llvm.org GIT mirror llvm / release_70 lib / Transforms / Scalar / GVNSink.cpp
release_70

Tree @release_70 (Download .tar.gz)

GVNSink.cpp @release_70raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
//===- GVNSink.cpp - sink expressions into successors ---------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file GVNSink.cpp
/// This pass attempts to sink instructions into successors, reducing static
/// instruction count and enabling if-conversion.
///
/// We use a variant of global value numbering to decide what can be sunk.
/// Consider:
///
/// [ %a1 = add i32 %b, 1  ]   [ %c1 = add i32 %d, 1  ]
/// [ %a2 = xor i32 %a1, 1 ]   [ %c2 = xor i32 %c1, 1 ]
///                  \           /
///            [ %e = phi i32 %a2, %c2 ]
///            [ add i32 %e, 4         ]
///
///
/// GVN would number %a1 and %c1 differently because they compute different
/// results - the VN of an instruction is a function of its opcode and the
/// transitive closure of its operands. This is the key property for hoisting
/// and CSE.
///
/// What we want when sinking however is for a numbering that is a function of
/// the *uses* of an instruction, which allows us to answer the question "if I
/// replace %a1 with %c1, will it contribute in an equivalent way to all
/// successive instructions?". The PostValueTable class in GVN provides this
/// mapping.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseMapInfo.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/ArrayRecycler.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Scalar/GVNExpression.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "gvn-sink"

STATISTIC(NumRemoved, "Number of instructions removed");

namespace llvm {
namespace GVNExpression {

LLVM_DUMP_METHOD void Expression::dump() const {
  print(dbgs());
  dbgs() << "\n";
}

} // end namespace GVNExpression
} // end namespace llvm

namespace {

static bool isMemoryInst(const Instruction *I) {
  return isa<LoadInst>(I) || isa<StoreInst>(I) ||
         (isa<InvokeInst>(I) && !cast<InvokeInst>(I)->doesNotAccessMemory()) ||
         (isa<CallInst>(I) && !cast<CallInst>(I)->doesNotAccessMemory());
}

/// Iterates through instructions in a set of blocks in reverse order from the
/// first non-terminator. For example (assume all blocks have size n):
///   LockstepReverseIterator I([B1, B2, B3]);
///   *I-- = [B1[n], B2[n], B3[n]];
///   *I-- = [B1[n-1], B2[n-1], B3[n-1]];
///   *I-- = [B1[n-2], B2[n-2], B3[n-2]];
///   ...
///
/// It continues until all blocks have been exhausted. Use \c getActiveBlocks()
/// to
/// determine which blocks are still going and the order they appear in the
/// list returned by operator*.
class LockstepReverseIterator {
  ArrayRef<BasicBlock *> Blocks;
  SmallSetVector<BasicBlock *, 4> ActiveBlocks;
  SmallVector<Instruction *, 4> Insts;
  bool Fail;

public:
  LockstepReverseIterator(ArrayRef<BasicBlock *> Blocks) : Blocks(Blocks) {
    reset();
  }

  void reset() {
    Fail = false;
    ActiveBlocks.clear();
    for (BasicBlock *BB : Blocks)
      ActiveBlocks.insert(BB);
    Insts.clear();
    for (BasicBlock *BB : Blocks) {
      if (BB->size() <= 1) {
        // Block wasn't big enough - only contained a terminator.
        ActiveBlocks.remove(BB);
        continue;
      }
      Insts.push_back(BB->getTerminator()->getPrevNode());
    }
    if (Insts.empty())
      Fail = true;
  }

  bool isValid() const { return !Fail; }
  ArrayRef<Instruction *> operator*() const { return Insts; }

  // Note: This needs to return a SmallSetVector as the elements of
  // ActiveBlocks will be later copied to Blocks using std::copy. The
  // resultant order of elements in Blocks needs to be deterministic.
  // Using SmallPtrSet instead causes non-deterministic order while
  // copying. And we cannot simply sort Blocks as they need to match the
  // corresponding Values.
  SmallSetVector<BasicBlock *, 4> &getActiveBlocks() { return ActiveBlocks; }

  void restrictToBlocks(SmallSetVector<BasicBlock *, 4> &Blocks) {
    for (auto II = Insts.begin(); II != Insts.end();) {
      if (std::find(Blocks.begin(), Blocks.end(), (*II)->getParent()) ==
          Blocks.end()) {
        ActiveBlocks.remove((*II)->getParent());
        II = Insts.erase(II);
      } else {
        ++II;
      }
    }
  }

  void operator--() {
    if (Fail)
      return;
    SmallVector<Instruction *, 4> NewInsts;
    for (auto *Inst : Insts) {
      if (Inst == &Inst->getParent()->front())
        ActiveBlocks.remove(Inst->getParent());
      else
        NewInsts.push_back(Inst->getPrevNode());
    }
    if (NewInsts.empty()) {
      Fail = true;
      return;
    }
    Insts = NewInsts;
  }
};

//===----------------------------------------------------------------------===//

/// Candidate solution for sinking. There may be different ways to
/// sink instructions, differing in the number of instructions sunk,
/// the number of predecessors sunk from and the number of PHIs
/// required.
struct SinkingInstructionCandidate {
  unsigned NumBlocks;
  unsigned NumInstructions;
  unsigned NumPHIs;
  unsigned NumMemoryInsts;
  int Cost = -1;
  SmallVector<BasicBlock *, 4> Blocks;

  void calculateCost(unsigned NumOrigPHIs, unsigned NumOrigBlocks) {
    unsigned NumExtraPHIs = NumPHIs - NumOrigPHIs;
    unsigned SplitEdgeCost = (NumOrigBlocks > NumBlocks) ? 2 : 0;
    Cost = (NumInstructions * (NumBlocks - 1)) -
           (NumExtraPHIs *
            NumExtraPHIs) // PHIs are expensive, so make sure they're worth it.
           - SplitEdgeCost;
  }

  bool operator>(const SinkingInstructionCandidate &Other) const {
    return Cost > Other.Cost;
  }
};

#ifndef NDEBUG
raw_ostream &operator<<(raw_ostream &OS, const SinkingInstructionCandidate &C) {
  OS << "<Candidate Cost=" << C.Cost << " #Blocks=" << C.NumBlocks
     << " #Insts=" << C.NumInstructions << " #PHIs=" << C.NumPHIs << ">";
  return OS;
}
#endif

//===----------------------------------------------------------------------===//

/// Describes a PHI node that may or may not exist. These track the PHIs
/// that must be created if we sunk a sequence of instructions. It provides
/// a hash function for efficient equality comparisons.
class ModelledPHI {
  SmallVector<Value *, 4> Values;
  SmallVector<BasicBlock *, 4> Blocks;

public:
  ModelledPHI() = default;

  ModelledPHI(const PHINode *PN) {
    // BasicBlock comes first so we sort by basic block pointer order, then by value pointer order.
    SmallVector<std::pair<BasicBlock *, Value *>, 4> Ops;
    for (unsigned I = 0, E = PN->getNumIncomingValues(); I != E; ++I)
      Ops.push_back({PN->getIncomingBlock(I), PN->getIncomingValue(I)});
    llvm::sort(Ops.begin(), Ops.end());
    for (auto &P : Ops) {
      Blocks.push_back(P.first);
      Values.push_back(P.second);
    }
  }

  /// Create a dummy ModelledPHI that will compare unequal to any other ModelledPHI
  /// without the same ID.
  /// \note This is specifically for DenseMapInfo - do not use this!
  static ModelledPHI createDummy(size_t ID) {
    ModelledPHI M;
    M.Values.push_back(reinterpret_cast<Value*>(ID));
    return M;
  }

  /// Create a PHI from an array of incoming values and incoming blocks.
  template <typename VArray, typename BArray>
  ModelledPHI(const VArray &V, const BArray &B) {
    std::copy(V.begin(), V.end(), std::back_inserter(Values));
    std::copy(B.begin(), B.end(), std::back_inserter(Blocks));
  }

  /// Create a PHI from [I[OpNum] for I in Insts].
  template <typename BArray>
  ModelledPHI(ArrayRef<Instruction *> Insts, unsigned OpNum, const BArray &B) {
    std::copy(B.begin(), B.end(), std::back_inserter(Blocks));
    for (auto *I : Insts)
      Values.push_back(I->getOperand(OpNum));
  }

  /// Restrict the PHI's contents down to only \c NewBlocks.
  /// \c NewBlocks must be a subset of \c this->Blocks.
  void restrictToBlocks(const SmallSetVector<BasicBlock *, 4> &NewBlocks) {
    auto BI = Blocks.begin();
    auto VI = Values.begin();
    while (BI != Blocks.end()) {
      assert(VI != Values.end());
      if (std::find(NewBlocks.begin(), NewBlocks.end(), *BI) ==
          NewBlocks.end()) {
        BI = Blocks.erase(BI);
        VI = Values.erase(VI);
      } else {
        ++BI;
        ++VI;
      }
    }
    assert(Blocks.size() == NewBlocks.size());
  }

  ArrayRef<Value *> getValues() const { return Values; }

  bool areAllIncomingValuesSame() const {
    return llvm::all_of(Values, [&](Value *V) { return V == Values[0]; });
  }

  bool areAllIncomingValuesSameType() const {
    return llvm::all_of(
        Values, [&](Value *V) { return V->getType() == Values[0]->getType(); });
  }

  bool areAnyIncomingValuesConstant() const {
    return llvm::any_of(Values, [&](Value *V) { return isa<Constant>(V); });
  }

  // Hash functor
  unsigned hash() const {
      return (unsigned)hash_combine_range(Values.begin(), Values.end());
  }

  bool operator==(const ModelledPHI &Other) const {
    return Values == Other.Values && Blocks == Other.Blocks;
  }
};

template <typename ModelledPHI> struct DenseMapInfo {
  static inline ModelledPHI &getEmptyKey() {
    static ModelledPHI Dummy = ModelledPHI::createDummy(0);
    return Dummy;
  }

  static inline ModelledPHI &getTombstoneKey() {
    static ModelledPHI Dummy = ModelledPHI::createDummy(1);
    return Dummy;
  }

  static unsigned getHashValue(const ModelledPHI &V) { return V.hash(); }

  static bool isEqual(const ModelledPHI &LHS, const ModelledPHI &RHS) {
    return LHS == RHS;
  }
};

using ModelledPHISet = DenseSet<ModelledPHI, DenseMapInfo<ModelledPHI>>;

//===----------------------------------------------------------------------===//
//                             ValueTable
//===----------------------------------------------------------------------===//
// This is a value number table where the value number is a function of the
// *uses* of a value, rather than its operands. Thus, if VN(A) == VN(B) we know
// that the program would be equivalent if we replaced A with PHI(A, B).
//===----------------------------------------------------------------------===//

/// A GVN expression describing how an instruction is used. The operands
/// field of BasicExpression is used to store uses, not operands.
///
/// This class also contains fields for discriminators used when determining
/// equivalence of instructions with sideeffects.
class InstructionUseExpr : public GVNExpression::BasicExpression {
  unsigned MemoryUseOrder = -1;
  bool Volatile = false;

public:
  InstructionUseExpr(Instruction *I, ArrayRecycler<Value *> &R,
                     BumpPtrAllocator &A)
      : GVNExpression::BasicExpression(I->getNumUses()) {
    allocateOperands(R, A);
    setOpcode(I->getOpcode());
    setType(I->getType());

    for (auto &U : I->uses())
      op_push_back(U.getUser());
    llvm::sort(op_begin(), op_end());
  }

  void setMemoryUseOrder(unsigned MUO) { MemoryUseOrder = MUO; }
  void setVolatile(bool V) { Volatile = V; }

  hash_code getHashValue() const override {
    return hash_combine(GVNExpression::BasicExpression::getHashValue(),
                        MemoryUseOrder, Volatile);
  }

  template <typename Function> hash_code getHashValue(Function MapFn) {
    hash_code H =
        hash_combine(getOpcode(), getType(), MemoryUseOrder, Volatile);
    for (auto *V : operands())
      H = hash_combine(H, MapFn(V));
    return H;
  }
};

class ValueTable {
  DenseMap<Value *, uint32_t> ValueNumbering;
  DenseMap<GVNExpression::Expression *, uint32_t> ExpressionNumbering;
  DenseMap<size_t, uint32_t> HashNumbering;
  BumpPtrAllocator Allocator;
  ArrayRecycler<Value *> Recycler;
  uint32_t nextValueNumber = 1;

  /// Create an expression for I based on its opcode and its uses. If I
  /// touches or reads memory, the expression is also based upon its memory
  /// order - see \c getMemoryUseOrder().
  InstructionUseExpr *createExpr(Instruction *I) {
    InstructionUseExpr *E =
        new (Allocator) InstructionUseExpr(I, Recycler, Allocator);
    if (isMemoryInst(I))
      E->setMemoryUseOrder(getMemoryUseOrder(I));

    if (CmpInst *C = dyn_cast<CmpInst>(I)) {
      CmpInst::Predicate Predicate = C->getPredicate();
      E->setOpcode((C->getOpcode() << 8) | Predicate);
    }
    return E;
  }

  /// Helper to compute the value number for a memory instruction
  /// (LoadInst/StoreInst), including checking the memory ordering and
  /// volatility.
  template <class Inst> InstructionUseExpr *createMemoryExpr(Inst *I) {
    if (isStrongerThanUnordered(I->getOrdering()) || I->isAtomic())
      return nullptr;
    InstructionUseExpr *E = createExpr(I);
    E->setVolatile(I->isVolatile());
    return E;
  }

public:
  ValueTable() = default;

  /// Returns the value number for the specified value, assigning
  /// it a new number if it did not have one before.
  uint32_t lookupOrAdd(Value *V) {
    auto VI = ValueNumbering.find(V);
    if (VI != ValueNumbering.end())
      return VI->second;

    if (!isa<Instruction>(V)) {
      ValueNumbering[V] = nextValueNumber;
      return nextValueNumber++;
    }

    Instruction *I = cast<Instruction>(V);
    InstructionUseExpr *exp = nullptr;
    switch (I->getOpcode()) {
    case Instruction::Load:
      exp = createMemoryExpr(cast<LoadInst>(I));
      break;
    case Instruction::Store:
      exp = createMemoryExpr(cast<StoreInst>(I));
      break;
    case Instruction::Call:
    case Instruction::Invoke:
    case Instruction::Add:
    case Instruction::FAdd:
    case Instruction::Sub:
    case Instruction::FSub:
    case Instruction::Mul:
    case Instruction::FMul:
    case Instruction::UDiv:
    case Instruction::SDiv:
    case Instruction::FDiv:
    case Instruction::URem:
    case Instruction::SRem:
    case Instruction::FRem:
    case Instruction::Shl:
    case Instruction::LShr:
    case Instruction::AShr:
    case Instruction::And:
    case Instruction::Or:
    case Instruction::Xor:
    case Instruction::ICmp:
    case Instruction::FCmp:
    case Instruction::Trunc:
    case Instruction::ZExt:
    case Instruction::SExt:
    case Instruction::FPToUI:
    case Instruction::FPToSI:
    case Instruction::UIToFP:
    case Instruction::SIToFP:
    case Instruction::FPTrunc:
    case Instruction::FPExt:
    case Instruction::PtrToInt:
    case Instruction::IntToPtr:
    case Instruction::BitCast:
    case Instruction::Select:
    case Instruction::ExtractElement:
    case Instruction::InsertElement:
    case Instruction::ShuffleVector:
    case Instruction::InsertValue:
    case Instruction::GetElementPtr:
      exp = createExpr(I);
      break;
    default:
      break;
    }

    if (!exp) {
      ValueNumbering[V] = nextValueNumber;
      return nextValueNumber++;
    }

    uint32_t e = ExpressionNumbering[exp];
    if (!e) {
      hash_code H = exp->getHashValue([=](Value *V) { return lookupOrAdd(V); });
      auto I = HashNumbering.find(H);
      if (I != HashNumbering.end()) {
        e = I->second;
      } else {
        e = nextValueNumber++;
        HashNumbering[H] = e;
        ExpressionNumbering[exp] = e;
      }
    }
    ValueNumbering[V] = e;
    return e;
  }

  /// Returns the value number of the specified value. Fails if the value has
  /// not yet been numbered.
  uint32_t lookup(Value *V) const {
    auto VI = ValueNumbering.find(V);
    assert(VI != ValueNumbering.end() && "Value not numbered?");
    return VI->second;
  }

  /// Removes all value numberings and resets the value table.
  void clear() {
    ValueNumbering.clear();
    ExpressionNumbering.clear();
    HashNumbering.clear();
    Recycler.clear(Allocator);
    nextValueNumber = 1;
  }

  /// \c Inst uses or touches memory. Return an ID describing the memory state
  /// at \c Inst such that if getMemoryUseOrder(I1) == getMemoryUseOrder(I2),
  /// the exact same memory operations happen after I1 and I2.
  ///
  /// This is a very hard problem in general, so we use domain-specific
  /// knowledge that we only ever check for equivalence between blocks sharing a
  /// single immediate successor that is common, and when determining if I1 ==
  /// I2 we will have already determined that next(I1) == next(I2). This
  /// inductive property allows us to simply return the value number of the next
  /// instruction that defines memory.
  uint32_t getMemoryUseOrder(Instruction *Inst) {
    auto *BB = Inst->getParent();
    for (auto I = std::next(Inst->getIterator()), E = BB->end();
         I != E && !I->isTerminator(); ++I) {
      if (!isMemoryInst(&*I))
        continue;
      if (isa<LoadInst>(&*I))
        continue;
      CallInst *CI = dyn_cast<CallInst>(&*I);
      if (CI && CI->onlyReadsMemory())
        continue;
      InvokeInst *II = dyn_cast<InvokeInst>(&*I);
      if (II && II->onlyReadsMemory())
        continue;
      return lookupOrAdd(&*I);
    }
    return 0;
  }
};

//===----------------------------------------------------------------------===//

class GVNSink {
public:
  GVNSink() = default;

  bool run(Function &F) {
    LLVM_DEBUG(dbgs() << "GVNSink: running on function @" << F.getName()
                      << "\n");

    unsigned NumSunk = 0;
    ReversePostOrderTraversal<Function*> RPOT(&F);
    for (auto *N : RPOT)
      NumSunk += sinkBB(N);

    return NumSunk > 0;
  }

private:
  ValueTable VN;

  bool isInstructionBlacklisted(Instruction *I) {
    // These instructions may change or break semantics if moved.
    if (isa<PHINode>(I) || I->isEHPad() || isa<AllocaInst>(I) ||
        I->getType()->isTokenTy())
      return true;
    return false;
  }

  /// The main heuristic function. Analyze the set of instructions pointed to by
  /// LRI and return a candidate solution if these instructions can be sunk, or
  /// None otherwise.
  Optional<SinkingInstructionCandidate> analyzeInstructionForSinking(
      LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum,
      ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents);

  /// Create a ModelledPHI for each PHI in BB, adding to PHIs.
  void analyzeInitialPHIs(BasicBlock *BB, ModelledPHISet &PHIs,
                          SmallPtrSetImpl<Value *> &PHIContents) {
    for (PHINode &PN : BB->phis()) {
      auto MPHI = ModelledPHI(&PN);
      PHIs.insert(MPHI);
      for (auto *V : MPHI.getValues())
        PHIContents.insert(V);
    }
  }

  /// The main instruction sinking driver. Set up state and try and sink
  /// instructions into BBEnd from its predecessors.
  unsigned sinkBB(BasicBlock *BBEnd);

  /// Perform the actual mechanics of sinking an instruction from Blocks into
  /// BBEnd, which is their only successor.
  void sinkLastInstruction(ArrayRef<BasicBlock *> Blocks, BasicBlock *BBEnd);

  /// Remove PHIs that all have the same incoming value.
  void foldPointlessPHINodes(BasicBlock *BB) {
    auto I = BB->begin();
    while (PHINode *PN = dyn_cast<PHINode>(I++)) {
      if (!llvm::all_of(PN->incoming_values(), [&](const Value *V) {
            return V == PN->getIncomingValue(0);
          }))
        continue;
      if (PN->getIncomingValue(0) != PN)
        PN->replaceAllUsesWith(PN->getIncomingValue(0));
      else
        PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
      PN->eraseFromParent();
    }
  }
};

Optional<SinkingInstructionCandidate> GVNSink::analyzeInstructionForSinking(
  LockstepReverseIterator &LRI, unsigned &InstNum, unsigned &MemoryInstNum,
  ModelledPHISet &NeededPHIs, SmallPtrSetImpl<Value *> &PHIContents) {
  auto Insts = *LRI;
  LLVM_DEBUG(dbgs() << " -- Analyzing instruction set: [\n"; for (auto *I
                                                                  : Insts) {
    I->dump();
  } dbgs() << " ]\n";);

  DenseMap<uint32_t, unsigned> VNums;
  for (auto *I : Insts) {
    uint32_t N = VN.lookupOrAdd(I);
    LLVM_DEBUG(dbgs() << " VN=" << Twine::utohexstr(N) << " for" << *I << "\n");
    if (N == ~0U)
      return None;
    VNums[N]++;
  }
  unsigned VNumToSink =
      std::max_element(VNums.begin(), VNums.end(),
                       [](const std::pair<uint32_t, unsigned> &I,
                          const std::pair<uint32_t, unsigned> &J) {
                         return I.second < J.second;
                       })
          ->first;

  if (VNums[VNumToSink] == 1)
    // Can't sink anything!
    return None;

  // Now restrict the number of incoming blocks down to only those with
  // VNumToSink.
  auto &ActivePreds = LRI.getActiveBlocks();
  unsigned InitialActivePredSize = ActivePreds.size();
  SmallVector<Instruction *, 4> NewInsts;
  for (auto *I : Insts) {
    if (VN.lookup(I) != VNumToSink)
      ActivePreds.remove(I->getParent());
    else
      NewInsts.push_back(I);
  }
  for (auto *I : NewInsts)
    if (isInstructionBlacklisted(I))
      return None;

  // If we've restricted the incoming blocks, restrict all needed PHIs also
  // to that set.
  bool RecomputePHIContents = false;
  if (ActivePreds.size() != InitialActivePredSize) {
    ModelledPHISet NewNeededPHIs;
    for (auto P : NeededPHIs) {
      P.restrictToBlocks(ActivePreds);
      NewNeededPHIs.insert(P);
    }
    NeededPHIs = NewNeededPHIs;
    LRI.restrictToBlocks(ActivePreds);
    RecomputePHIContents = true;
  }

  // The sunk instruction's results.
  ModelledPHI NewPHI(NewInsts, ActivePreds);

  // Does sinking this instruction render previous PHIs redundant?
  if (NeededPHIs.find(NewPHI) != NeededPHIs.end()) {
    NeededPHIs.erase(NewPHI);
    RecomputePHIContents = true;
  }

  if (RecomputePHIContents) {
    // The needed PHIs have changed, so recompute the set of all needed
    // values.
    PHIContents.clear();
    for (auto &PHI : NeededPHIs)
      PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end());
  }

  // Is this instruction required by a later PHI that doesn't match this PHI?
  // if so, we can't sink this instruction.
  for (auto *V : NewPHI.getValues())
    if (PHIContents.count(V))
      // V exists in this PHI, but the whole PHI is different to NewPHI
      // (else it would have been removed earlier). We cannot continue
      // because this isn't representable.
      return None;

  // Which operands need PHIs?
  // FIXME: If any of these fail, we should partition up the candidates to
  // try and continue making progress.
  Instruction *I0 = NewInsts[0];
  for (unsigned OpNum = 0, E = I0->getNumOperands(); OpNum != E; ++OpNum) {
    ModelledPHI PHI(NewInsts, OpNum, ActivePreds);
    if (PHI.areAllIncomingValuesSame())
      continue;
    if (!canReplaceOperandWithVariable(I0, OpNum))
      // We can 't create a PHI from this instruction!
      return None;
    if (NeededPHIs.count(PHI))
      continue;
    if (!PHI.areAllIncomingValuesSameType())
      return None;
    // Don't create indirect calls! The called value is the final operand.
    if ((isa<CallInst>(I0) || isa<InvokeInst>(I0)) && OpNum == E - 1 &&
        PHI.areAnyIncomingValuesConstant())
      return None;

    NeededPHIs.reserve(NeededPHIs.size());
    NeededPHIs.insert(PHI);
    PHIContents.insert(PHI.getValues().begin(), PHI.getValues().end());
  }

  if (isMemoryInst(NewInsts[0]))
    ++MemoryInstNum;

  SinkingInstructionCandidate Cand;
  Cand.NumInstructions = ++InstNum;
  Cand.NumMemoryInsts = MemoryInstNum;
  Cand.NumBlocks = ActivePreds.size();
  Cand.NumPHIs = NeededPHIs.size();
  for (auto *C : ActivePreds)
    Cand.Blocks.push_back(C);

  return Cand;
}

unsigned GVNSink::sinkBB(BasicBlock *BBEnd) {
  LLVM_DEBUG(dbgs() << "GVNSink: running on basic block ";
             BBEnd->printAsOperand(dbgs()); dbgs() << "\n");
  SmallVector<BasicBlock *, 4> Preds;
  for (auto *B : predecessors(BBEnd)) {
    auto *T = B->getTerminator();
    if (isa<BranchInst>(T) || isa<SwitchInst>(T))
      Preds.push_back(B);
    else
      return 0;
  }
  if (Preds.size() < 2)
    return 0;
  llvm::sort(Preds.begin(), Preds.end());

  unsigned NumOrigPreds = Preds.size();
  // We can only sink instructions through unconditional branches.
  for (auto I = Preds.begin(); I != Preds.end();) {
    if ((*I)->getTerminator()->getNumSuccessors() != 1)
      I = Preds.erase(I);
    else
      ++I;
  }

  LockstepReverseIterator LRI(Preds);
  SmallVector<SinkingInstructionCandidate, 4> Candidates;
  unsigned InstNum = 0, MemoryInstNum = 0;
  ModelledPHISet NeededPHIs;
  SmallPtrSet<Value *, 4> PHIContents;
  analyzeInitialPHIs(BBEnd, NeededPHIs, PHIContents);
  unsigned NumOrigPHIs = NeededPHIs.size();

  while (LRI.isValid()) {
    auto Cand = analyzeInstructionForSinking(LRI, InstNum, MemoryInstNum,
                                             NeededPHIs, PHIContents);
    if (!Cand)
      break;
    Cand->calculateCost(NumOrigPHIs, Preds.size());
    Candidates.emplace_back(*Cand);
    --LRI;
  }

  std::stable_sort(
      Candidates.begin(), Candidates.end(),
      [](const SinkingInstructionCandidate &A,
         const SinkingInstructionCandidate &B) { return A > B; });
  LLVM_DEBUG(dbgs() << " -- Sinking candidates:\n"; for (auto &C
                                                         : Candidates) dbgs()
                                                    << "  " << C << "\n";);

  // Pick the top candidate, as long it is positive!
  if (Candidates.empty() || Candidates.front().Cost <= 0)
    return 0;
  auto C = Candidates.front();

  LLVM_DEBUG(dbgs() << " -- Sinking: " << C << "\n");
  BasicBlock *InsertBB = BBEnd;
  if (C.Blocks.size() < NumOrigPreds) {
    LLVM_DEBUG(dbgs() << " -- Splitting edge to ";
               BBEnd->printAsOperand(dbgs()); dbgs() << "\n");
    InsertBB = SplitBlockPredecessors(BBEnd, C.Blocks, ".gvnsink.split");
    if (!InsertBB) {
      LLVM_DEBUG(dbgs() << " -- FAILED to split edge!\n");
      // Edge couldn't be split.
      return 0;
    }
  }

  for (unsigned I = 0; I < C.NumInstructions; ++I)
    sinkLastInstruction(C.Blocks, InsertBB);

  return C.NumInstructions;
}

void GVNSink::sinkLastInstruction(ArrayRef<BasicBlock *> Blocks,
                                  BasicBlock *BBEnd) {
  SmallVector<Instruction *, 4> Insts;
  for (BasicBlock *BB : Blocks)
    Insts.push_back(BB->getTerminator()->getPrevNode());
  Instruction *I0 = Insts.front();

  SmallVector<Value *, 4> NewOperands;
  for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O) {
    bool NeedPHI = llvm::any_of(Insts, [&I0, O](const Instruction *I) {
      return I->getOperand(O) != I0->getOperand(O);
    });
    if (!NeedPHI) {
      NewOperands.push_back(I0->getOperand(O));
      continue;
    }

    // Create a new PHI in the successor block and populate it.
    auto *Op = I0->getOperand(O);
    assert(!Op->getType()->isTokenTy() && "Can't PHI tokens!");
    auto *PN = PHINode::Create(Op->getType(), Insts.size(),
                               Op->getName() + ".sink", &BBEnd->front());
    for (auto *I : Insts)
      PN->addIncoming(I->getOperand(O), I->getParent());
    NewOperands.push_back(PN);
  }

  // Arbitrarily use I0 as the new "common" instruction; remap its operands
  // and move it to the start of the successor block.
  for (unsigned O = 0, E = I0->getNumOperands(); O != E; ++O)
    I0->getOperandUse(O).set(NewOperands[O]);
  I0->moveBefore(&*BBEnd->getFirstInsertionPt());

  // Update metadata and IR flags.
  for (auto *I : Insts)
    if (I != I0) {
      combineMetadataForCSE(I0, I);
      I0->andIRFlags(I);
    }

  for (auto *I : Insts)
    if (I != I0)
      I->replaceAllUsesWith(I0);
  foldPointlessPHINodes(BBEnd);

  // Finally nuke all instructions apart from the common instruction.
  for (auto *I : Insts)
    if (I != I0)
      I->eraseFromParent();

  NumRemoved += Insts.size() - 1;
}

////////////////////////////////////////////////////////////////////////////////
// Pass machinery / boilerplate

class GVNSinkLegacyPass : public FunctionPass {
public:
  static char ID;

  GVNSinkLegacyPass() : FunctionPass(ID) {
    initializeGVNSinkLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    if (skipFunction(F))
      return false;
    GVNSink G;
    return G.run(F);
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addPreserved<GlobalsAAWrapperPass>();
  }
};

} // end anonymous namespace

PreservedAnalyses GVNSinkPass::run(Function &F, FunctionAnalysisManager &AM) {
  GVNSink G;
  if (!G.run(F))
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserve<GlobalsAA>();
  return PA;
}

char GVNSinkLegacyPass::ID = 0;

INITIALIZE_PASS_BEGIN(GVNSinkLegacyPass, "gvn-sink",
                      "Early GVN sinking of Expressions", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(PostDominatorTreeWrapperPass)
INITIALIZE_PASS_END(GVNSinkLegacyPass, "gvn-sink",
                    "Early GVN sinking of Expressions", false, false)

FunctionPass *llvm::createGVNSinkPass() { return new GVNSinkLegacyPass(); }