlyValue(10.0) &&
        hasUnaryFloatFn(TLI, Ty, LibFunc_exp10, LibFunc_exp10f, LibFunc_exp10l))
      return emitUnaryFloatFnCall(Expo, TLI->getName(LibFunc_exp10), B, Attrs);

  // pow(exp(x), y) -> exp(x * y)
  // pow(exp2(x), y) -> exp2(x * y)
  // We enable these only with fast-math. Besides rounding differences, the
  // transformation changes overflow and underflow behavior quite dramatically.
  // Example: x = 1000, y = 0.001.
  // pow(exp(x), y) = pow(inf, 0.001) = inf, whereas exp(x*y) = exp(1).
  auto *BaseFn = dyn_cast<CallInst>(Base);
  if (BaseFn && BaseFn->isFast() && Pow->isFast()) {
    LibFunc LibFn;
    Function *CalleeFn = BaseFn->getCalledFunction();
    if (CalleeFn && TLI->getLibFunc(CalleeFn->getName(), LibFn) &&
        (LibFn == LibFunc_exp || LibFn == LibFunc_exp2) && TLI->has(LibFn)) {
      IRBuilder<>::FastMathFlagGuard Guard(B);
      B.setFastMathFlags(Pow->getFastMathFlags());

      Value *FMul = B.CreateFMul(BaseFn->getArgOperand(0), Expo, "mul");
      return emitUnaryFloatFnCall(FMul, CalleeFn->getName(), B,
                                  CalleeFn->getAttributes());
    }
  }

  // Evaluate special cases related to the exponent.

  if (Value *Sqrt = replacePowWithSqrt(Pow, B))
    return Sqrt;

  ConstantFP *ExpoC = dyn_cast<ConstantFP>(Expo);
  if (!ExpoC)
    return Shrunk;

  // pow(x, -1.0) -> 1.0 / x
  if (ExpoC->isExactlyValue(-1.0))
    return B.CreateFDiv(ConstantFP::get(Ty, 1.0), Base, "reciprocal");

  // pow(x, 0.0) -> 1.0
  if (ExpoC->getValueAPF().isZero())
    return ConstantFP::get(Ty, 1.0);

  // pow(x, 1.0) -> x
  if (ExpoC->isExactlyValue(1.0))
    return Base;

  // pow(x, 2.0) -> x * x
  if (ExpoC->isExactlyValue(2.0))
    return B.CreateFMul(Base, Base, "square");

  // FIXME: Correct the transforms and pull this into replacePowWithSqrt().
  if (ExpoC->isExactlyValue(0.5) &&
      hasUnaryFloatFn(TLI, Ty, LibFunc_sqrt, LibFunc_sqrtf, LibFunc_sqrtl)) {
    // Expand pow(x, 0.5) to (x == -infinity ? +infinity : fabs(sqrt(x))).
    // This is faster than calling pow(), and still handles -0.0 and
    // negative infinity correctly.
    // TODO: In finite-only mode, this could be just fabs(sqrt(x)).
    Value *PosInf = ConstantFP::getInfinity(Ty);
    Value *NegInf = ConstantFP::getInfinity(Ty, true);

    // TODO: As above, we should lower to the sqrt() intrinsic if the pow() is
    // an intrinsic, to match errno semantics.
    Value *Sqrt = emitUnaryFloatFnCall(Base, TLI->getName(LibFunc_sqrt),
                                       B, Attrs);
    Function *FAbsFn = Intrinsic::getDeclaration(Module, Intrinsic::fabs, Ty);
    Value *FAbs = B.CreateCall(FAbsFn, Sqrt, "abs");
    Value *FCmp = B.CreateFCmpOEQ(Base, NegInf, "isinf");
    Sqrt = B.CreateSelect(FCmp, PosInf, FAbs);
    return Sqrt;
  }

  // pow(x, n) -> x * x * x * ....
  if (Pow->isFast()) {
    APFloat ExpoA = abs(ExpoC->getValueAPF());
    // We limit to a max of 7 fmul(s). Thus the maximum exponent is 32.
    // This transformation applies to integer exponents only.
    if (!ExpoA.isInteger() ||
        ExpoA.compare
            (APFloat(ExpoA.getSemantics(), 32.0)) == APFloat::cmpGreaterThan)
      return nullptr;

    // We will memoize intermediate products of the Addition Chain.
    Value *InnerChain[33] = {nullptr};
    InnerChain[1] = Base;
    InnerChain[2] = B.CreateFMul(Base, Base, "square");

    // We cannot readily convert a non-double type (like float) to a double.
    // So we first convert it to something which could be converted to double.
    ExpoA.convert(APFloat::IEEEdouble(), APFloat::rmTowardZero, &Ignored);
    Value *FMul = getPow(InnerChain, ExpoA.convertToDouble(), B);

    // If the exponent is negative, then get the reciprocal.
    if (ExpoC->isNegative())
      FMul = B.CreateFDiv(ConstantFP::get(Ty, 1.0), FMul, "reciprocal");
    return FMul;
  }

  return nullptr;
}

Value *LibCallSimplifier::optimizeExp2(CallInst *CI, IRBuilder<> &B) {
  Function *Callee = CI->getCalledFunction();
  Value *Ret = nullptr;
  StringRef Name = Callee->getName();
  if (UnsafeFPShrink && Name == "exp2" && hasFloatVersion(Name))
    Ret = optimizeUnaryDoubleFP(CI, B, true);

  Value *Op = CI->getArgOperand(0);
  // Turn exp2(sitofp(x)) -> ldexp(1.0, sext(x))  if sizeof(x) <= 32
  // Turn exp2(uitofp(x)) -> ldexp(1.0, zext(x))  if sizeof(x) < 32
  LibFunc LdExp = LibFunc_ldexpl;
  if (Op->getType()->isFloatTy())
    LdExp = LibFunc_ldexpf;
  else if (Op->getType()->isDoubleTy())
    LdExp = LibFunc_ldexp;

  if (TLI->has(LdExp)) {
    Value *LdExpArg = nullptr;
    if (SIToFPInst *OpC = dyn_cast<SIToFPInst>(Op)) {
      if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() <= 32)
        LdExpArg = B.CreateSExt(OpC->getOperand(0), B.getInt32Ty());
    } else if (UIToFPInst *OpC = dyn_cast<UIToFPInst>(Op)) {
      if (OpC->getOperand(0)->getType()->getPrimitiveSizeInBits() < 32)
        LdExpArg = B.CreateZExt(OpC->getOperand(0), B.getInt32Ty());
    }

    if (LdExpArg) {
      Constant *One = ConstantFP::get(CI->getContext(), APFloat(1.0f));
      if (!Op->getType()->isFloatTy())
        One = ConstantExpr::getFPExtend(One, Op->getType());

      Module *M = CI->getModule();
      Value *NewCallee =
          M->getOrInsertFunction(TLI->getName(LdExp), Op->getType(),
                                 Op->getType(), B.getInt32Ty());
      CallInst *CI = B.CreateCall(NewCallee, {One, LdExpArg});
      if (const Function *F = dyn_cast<Function>(Callee->stripPointerCasts()))
        CI->setCallingConv(F->getCallingConv());

      return CI;
    }
  }
  return Ret;
}

Value *LibCallSimplifier::optimizeFMinFMax(CallInst *CI, IRBuilder<> &B) {
  Function *Callee = CI->getCalledFunction();
  // If we can shrink the call to a float function rather than a double
  // function, do that first.
  StringRef Name = Callee->getName();
  if ((Name == "fmin" || Name == "fmax") && hasFloatVersion(Name))
    if (Value *Ret = optimizeBinaryDoubleFP(CI, B))
      return Ret;

  IRBuilder<>::FastMathFlagGuard Guard(B);
  FastMathFlags FMF;
  if (CI->isFast()) {
    // If the call is 'fast', then anything we create here will also be 'fast'.
    FMF.setFast();
  } else {
    // At a minimum, no-nans-fp-math must be true.
    if (!CI->hasNoNaNs())
      return nullptr;
    // No-signed-zeros is implied by the definitions of fmax/fmin themselves:
    // "Ideally, fmax would be sensitive to the sign of zero, for example
    // fmax(-0. 0, +0. 0) would return +0; however, implementation in software
    // might be impractical."
    FMF.setNoSignedZeros();
    FMF.setNoNaNs();
  }
  B.setFastMathFlags(FMF);

  // We have a relaxed floating-point environment. We can ignore NaN-handling
  // and transform to a compare and select. We do not have to consider errno or
  // exceptions, because fmin/fmax do not have those.
  Value *Op0 = CI->getArgOperand(0);
  Value *Op1 = CI->getArgOperand(1);
  Value *Cmp = Callee->getName().startswith("fmin") ?
    B.CreateFCmpOLT(Op0, Op1) : B.CreateFCmpOGT(Op0, Op1);
  return B.CreateSelect(Cmp, Op0, Op1);
}

Value *LibCallSimplifier::optimizeLog(CallInst *CI, IRBuilder<> &B) {
  Function *Callee = CI->getCalledFunction();
  Value *Ret = nullptr;
  StringRef Name = Callee->getName();
  if (UnsafeFPShrink && hasFloatVersion(Name))
    Ret = optimizeUnaryDoubleFP(CI, B, true);

  if (!CI->isFast())
    return Ret;
  Value *Op1 = CI->getArgOperand(0);
  auto *OpC = dyn_cast<CallInst>(Op1);

  // The earlier call must also be 'fast' in order to do these transforms.
  if (!OpC || !OpC->isFast())
    return Ret;

  // log(pow(x,y)) -> y*log(x)
  // This is only applicable to log, log2, log10.
  if (Name != "log" && Name != "log2" && Name != "log10")
    return Ret;

  IRBuilder<>::FastMathFlagGuard Guard(B);
  FastMathFlags FMF;
  FMF.setFast();
  B.setFastMathFlags(FMF);

  LibFunc Func;
  Function *F = OpC->getCalledFunction();
  if (F && ((TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
      Func == LibFunc_pow) || F->getIntrinsicID() == Intrinsic::pow))
    return B.CreateFMul(OpC->getArgOperand(1),
      emitUnaryFloatFnCall(OpC->getOperand(0), Callee->getName(), B,
                           Callee->getAttributes()), "mul");

  // log(exp2(y)) -> y*log(2)
  if (F && Name == "log" && TLI->getLibFunc(F->getName(), Func) &&
      TLI->has(Func) && Func == LibFunc_exp2)
    return B.CreateFMul(
        OpC->getArgOperand(0),
        emitUnaryFloatFnCall(ConstantFP::get(CI->getType(), 2.0),
                             Callee->getName(), B, Callee->getAttributes()),
        "logmul");
  return Ret;
}

Value *LibCallSimplifier::optimizeSqrt(CallInst *CI, IRBuilder<> &B) {
  Function *Callee = CI->getCalledFunction();
  Value *Ret = nullptr;
  // TODO: Once we have a way (other than checking for the existince of the
  // libcall) to tell whether our target can lower @llvm.sqrt, relax the
  // condition below.
  if (TLI->has(LibFunc_sqrtf) && (Callee->getName() == "sqrt" ||
                                  Callee->getIntrinsicID() == Intrinsic::sqrt))
    Ret = optimizeUnaryDoubleFP(CI, B, true);

  if (!CI->isFast())
    return Ret;

  Instruction *I = dyn_cast<Instruction>(CI->getArgOperand(0));
  if (!I || I->getOpcode() != Instruction::FMul || !I->isFast())
    return Ret;

  // We're looking for a repeated factor in a multiplication tree,
  // so we can do this fold: sqrt(x * x) -> fabs(x);
  // or this fold: sqrt((x * x) * y) -> fabs(x) * sqrt(y).
  Value *Op0 = I->getOperand(0);
  Value *Op1 = I->getOperand(1);
  Value *RepeatOp = nullptr;
  Value *OtherOp = nullptr;
  if (Op0 == Op1) {
    // Simple match: the operands of the multiply are identical.
    RepeatOp = Op0;
  } else {
    // Look for a more complicated pattern: one of the operands is itself
    // a multiply, so search for a common factor in that multiply.
    // Note: We don't bother looking any deeper than this first level or for
    // variations of this pattern because instcombine's visitFMUL and/or the
    // reassociation pass should give us this form.
    Value *OtherMul0, *OtherMul1;
    if (match(Op0, m_FMul(m_Value(OtherMul0), m_Value(OtherMul1)))) {
      // Pattern: sqrt((x * y) * z)
      if (OtherMul0 == OtherMul1 && cast<Instruction>(Op0)->isFast()) {
        // Matched: sqrt((x * x) * z)
        RepeatOp = OtherMul0;
        OtherOp = Op1;
      }
    }
  }
  if (!RepeatOp)
    return Ret;

  // Fast math flags for any created instructions should match the sqrt
  // and multiply.
  IRBuilder<>::FastMathFlagGuard Guard(B);
  B.setFastMathFlags(I->getFastMathFlags());

  // If we found a repeated factor, hoist it out of the square root and
  // replace it with the fabs of that factor.
  Module *M = Callee->getParent();
  Type *ArgType = I->getType();
  Value *Fabs = Intrinsic::getDeclaration(M, Intrinsic::fabs, ArgType);
  Value *FabsCall = B.CreateCall(Fabs, RepeatOp, "fabs");
  if (OtherOp) {
    // If we found a non-repeated factor, we still need to get its square
    // root. We then multiply that by the value that was simplified out
    // of the square root calculation.
    Value *Sqrt = Intrinsic::getDeclaration(M, Intrinsic::sqrt, ArgType);
    Value *SqrtCall = B.CreateCall(Sqrt, OtherOp, "sqrt");
    return B.CreateFMul(FabsCall, SqrtCall);
  }
  return FabsCall;
}

// TODO: Generalize to handle any trig function and its inverse.
Value *LibCallSimplifier::optimizeTan(CallInst *CI, IRBuilder<> &B) {
  Function *Callee = CI->getCalledFunction();
  Value *Ret = nullptr;
  StringRef Name = Callee->getName();
  if (UnsafeFPShrink && Name == "tan" && hasFloatVersion(Name))
    Ret = optimizeUnaryDoubleFP(CI, B, true);

  Value *Op1 = CI->getArgOperand(0);
  auto *OpC = dyn_cast<CallInst>(Op1);
  if (!OpC)
    return Ret;

  // Both calls must be 'fast' in order to remove them.
  if (!CI->isFast() || !OpC->isFast())
    return Ret;

  // tan(atan(x)) -> x
  // tanf(atanf(x)) -> x
  // tanl(atanl(x)) -> x
  LibFunc Func;
  Function *F = OpC->getCalledFunction();
  if (F && TLI->getLibFunc(F->getName(), Func) && TLI->has(Func) &&
      ((Func == LibFunc_atan && Callee->getName() == "tan") ||
       (Func == LibFunc_atanf && Callee->getName() == "tanf") ||
       (Func == LibFunc_atanl && Callee->getName() == "tanl")))
    Ret = OpC->getArgOperand(0);
  return Ret;
}

static bool isTrigLibCall(CallInst *CI) {
  // We can only hope to do anything useful if we can ignore things like errno
  // and floating-point exceptions.
  // We already checked the prototype.
  return CI->hasFnAttr(Attribute::NoUnwind) &&
         CI->hasFnAttr(Attribute::ReadNone);
}

static void insertSinCosCall(IRBuilder<> &B, Function *OrigCallee, Value *Arg,
                             bool UseFloat, Value *&Sin, Value *&Cos,
                             Value *&SinCos) {
  Type *ArgTy = Arg->getType();
  Type *ResTy;
  StringRef Name;

  Triple T(OrigCallee->getParent()->getTargetTriple());
  if (UseFloat) {
    Name = "__sincospif_stret";

    assert(T.getArch() != Triple::x86 && "x86 messy and unsupported for now");
    // x86_64 can't use {float, float} since that would be returned in both
    // xmm0 and xmm1, which isn't what a real struct would do.
    ResTy = T.getArch() == Triple::x86_64
                ? static_cast<Type *>(VectorType::get(ArgTy, 2))
                : static_cast<Type *>(StructType::get(ArgTy, ArgTy));
  } else {
    Name = "__sincospi_stret";
    ResTy = StructType::get(ArgTy, ArgTy);
  }

  Module *M = OrigCallee->getParent();
  Value *Callee = M->getOrInsertFunction(Name, OrigCallee->getAttributes(),
                                         ResTy, ArgTy);

  if (Instruction *ArgInst = dyn_cast<Instruction>(Arg)) {
    // If the argument is an instruction, it must dominate all uses so put our
    // sincos call there.
    B.SetInsertPoint(ArgInst->getParent(), ++ArgInst->getIterator());
  } else {
    // Otherwise (e.g. for a constant) the beginning of the function is as
    // good a place as any.
    BasicBlock &EntryBB = B.GetInsertBlock()->getParent()->getEntryBlock();
    B.SetInsertPoint(&EntryBB, EntryBB.begin());
  }

  SinCos = B.CreateCall(Callee, Arg, "sincospi");

  if (SinCos->getType()->isStructTy()) {
    Sin = B.CreateExtractValue(SinCos, 0, "sinpi");
    Cos = B.CreateExtractValue(SinCos, 1, "cospi");
  } else {
    Sin = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 0),
                                 "sinpi");
    Cos = B.CreateExtractElement(SinCos, ConstantInt::get(B.getInt32Ty(), 1),
                                 "cospi");
  }
}

Value *LibCallSimplifier::optimizeSinCosPi(CallInst *CI, IRBuilder<> &B) {
  // Make sure the prototype is as expected, otherwise the rest of the
  // function is probably invalid and likely to abort.
  if (!isTrigLibCall(CI))
    return nullptr;

  Value *Arg = CI->getArgOperand(0);
  SmallVector<CallInst *, 1> SinCalls;
  SmallVector<CallInst *, 1> CosCalls;
  SmallVector<CallInst *, 1> SinCosCalls;

  bool IsFloat = Arg->getType()->isFloatTy();

  // Look for all compatible sinpi, cospi and sincospi calls with the same
  // argument. If there are enough (in some sense) we can make the
  // substitution.
  Function *F = CI->getFunction();
  for (User *U : Arg->users())
    classifyArgUse(U, F, IsFloat, SinCalls, CosCalls, SinCosCalls);

  // It's only worthwhile if both sinpi and cospi are actually used.
  if (SinCosCalls.empty() && (SinCalls.empty() || CosCalls.empty()))
    return nullptr;

  Value *Sin, *Cos, *SinCos;
  insertSinCosCall(B, CI->getCalledFunction(), Arg, IsFloat, Sin, Cos, SinCos);

  auto replaceTrigInsts = [this](SmallVectorImpl<CallInst *> &Calls,
                                 Value *Res) {
    for (CallInst *C : Calls)
      replaceAllUsesWith(C, Res);
  };

  replaceTrigInsts(SinCalls, Sin);
  replaceTrigInsts(CosCalls, Cos);
  replaceTrigInsts(SinCosCalls, SinCos);

  return nullptr;
}

void LibCallSimplifier::classifyArgUse(
    Value *Val, Function *F, bool IsFloat,
    SmallVectorImpl<CallInst *> &SinCalls,
    SmallVectorImpl<CallInst *> &CosCalls,
    SmallVectorImpl<CallInst *> &SinCosCalls) {
  CallInst *CI = dyn_cast<CallInst>(Val);

  if (!CI)
    return;

  // Don't consider calls in other functions.
  if (CI->getFunction() != F)
    return;

  Function *Callee = CI->getCalledFunction();
  LibFunc Func;
  if (!Callee || !TLI->getLibFunc(*Callee, Func) || !TLI->has(Func) ||
      !isTrigLibCall(CI))
    return;

  if (IsFloat) {
    if (Func == LibFunc_sinpif)
      SinCalls.push_back(CI);
    else if (Func == LibFunc_cospif)
      CosCalls.push_back(CI);
    else if (Func == LibFunc_sincospif_stret)
      SinCosCalls.push_back(CI);
  } else {
    if (Func == LibFunc_sinpi)
      SinCalls.push_back(CI);
    else if (Func == LibFunc_cospi)
      CosCalls.push_back(CI);
    else if (Func == LibFunc_sincospi_stret)
      SinCosCalls.push_back(CI);
  }
}

//===----------------------------------------------------------------------===//
// Integer Library Call Optimizations
//===----------------------------------------------------------------------===//

Value *LibCallSimplifier::optimizeFFS(CallInst *CI, IRBuilder<> &B) {
  // ffs(x) -> x != 0 ? (i32)llvm.cttz(x)+1 : 0
  Value *Op = CI->getArgOperand(0);
  Type *ArgType = Op->getType();
  Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
                                       Intrinsic::cttz, ArgType);
  Value *V = B.CreateCall(F, {Op, B.getTrue()}, "cttz");
  V = B.CreateAdd(V, ConstantInt::get(V->getType(), 1));
  V = B.CreateIntCast(V, B.getInt32Ty(), false);

  Value *Cond = B.CreateICmpNE(Op, Constant::getNullValue(ArgType));
  return B.CreateSelect(Cond, V, B.getInt32(0));
}

Value *LibCallSimplifier::optimizeFls(CallInst *CI, IRBuilder<> &B) {
  // fls(x) -> (i32)(sizeInBits(x) - llvm.ctlz(x, false))
  Value *Op = CI->getArgOperand(0);
  Type *ArgType = Op->getType();
  Value *F = Intrinsic::getDeclaration(CI->getCalledFunction()->getParent(),
                                       Intrinsic::ctlz, ArgType);
  Value *V = B.CreateCall(F, {Op, B.getFalse()}, "ctlz");
  V = B.CreateSub(ConstantInt::get(V->getType(), ArgType->getIntegerBitWidth()),
                  V);
  return B.CreateIntCast(V, CI->getType(), false);
}

Value *LibCallSimplifier::optimizeAbs(CallInst *CI, IRBuilder<> &B) {
  // abs(x) -> x <s 0 ? -x : x
  // The negation has 'nsw' because abs of INT_MIN is undefined.
  Value *X = CI->getArgOperand(0);
  Value *IsNeg = B.CreateICmpSLT(X, Constant::getNullValue(X->getType()));
  Value *NegX = B.CreateNSWNeg(X, "neg");
  return B.CreateSelect(IsNeg, NegX, X);
}

Value *LibCallSimplifier::optimizeIsDigit(CallInst *CI, IRBuilder<> &B) {
  // isdigit(c) -> (c-'0') <u 10
  Value *Op = CI->getArgOperand(0);
  Op = B.CreateSub(Op, B.getInt32('0'), "isdigittmp");
  Op = B.CreateICmpULT(Op, B.getInt32(10), "isdigit");
  return B.CreateZExt(Op, CI->getType());
}

Value *LibCallSimplifier::optimizeIsAscii(CallInst *CI, IRBuilder<> &B) {
  // isascii(c) -> c <u 128
  Value *Op = CI->getArgOperand(0);
  Op = B.CreateICmpULT(Op, B.getInt32(128), "isascii");
  return B.CreateZExt(Op, CI->getType());
}

Value *LibCallSimplifier::optimizeToAscii(CallInst *CI, IRBuilder<> &B) {
  // toascii(c) -> c & 0x7f
  return B.CreateAnd(CI->getArgOperand(0),
                     ConstantInt::get(CI->getType(), 0x7F));
}

Value *LibCallSimplifier::optimizeAtoi(CallInst *CI, IRBuilder<> &B) {
  StringRef Str;
  if (!getConstantStringInfo(CI->getArgOperand(0), Str))
    return nullptr;

  return convertStrToNumber(CI, Str, 10);
}

Value *LibCallSimplifier::optimizeStrtol(CallInst *CI, IRBuilder<> &B) {
  StringRef Str;
  if (!getConstantStringInfo(CI->getArgOperand(0), Str))
    return nullptr;

  if (!isa<ConstantPointerNull>(CI->getArgOperand(1)))
    return nullptr;

  if (ConstantInt *CInt = dyn_cast<ConstantInt>(CI->getArgOperand(2))) {
    return convertStrToNumber(CI, Str, CInt->getSExtValue());
  }

  return nullptr;
}

//===----------------------------------------------------------------------===//
// Formatting and IO Library Call Optimizations
//===----------------------------------------------------------------------===//

static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg);

Value *LibCallSimplifier::optimizeErrorReporting(CallInst *CI, IRBuilder<> &B,
                                                 int StreamArg) {
  Function *Callee = CI->getCalledFunction();
  // Error reporting calls should be cold, mark them as such.
  // This applies even to non-builtin calls: it is only a hint and applies to
  // functions that the frontend might not understand as builtins.

  // This heuristic was suggested in:
  // Improving Static Branch Prediction in a Compiler
  // Brian L. Deitrich, Ben-Chung Cheng, Wen-mei W. Hwu
  // Proceedings of PACT'98, Oct. 1998, IEEE
  if (!CI->hasFnAttr(Attribute::Cold) &&
      isReportingError(Callee, CI, StreamArg)) {
    CI->addAttribute(AttributeList::FunctionIndex, Attribute::Cold);
  }

  return nullptr;
}

static bool isReportingError(Function *Callee, CallInst *CI, int StreamArg) {
  if (!Callee || !Callee->isDeclaration())
    return false;

  if (StreamArg < 0)
    return true;

  // These functions might be considered cold, but only if their stream
  // argument is stderr.

  if (StreamArg >= (int)CI->getNumArgOperands())
    return false;
  LoadInst *LI = dyn_cast<LoadInst>(CI->getArgOperand(StreamArg));
  if (!LI)
    return false;
  GlobalVariable *GV = dyn_cast<GlobalVariable>(LI->getPointerOperand());
  if (!GV || !GV->isDeclaration())
    return false;
  return GV->getName() == "stderr";
}

Value *LibCallSimplifier::optimizePrintFString(CallInst *CI, IRBuilder<> &B) {
  // Check for a fixed format string.
  StringRef FormatStr;
  if (!getConstantStringInfo(CI->getArgOperand(0), FormatStr))
    return nullptr;

  // Empty format string -> noop.
  if (FormatStr.empty()) // Tolerate printf's declared void.
    return CI->use_empty() ? (Value *)CI : ConstantInt::get(CI->getType(), 0);

  // Do not do any of the following transformations if the printf return value
  // is used, in general the printf return value is not compatible with either
  // putchar() or puts().
  if (!CI->use_empty())
    return nullptr;

  // printf("x") -> putchar('x'), even for "%" and "%%".
  if (FormatStr.size() == 1 || FormatStr == "%%")
    return emitPutChar(B.getInt32(FormatStr[0]), B, TLI);

  // printf("%s", "a") --> putchar('a')
  if (FormatStr == "%s" && CI->getNumArgOperands() > 1) {
    StringRef ChrStr;
    if (!getConstantStringInfo(CI->getOperand(1), ChrStr))
      return nullptr;
    if (ChrStr.size() != 1)
      return nullptr;
    return emitPutChar(B.getInt32(ChrStr[0]), B, TLI);
  }

  // printf("foo\n") --> puts("foo")
  if (FormatStr[FormatStr.size() - 1] == '\n' &&
      FormatStr.find('%') == StringRef::npos) { // No format characters.
    // Create a string literal with no \n on it.  We expect the constant merge
    // pass to be run after this pass, to merge duplicate strings.
    FormatStr = FormatStr.drop_back();
    Value *GV = B.CreateGlobalString(FormatStr, "str");
    return emitPutS(GV, B, TLI);
  }

  // Optimize specific format strings.
  // printf("%c", chr) --> putchar(chr)
  if (FormatStr == "%c" && CI->getNumArgOperands() > 1 &&
      CI->getArgOperand(1)->getType()->isIntegerTy())
    return emitPutChar(CI->getArgOperand(1), B, TLI);

  // printf("%s\n", str) --> puts(str)
  if (FormatStr == "%s\n" && CI->getNumArgOperands() > 1 &&
      CI->getArgOperand(1)->getType()->isPointerTy())
    return emitPutS(CI->getArgOperand(1), B, TLI);
  return nullptr;
}

Value *LibCallSimplifier::optimizePrintF(CallInst *CI, IRBuilder<> &B) {

  Function *Callee = CI->getCalledFunction();
  FunctionType *FT = Callee->getFunctionType();
  if (Value *V = optimizePrintFString(CI, B)) {
    return V;
  }

  // printf(format, ...) -> iprintf(format, ...) if no floating point
  // arguments.
  if (TLI->has(LibFunc_iprintf) && !callHasFloatingPointArgument(CI)) {
    Module *M = B.GetInsertBlock()->getParent()->getParent();
    Constant *IPrintFFn =
        M->getOrInsertFunction("iprintf", FT, Callee->getAttributes());
    CallInst *New = cast<CallInst>(CI->clone());
    New->setCalledFunction(IPrintFFn);
    B.Insert(New);
    return New;
  }
  return nullptr;
}

Value *LibCallSimplifier::optimizeSPrintFString(CallInst *CI, IRBuilder<> &B) {
  // Check for a fixed format string.
  StringRef FormatStr;
  if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
    return nullptr;

  // If we just have a format string (nothing else crazy) transform it.
  if (CI->getNumArgOperands() == 2) {
    // Make sure there's no % in the constant array.  We could try to handle
    // %% -> % in the future if we cared.
    if (FormatStr.find('%') != StringRef::npos)
      return nullptr; // we found a format specifier, bail out.

    // sprintf(str, fmt) -> llvm.memcpy(align 1 str, align 1 fmt, strlen(fmt)+1)
    B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
                   ConstantInt::get(DL.getIntPtrType(CI->getContext()),
                                    FormatStr.size() + 1)); // Copy the null byte.
    return ConstantInt::get(CI->getType(), FormatStr.size());
  }

  // The remaining optimizations require the format string to be "%s" or "%c"
  // and have an extra operand.
  if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
      CI->getNumArgOperands() < 3)
    return nullptr;

  // Decode the second character of the format string.
  if (FormatStr[1] == 'c') {
    // sprintf(dst, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
    if (!CI->getArgOperand(2)->getType()->isIntegerTy())
      return nullptr;
    Value *V = B.CreateTrunc(CI->getArgOperand(2), B.getInt8Ty(), "char");
    Value *Ptr = castToCStr(CI->getArgOperand(0), B);
    B.CreateStore(V, Ptr);
    Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
    B.CreateStore(B.getInt8(0), Ptr);

    return ConstantInt::get(CI->getType(), 1);
  }

  if (FormatStr[1] == 's') {
    // sprintf(dest, "%s", str) -> llvm.memcpy(dest, str, strlen(str)+1, 1)
    if (!CI->getArgOperand(2)->getType()->isPointerTy())
      return nullptr;

    Value *Len = emitStrLen(CI->getArgOperand(2), B, DL, TLI);
    if (!Len)
      return nullptr;
    Value *IncLen =
        B.CreateAdd(Len, ConstantInt::get(Len->getType(), 1), "leninc");
    B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(2), 1, IncLen);

    // The sprintf result is the unincremented number of bytes in the string.
    return B.CreateIntCast(Len, CI->getType(), false);
  }
  return nullptr;
}

Value *LibCallSimplifier::optimizeSPrintF(CallInst *CI, IRBuilder<> &B) {
  Function *Callee = CI->getCalledFunction();
  FunctionType *FT = Callee->getFunctionType();
  if (Value *V = optimizeSPrintFString(CI, B)) {
    return V;
  }

  // sprintf(str, format, ...) -> siprintf(str, format, ...) if no floating
  // point arguments.
  if (TLI->has(LibFunc_siprintf) && !callHasFloatingPointArgument(CI)) {
    Module *M = B.GetInsertBlock()->getParent()->getParent();
    Constant *SIPrintFFn =
        M->getOrInsertFunction("siprintf", FT, Callee->getAttributes());
    CallInst *New = cast<CallInst>(CI->clone());
    New->setCalledFunction(SIPrintFFn);
    B.Insert(New);
    return New;
  }
  return nullptr;
}

Value *LibCallSimplifier::optimizeSnPrintFString(CallInst *CI, IRBuilder<> &B) {
  // Check for a fixed format string.
  StringRef FormatStr;
  if (!getConstantStringInfo(CI->getArgOperand(2), FormatStr))
    return nullptr;

  // Check for size
  ConstantInt *Size = dyn_cast<ConstantInt>(CI->getArgOperand(1));
  if (!Size)
    return nullptr;

  uint64_t N = Size->getZExtValue();

  // If we just have a format string (nothing else crazy) transform it.
  if (CI->getNumArgOperands() == 3) {
    // Make sure there's no % in the constant array.  We could try to handle
    // %% -> % in the future if we cared.
    if (FormatStr.find('%') != StringRef::npos)
      return nullptr; // we found a format specifier, bail out.

    if (N == 0)
      return ConstantInt::get(CI->getType(), FormatStr.size());
    else if (N < FormatStr.size() + 1)
      return nullptr;

    // sprintf(str, size, fmt) -> llvm.memcpy(align 1 str, align 1 fmt,
    // strlen(fmt)+1)
    B.CreateMemCpy(
        CI->getArgOperand(0), 1, CI->getArgOperand(2), 1,
        ConstantInt::get(DL.getIntPtrType(CI->getContext()),
                         FormatStr.size() + 1)); // Copy the null byte.
    return ConstantInt::get(CI->getType(), FormatStr.size());
  }

  // The remaining optimizations require the format string to be "%s" or "%c"
  // and have an extra operand.
  if (FormatStr.size() == 2 && FormatStr[0] == '%' &&
      CI->getNumArgOperands() == 4) {

    // Decode the second character of the format string.
    if (FormatStr[1] == 'c') {
      if (N == 0)
        return ConstantInt::get(CI->getType(), 1);
      else if (N == 1)
        return nullptr;

      // snprintf(dst, size, "%c", chr) --> *(i8*)dst = chr; *((i8*)dst+1) = 0
      if (!CI->getArgOperand(3)->getType()->isIntegerTy())
        return nullptr;
      Value *V = B.CreateTrunc(CI->getArgOperand(3), B.getInt8Ty(), "char");
      Value *Ptr = castToCStr(CI->getArgOperand(0), B);
      B.CreateStore(V, Ptr);
      Ptr = B.CreateGEP(B.getInt8Ty(), Ptr, B.getInt32(1), "nul");
      B.CreateStore(B.getInt8(0), Ptr);

      return ConstantInt::get(CI->getType(), 1);
    }

    if (FormatStr[1] == 's') {
      // snprintf(dest, size, "%s", str) to llvm.memcpy(dest, str, len+1, 1)
      StringRef Str;
      if (!getConstantStringInfo(CI->getArgOperand(3), Str))
        return nullptr;

      if (N == 0)
        return ConstantInt::get(CI->getType(), Str.size());
      else if (N < Str.size() + 1)
        return nullptr;

      B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(3), 1,
                     ConstantInt::get(CI->getType(), Str.size() + 1));

      // The snprintf result is the unincremented number of bytes in the string.
      return ConstantInt::get(CI->getType(), Str.size());
    }
  }
  return nullptr;
}

Value *LibCallSimplifier::optimizeSnPrintF(CallInst *CI, IRBuilder<> &B) {
  if (Value *V = optimizeSnPrintFString(CI, B)) {
    return V;
  }

  return nullptr;
}

Value *LibCallSimplifier::optimizeFPrintFString(CallInst *CI, IRBuilder<> &B) {
  optimizeErrorReporting(CI, B, 0);

  // All the optimizations depend on the format string.
  StringRef FormatStr;
  if (!getConstantStringInfo(CI->getArgOperand(1), FormatStr))
    return nullptr;

  // Do not do any of the following transformations if the fprintf return
  // value is used, in general the fprintf return value is not compatible
  // with fwrite(), fputc() or fputs().
  if (!CI->use_empty())
    return nullptr;

  // fprintf(F, "foo") --> fwrite("foo", 3, 1, F)
  if (CI->getNumArgOperands() == 2) {
    // Could handle %% -> % if we cared.
    if (FormatStr.find('%') != StringRef::npos)
      return nullptr; // We found a format specifier.

    return emitFWrite(
        CI->getArgOperand(1),
        ConstantInt::get(DL.getIntPtrType(CI->getContext()), FormatStr.size()),
        CI->getArgOperand(0), B, DL, TLI);
  }

  // The remaining optimizations require the format string to be "%s" or "%c"
  // and have an extra operand.
  if (FormatStr.size() != 2 || FormatStr[0] != '%' ||
      CI->getNumArgOperands() < 3)
    return nullptr;

  // Decode the second character of the format string.
  if (FormatStr[1] == 'c') {
    // fprintf(F, "%c", chr) --> fputc(chr, F)
    if (!CI->getArgOperand(2)->getType()->isIntegerTy())
      return nullptr;
    return emitFPutC(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
  }

  if (FormatStr[1] == 's') {
    // fprintf(F, "%s", str) --> fputs(str, F)
    if (!CI->getArgOperand(2)->getType()->isPointerTy())
      return nullptr;
    return emitFPutS(CI->getArgOperand(2), CI->getArgOperand(0), B, TLI);
  }
  return nullptr;
}

Value *LibCallSimplifier::optimizeFPrintF(CallInst *CI, IRBuilder<> &B) {
  Function *Callee = CI->getCalledFunction();
  FunctionType *FT = Callee->getFunctionType();
  if (Value *V = optimizeFPrintFString(CI, B)) {
    return V;
  }

  // fprintf(stream, format, ...) -> fiprintf(stream, format, ...) if no
  // floating point arguments.
  if (TLI->has(LibFunc_fiprintf) && !callHasFloatingPointArgument(CI)) {
    Module *M = B.GetInsertBlock()->getParent()->getParent();
    Constant *FIPrintFFn =
        M->getOrInsertFunction("fiprintf", FT, Callee->getAttributes());
    CallInst *New = cast<CallInst>(CI->clone());
    New->setCalledFunction(FIPrintFFn);
    B.Insert(New);
    return New;
  }
  return nullptr;
}

Value *LibCallSimplifier::optimizeFWrite(CallInst *CI, IRBuilder<> &B) {
  optimizeErrorReporting(CI, B, 3);

  // Get the element size and count.
  ConstantInt *SizeC = dyn_cast<ConstantInt>(CI->getArgOperand(1));
  ConstantInt *CountC = dyn_cast<ConstantInt>(CI->getArgOperand(2));
  if (SizeC && CountC) {
    uint64_t Bytes = SizeC->getZExtValue() * CountC->getZExtValue();

    // If this is writing zero records, remove the call (it's a noop).
    if (Bytes == 0)
      return ConstantInt::get(CI->getType(), 0);

    // If this is writing one byte, turn it into fputc.
    // This optimisation is only valid, if the return value is unused.
    if (Bytes == 1 && CI->use_empty()) { // fwrite(S,1,1,F) -> fputc(S[0],F)
      Value *Char = B.CreateLoad(castToCStr(CI->getArgOperand(0), B), "char");
      Value *NewCI = emitFPutC(Char, CI->getArgOperand(3), B, TLI);
      return NewCI ? ConstantInt::get(CI->getType(), 1) : nullptr;
    }
  }

  if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
    return emitFWriteUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
                              CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
                              TLI);

  return nullptr;
}

Value *LibCallSimplifier::optimizeFPuts(CallInst *CI, IRBuilder<> &B) {
  optimizeErrorReporting(CI, B, 1);

  // Don't rewrite fputs to fwrite when optimising for size because fwrite
  // requires more arguments and thus extra MOVs are required.
  if (CI->getFunction()->optForSize())
    return nullptr;

  // Check if has any use
  if (!CI->use_empty()) {
    if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
      return emitFPutSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
                               TLI);
    else
      // We can't optimize if return value is used.
      return nullptr;
  }

  // fputs(s,F) --> fwrite(s,1,strlen(s),F)
  uint64_t Len = GetStringLength(CI->getArgOperand(0));
  if (!Len)
    return nullptr;

  // Known to have no uses (see above).
  return emitFWrite(
      CI->getArgOperand(0),
      ConstantInt::get(DL.getIntPtrType(CI->getContext()), Len - 1),
      CI->getArgOperand(1), B, DL, TLI);
}

Value *LibCallSimplifier::optimizeFPutc(CallInst *CI, IRBuilder<> &B) {
  optimizeErrorReporting(CI, B, 1);

  if (isLocallyOpenedFile(CI->getArgOperand(1), CI, B, TLI))
    return emitFPutCUnlocked(CI->getArgOperand(0), CI->getArgOperand(1), B,
                             TLI);

  return nullptr;
}

Value *LibCallSimplifier::optimizeFGetc(CallInst *CI, IRBuilder<> &B) {
  if (isLocallyOpenedFile(CI->getArgOperand(0), CI, B, TLI))
    return emitFGetCUnlocked(CI->getArgOperand(0), B, TLI);

  return nullptr;
}

Value *LibCallSimplifier::optimizeFGets(CallInst *CI, IRBuilder<> &B) {
  if (isLocallyOpenedFile(CI->getArgOperand(2), CI, B, TLI))
    return emitFGetSUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
                             CI->getArgOperand(2), B, TLI);

  return nullptr;
}

Value *LibCallSimplifier::optimizeFRead(CallInst *CI, IRBuilder<> &B) {
  if (isLocallyOpenedFile(CI->getArgOperand(3), CI, B, TLI))
    return emitFReadUnlocked(CI->getArgOperand(0), CI->getArgOperand(1),
                             CI->getArgOperand(2), CI->getArgOperand(3), B, DL,
                             TLI);

  return nullptr;
}

Value *LibCallSimplifier::optimizePuts(CallInst *CI, IRBuilder<> &B) {
  // Check for a constant string.
  StringRef Str;
  if (!getConstantStringInfo(CI->getArgOperand(0), Str))
    return nullptr;

  if (Str.empty() && CI->use_empty()) {
    // puts("") -> putchar('\n')
    Value *Res = emitPutChar(B.getInt32('\n'), B, TLI);
    if (CI->use_empty() || !Res)
      return Res;
    return B.CreateIntCast(Res, CI->getType(), true);
  }

  return nullptr;
}

bool LibCallSimplifier::hasFloatVersion(StringRef FuncName) {
  LibFunc Func;
  SmallString<20> FloatFuncName = FuncName;
  FloatFuncName += 'f';
  if (TLI->getLibFunc(FloatFuncName, Func))
    return TLI->has(Func);
  return false;
}

Value *LibCallSimplifier::optimizeStringMemoryLibCall(CallInst *CI,
                                                      IRBuilder<> &Builder) {
  LibFunc Func;
  Function *Callee = CI->getCalledFunction();
  // Check for string/memory library functions.
  if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
    // Make sure we never change the calling convention.
    assert((ignoreCallingConv(Func) ||
            isCallingConvCCompatible(CI)) &&
      "Optimizing string/memory libcall would change the calling convention");
    switch (Func) {
    case LibFunc_strcat:
      return optimizeStrCat(CI, Builder);
    case LibFunc_strncat:
      return optimizeStrNCat(CI, Builder);
    case LibFunc_strchr:
      return optimizeStrChr(CI, Builder);
    case LibFunc_strrchr:
      return optimizeStrRChr(CI, Builder);
    case LibFunc_strcmp:
      return optimizeStrCmp(CI, Builder);
    case LibFunc_strncmp:
      return optimizeStrNCmp(CI, Builder);
    case LibFunc_strcpy:
      return optimizeStrCpy(CI, Builder);
    case LibFunc_stpcpy:
      return optimizeStpCpy(CI, Builder);
    case LibFunc_strncpy:
      return optimizeStrNCpy(CI, Builder);
    case LibFunc_strlen:
      return optimizeStrLen(CI, Builder);
    case LibFunc_strpbrk:
      return optimizeStrPBrk(CI, Builder);
    case LibFunc_strtol:
    case LibFunc_strtod:
    case LibFunc_strtof:
    case LibFunc_strtoul:
    case LibFunc_strtoll:
    case LibFunc_strtold:
    case LibFunc_strtoull:
      return optimizeStrTo(CI, Builder);
    case LibFunc_strspn:
      return optimizeStrSpn(CI, Builder);
    case LibFunc_strcspn:
      return optimizeStrCSpn(CI, Builder);
    case LibFunc_strstr:
      return optimizeStrStr(CI, Builder);
    case LibFunc_memchr:
      return optimizeMemChr(CI, Builder);
    case LibFunc_memcmp:
      return optimizeMemCmp(CI, Builder);
    case LibFunc_memcpy:
      return optimizeMemCpy(CI, Builder);
    case LibFunc_memmove:
      return optimizeMemMove(CI, Builder);
    case LibFunc_memset:
      return optimizeMemSet(CI, Builder);
    case LibFunc_realloc:
      return optimizeRealloc(CI, Builder);
    case LibFunc_wcslen:
      return optimizeWcslen(CI, Builder);
    default:
      break;
    }
  }
  return nullptr;
}

Value *LibCallSimplifier::optimizeFloatingPointLibCall(CallInst *CI,
                                                       LibFunc Func,
                                                       IRBuilder<> &Builder) {
  // Don't optimize calls that require strict floating point semantics.
  if (CI->isStrictFP())
    return nullptr;

  switch (Func) {
  case LibFunc_cosf:
  case LibFunc_cos:
  case LibFunc_cosl:
    return optimizeCos(CI, Builder);
  case LibFunc_sinpif:
  case LibFunc_sinpi:
  case LibFunc_cospif:
  case LibFunc_cospi:
    return optimizeSinCosPi(CI, Builder);
  case LibFunc_powf:
  case LibFunc_pow:
  case LibFunc_powl:
    return optimizePow(CI, Builder);
  case LibFunc_exp2l:
  case LibFunc_exp2:
  case LibFunc_exp2f:
    return optimizeExp2(CI, Builder);
  case LibFunc_fabsf:
  case LibFunc_fabs:
  case LibFunc_fabsl:
    return replaceUnaryCall(CI, Builder, Intrinsic::fabs);
  case LibFunc_sqrtf:
  case LibFunc_sqrt:
  case LibFunc_sqrtl:
    return optimizeSqrt(CI, Builder);
  case LibFunc_log:
  case LibFunc_log10:
  case LibFunc_log1p:
  case LibFunc_log2:
  case LibFunc_logb:
    return optimizeLog(CI, Builder);
  case LibFunc_tan:
  case LibFunc_tanf:
  case LibFunc_tanl:
    return optimizeTan(CI, Builder);
  case LibFunc_ceil:
    return replaceUnaryCall(CI, Builder, Intrinsic::ceil);
  case LibFunc_floor:
    return replaceUnaryCall(CI, Builder, Intrinsic::floor);
  case LibFunc_round:
    return replaceUnaryCall(CI, Builder, Intrinsic::round);
  case LibFunc_nearbyint:
    return replaceUnaryCall(CI, Builder, Intrinsic::nearbyint);
  case LibFunc_rint:
    return replaceUnaryCall(CI, Builder, Intrinsic::rint);
  case LibFunc_trunc:
    return replaceUnaryCall(CI, Builder, Intrinsic::trunc);
  case LibFunc_acos:
  case LibFunc_acosh:
  case LibFunc_asin:
  case LibFunc_asinh:
  case LibFunc_atan:
  case LibFunc_atanh:
  case LibFunc_cbrt:
  case LibFunc_cosh:
  case LibFunc_exp:
  case LibFunc_exp10:
  case LibFunc_expm1:
  case LibFunc_sin:
  case LibFunc_sinh:
  case LibFunc_tanh:
    if (UnsafeFPShrink && hasFloatVersion(CI->getCalledFunction()->getName()))
      return optimizeUnaryDoubleFP(CI, Builder, true);
    return nullptr;
  case LibFunc_copysign:
    if (hasFloatVersion(CI->getCalledFunction()->getName()))
      return optimizeBinaryDoubleFP(CI, Builder);
    return nullptr;
  case LibFunc_fminf:
  case LibFunc_fmin:
  case LibFunc_fminl:
  case LibFunc_fmaxf:
  case LibFunc_fmax:
  case LibFunc_fmaxl:
    return optimizeFMinFMax(CI, Builder);
  case LibFunc_cabs:
  case LibFunc_cabsf:
  case LibFunc_cabsl:
    return optimizeCAbs(CI, Builder);
  default:
    return nullptr;
  }
}

Value *LibCallSimplifier::optimizeCall(CallInst *CI) {
  // TODO: Split out the code below that operates on FP calls so that
  //       we can all non-FP calls with the StrictFP attribute to be
  //       optimized.
  if (CI->isNoBuiltin())
    return nullptr;

  LibFunc Func;
  Function *Callee = CI->getCalledFunction();

  SmallVector<OperandBundleDef, 2> OpBundles;
  CI->getOperandBundlesAsDefs(OpBundles);
  IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
  bool isCallingConvC = isCallingConvCCompatible(CI);

  // Command-line parameter overrides instruction attribute.
  // This can't be moved to optimizeFloatingPointLibCall() because it may be
  // used by the intrinsic optimizations.
  if (EnableUnsafeFPShrink.getNumOccurrences() > 0)
    UnsafeFPShrink = EnableUnsafeFPShrink;
  else if (isa<FPMathOperator>(CI) && CI->isFast())
    UnsafeFPShrink = true;

  // First, check for intrinsics.
  if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(CI)) {
    if (!isCallingConvC)
      return nullptr;
    // The FP intrinsics have corresponding constrained versions so we don't
    // need to check for the StrictFP attribute here.
    switch (II->getIntrinsicID()) {
    case Intrinsic::pow:
      return optimizePow(CI, Builder);
    case Intrinsic::exp2:
      return optimizeExp2(CI, Builder);
    case Intrinsic::log:
      return optimizeLog(CI, Builder);
    case Intrinsic::sqrt:
      return optimizeSqrt(CI, Builder);
    // TODO: Use foldMallocMemset() with memset intrinsic.
    default:
      return nullptr;
    }
  }

  // Also try to simplify calls to fortified library functions.
  if (Value *SimplifiedFortifiedCI = FortifiedSimplifier.optimizeCall(CI)) {
    // Try to further simplify the result.
    CallInst *SimplifiedCI = dyn_cast<CallInst>(SimplifiedFortifiedCI);
    if (SimplifiedCI && SimplifiedCI->getCalledFunction()) {
      // Use an IR Builder from SimplifiedCI if available instead of CI
      // to guarantee we reach all uses we might replace later on.
      IRBuilder<> TmpBuilder(SimplifiedCI);
      if (Value *V = optimizeStringMemoryLibCall(SimplifiedCI, TmpBuilder)) {
        // If we were able to further simplify, remove the now redundant call.
        SimplifiedCI->replaceAllUsesWith(V);
        SimplifiedCI->eraseFromParent();
        return V;
      }
    }
    return SimplifiedFortifiedCI;
  }

  // Then check for known library functions.
  if (TLI->getLibFunc(*Callee, Func) && TLI->has(Func)) {
    // We never change the calling convention.
    if (!ignoreCallingConv(Func) && !isCallingConvC)
      return nullptr;
    if (Value *V = optimizeStringMemoryLibCall(CI, Builder))
      return V;
    if (Value *V = optimizeFloatingPointLibCall(CI, Func, Builder))
      return V;
    switch (Func) {
    case LibFunc_ffs:
    case LibFunc_ffsl:
    case LibFunc_ffsll:
      return optimizeFFS(CI, Builder);
    case LibFunc_fls:
    case LibFunc_flsl:
    case LibFunc_flsll:
      return optimizeFls(CI, Builder);
    case LibFunc_abs:
    case LibFunc_labs:
    case LibFunc_llabs:
      return optimizeAbs(CI, Builder);
    case LibFunc_isdigit:
      return optimizeIsDigit(CI, Builder);
    case LibFunc_isascii:
      return optimizeIsAscii(CI, Builder);
    case LibFunc_toascii:
      return optimizeToAscii(CI, Builder);
    case LibFunc_atoi:
    case LibFunc_atol:
    case LibFunc_atoll:
      return optimizeAtoi(CI, Builder);
    case LibFunc_strtol:
    case LibFunc_strtoll:
      return optimizeStrtol(CI, Builder);
    case LibFunc_printf:
      return optimizePrintF(CI, Builder);
    case LibFunc_sprintf:
      return optimizeSPrintF(CI, Builder);
    case LibFunc_snprintf:
      return optimizeSnPrintF(CI, Builder);
    case LibFunc_fprintf:
      return optimizeFPrintF(CI, Builder);
    case LibFunc_fwrite:
      return optimizeFWrite(CI, Builder);
    case LibFunc_fread:
      return optimizeFRead(CI, Builder);
    case LibFunc_fputs:
      return optimizeFPuts(CI, Builder);
    case LibFunc_fgets:
      return optimizeFGets(CI, Builder);
    case LibFunc_fputc:
      return optimizeFPutc(CI, Builder);
    case LibFunc_fgetc:
      return optimizeFGetc(CI, Builder);
    case LibFunc_puts:
      return optimizePuts(CI, Builder);
    case LibFunc_perror:
      return optimizeErrorReporting(CI, Builder);
    case LibFunc_vfprintf:
    case LibFunc_fiprintf:
      return optimizeErrorReporting(CI, Builder, 0);
    default:
      return nullptr;
    }
  }
  return nullptr;
}

LibCallSimplifier::LibCallSimplifier(
    const DataLayout &DL, const TargetLibraryInfo *TLI,
    OptimizationRemarkEmitter &ORE,
    function_ref<void(Instruction *, Value *)> Replacer)
    : FortifiedSimplifier(TLI), DL(DL), TLI(TLI), ORE(ORE),
      UnsafeFPShrink(false), Replacer(Replacer) {}

void LibCallSimplifier::replaceAllUsesWith(Instruction *I, Value *With) {
  // Indirect through the replacer used in this instance.
  Replacer(I, With);
}

// TODO:
//   Additional cases that we need to add to this file:
//
// cbrt:
//   * cbrt(expN(X))  -> expN(x/3)
//   * cbrt(sqrt(x))  -> pow(x,1/6)
//   * cbrt(cbrt(x))  -> pow(x,1/9)
//
// exp, expf, expl:
//   * exp(log(x))  -> x
//
// log, logf, logl:
//   * log(exp(x))   -> x
//   * log(exp(y))   -> y*log(e)
//   * log(exp10(y)) -> y*log(10)
//   * log(sqrt(x))  -> 0.5*log(x)
//
// pow, powf, powl:
//   * pow(sqrt(x),y) -> pow(x,y*0.5)
//   * pow(pow(x,y),z)-> pow(x,y*z)
//
// signbit:
//   * signbit(cnst) -> cnst'
//   * signbit(nncst) -> 0 (if pstv is a non-negative constant)
//
// sqrt, sqrtf, sqrtl:
//   * sqrt(expN(x))  -> expN(x*0.5)
//   * sqrt(Nroot(x)) -> pow(x,1/(2*N))
//   * sqrt(pow(x,y)) -> pow(|x|,y*0.5)
//

//===----------------------------------------------------------------------===//
// Fortified Library Call Optimizations
//===----------------------------------------------------------------------===//

bool FortifiedLibCallSimplifier::isFortifiedCallFoldable(CallInst *CI,
                                                         unsigned ObjSizeOp,
                                                         unsigned SizeOp,
                                                         bool isString) {
  if (CI->getArgOperand(ObjSizeOp) == CI->getArgOperand(SizeOp))
    return true;
  if (ConstantInt *ObjSizeCI =
          dyn_cast<ConstantInt>(CI->getArgOperand(ObjSizeOp))) {
    if (ObjSizeCI->isMinusOne())
      return true;
    // If the object size wasn't -1 (unknown), bail out if we were asked to.
    if (OnlyLowerUnknownSize)
      return false;
    if (isString) {
      uint64_t Len = GetStringLength(CI->getArgOperand(SizeOp));
      // If the length is 0 we don't know how long it is and so we can't
      // remove the check.
      if (Len == 0)
        return false;
      return ObjSizeCI->getZExtValue() >= Len;
    }
    if (ConstantInt *SizeCI = dyn_cast<ConstantInt>(CI->getArgOperand(SizeOp)))
      return ObjSizeCI->getZExtValue() >= SizeCI->getZExtValue();
  }
  return false;
}

Value *FortifiedLibCallSimplifier::optimizeMemCpyChk(CallInst *CI,
                                                     IRBuilder<> &B) {
  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
    B.CreateMemCpy(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
                   CI->getArgOperand(2));
    return CI->getArgOperand(0);
  }
  return nullptr;
}

Value *FortifiedLibCallSimplifier::optimizeMemMoveChk(CallInst *CI,
                                                      IRBuilder<> &B) {
  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
    B.CreateMemMove(CI->getArgOperand(0), 1, CI->getArgOperand(1), 1,
                    CI->getArgOperand(2));
    return CI->getArgOperand(0);
  }
  return nullptr;
}

Value *FortifiedLibCallSimplifier::optimizeMemSetChk(CallInst *CI,
                                                     IRBuilder<> &B) {
  // TODO: Try foldMallocMemset() here.

  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
    Value *Val = B.CreateIntCast(CI->getArgOperand(1), B.getInt8Ty(), false);
    B.CreateMemSet(CI->getArgOperand(0), Val, CI->getArgOperand(2), 1);
    return CI->getArgOperand(0);
  }
  return nullptr;
}

Value *FortifiedLibCallSimplifier::optimizeStrpCpyChk(CallInst *CI,
                                                      IRBuilder<> &B,
                                                      LibFunc Func) {
  Function *Callee = CI->getCalledFunction();
  StringRef Name = Callee->getName();
  const DataLayout &DL = CI->getModule()->getDataLayout();
  Value *Dst = CI->getArgOperand(0), *Src = CI->getArgOperand(1),
        *ObjSize = CI->getArgOperand(2);

  // __stpcpy_chk(x,x,...)  -> x+strlen(x)
  if (Func == LibFunc_stpcpy_chk && !OnlyLowerUnknownSize && Dst == Src) {
    Value *StrLen = emitStrLen(Src, B, DL, TLI);
    return StrLen ? B.CreateInBoundsGEP(B.getInt8Ty(), Dst, StrLen) : nullptr;
  }

  // If a) we don't have any length information, or b) we know this will
  // fit then just lower to a plain st[rp]cpy. Otherwise we'll keep our
  // st[rp]cpy_chk call which may fail at runtime if the size is too long.
  // TODO: It might be nice to get a maximum length out of the possible
  // string lengths for varying.
  if (isFortifiedCallFoldable(CI, 2, 1, true))
    return emitStrCpy(Dst, Src, B, TLI, Name.substr(2, 6));

  if (OnlyLowerUnknownSize)
    return nullptr;

  // Maybe we can stil fold __st[rp]cpy_chk to __memcpy_chk.
  uint64_t Len = GetStringLength(Src);
  if (Len == 0)
    return nullptr;

  Type *SizeTTy = DL.getIntPtrType(CI->getContext());
  Value *LenV = ConstantInt::get(SizeTTy, Len);
  Value *Ret = emitMemCpyChk(Dst, Src, LenV, ObjSize, B, DL, TLI);
  // If the function was an __stpcpy_chk, and we were able to fold it into
  // a __memcpy_chk, we still need to return the correct end pointer.
  if (Ret && Func == LibFunc_stpcpy_chk)
    return B.CreateGEP(B.getInt8Ty(), Dst, ConstantInt::get(SizeTTy, Len - 1));
  return Ret;
}

Value *FortifiedLibCallSimplifier::optimizeStrpNCpyChk(CallInst *CI,
                                                       IRBuilder<> &B,
                                                       LibFunc Func) {
  Function *Callee = CI->getCalledFunction();
  StringRef Name = Callee->getName();
  if (isFortifiedCallFoldable(CI, 3, 2, false)) {
    Value *Ret = emitStrNCpy(CI->getArgOperand(0), CI->getArgOperand(1),
                             CI->getArgOperand(2), B, TLI, Name.substr(2, 7));
    return Ret;
  }
  return nullptr;
}

Value *FortifiedLibCallSimplifier::optimizeCall(CallInst *CI) {
  // FIXME: We shouldn't be changing "nobuiltin" or TLI unavailable calls here.
  // Some clang users checked for _chk libcall availability using:
  //   __has_builtin(__builtin___memcpy_chk)
  // When compiling with -fno-builtin, this is always true.
  // When passing -ffreestanding/-mkernel, which both imply -fno-builtin, we
  // end up with fortified libcalls, which isn't acceptable in a freestanding
  // environment which only provides their non-fortified counterparts.
  //
  // Until we change clang and/or teach external users to check for availability
  // differently, disregard the "nobuiltin" attribute and TLI::has.
  //
  // PR23093.

  LibFunc Func;
  Function *Callee = CI->getCalledFunction();

  SmallVector<OperandBundleDef, 2> OpBundles;
  CI->getOperandBundlesAsDefs(OpBundles);
  IRBuilder<> Builder(CI, /*FPMathTag=*/nullptr, OpBundles);
  bool isCallingConvC = isCallingConvCCompatible(CI);

  // First, check that this is a known library functions and that the prototype
  // is correct.
  if (!TLI->getLibFunc(*Callee, Func))
    return nullptr;

  // We never change the calling convention.
  if (!ignoreCallingConv(Func) && !isCallingConvC)
    return nullptr;

  switch (Func) {
  case LibFunc_memcpy_chk:
    return optimizeMemCpyChk(CI, Builder);
  case LibFunc_memmove_chk:
    return optimizeMemMoveChk(CI, Builder);
  case LibFunc_memset_chk:
    return optimizeMemSetChk(CI, Builder);
  case LibFunc_stpcpy_chk:
  case LibFunc_strcpy_chk:
    return optimizeStrpCpyChk(CI, Builder, Func);
  case LibFunc_stpncpy_chk:
  case LibFunc_strncpy_chk:
    return optimizeStrpNCpyChk(CI, Builder, Func);
  default:
    break;
  }
  return nullptr;
}

FortifiedLibCallSimplifier::FortifiedLibCallSimplifier(
    const TargetLibraryInfo *TLI, bool OnlyLowerUnknownSize)
    : TLI(TLI), OnlyLowerUnknownSize(OnlyLowerUnknownSize) {}