llvm.org GIT mirror llvm / release_70 lib / Target / X86 / X86SpeculativeLoadHardening.cpp
release_70

Tree @release_70 (Download .tar.gz)

X86SpeculativeLoadHardening.cpp @release_70raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
//====- X86SpeculativeLoadHardening.cpp - A Spectre v1 mitigation ---------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
/// \file
///
/// Provide a pass which mitigates speculative execution attacks which operate
/// by speculating incorrectly past some predicate (a type check, bounds check,
/// or other condition) to reach a load with invalid inputs and leak the data
/// accessed by that load using a side channel out of the speculative domain.
///
/// For details on the attacks, see the first variant in both the Project Zero
/// writeup and the Spectre paper:
/// https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
/// https://spectreattack.com/spectre.pdf
///
//===----------------------------------------------------------------------===//

#include "X86.h"
#include "X86InstrBuilder.h"
#include "X86InstrInfo.h"
#include "X86Subtarget.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/ScopeExit.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/SparseBitVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/MachineSSAUpdater.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSchedule.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/MC/MCSchedule.h"
#include "llvm/Pass.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <iterator>
#include <utility>

using namespace llvm;

#define PASS_KEY "x86-speculative-load-hardening"
#define DEBUG_TYPE PASS_KEY

STATISTIC(NumCondBranchesTraced, "Number of conditional branches traced");
STATISTIC(NumBranchesUntraced, "Number of branches unable to trace");
STATISTIC(NumAddrRegsHardened,
          "Number of address mode used registers hardaned");
STATISTIC(NumPostLoadRegsHardened,
          "Number of post-load register values hardened");
STATISTIC(NumCallsOrJumpsHardened,
          "Number of calls or jumps requiring extra hardening");
STATISTIC(NumInstsInserted, "Number of instructions inserted");
STATISTIC(NumLFENCEsInserted, "Number of lfence instructions inserted");

static cl::opt<bool> HardenEdgesWithLFENCE(
    PASS_KEY "-lfence",
    cl::desc(
        "Use LFENCE along each conditional edge to harden against speculative "
        "loads rather than conditional movs and poisoned pointers."),
    cl::init(false), cl::Hidden);

static cl::opt<bool> EnablePostLoadHardening(
    PASS_KEY "-post-load",
    cl::desc("Harden the value loaded *after* it is loaded by "
             "flushing the loaded bits to 1. This is hard to do "
             "in general but can be done easily for GPRs."),
    cl::init(true), cl::Hidden);

static cl::opt<bool> FenceCallAndRet(
    PASS_KEY "-fence-call-and-ret",
    cl::desc("Use a full speculation fence to harden both call and ret edges "
             "rather than a lighter weight mitigation."),
    cl::init(false), cl::Hidden);

static cl::opt<bool> HardenInterprocedurally(
    PASS_KEY "-ip",
    cl::desc("Harden interprocedurally by passing our state in and out of "
             "functions in the high bits of the stack pointer."),
    cl::init(true), cl::Hidden);

static cl::opt<bool>
    HardenLoads(PASS_KEY "-loads",
                cl::desc("Sanitize loads from memory. When disable, no "
                         "significant security is provided."),
                cl::init(true), cl::Hidden);

static cl::opt<bool> HardenIndirectCallsAndJumps(
    PASS_KEY "-indirect",
    cl::desc("Harden indirect calls and jumps against using speculatively "
             "stored attacker controlled addresses. This is designed to "
             "mitigate Spectre v1.2 style attacks."),
    cl::init(true), cl::Hidden);

namespace llvm {

void initializeX86SpeculativeLoadHardeningPassPass(PassRegistry &);

} // end namespace llvm

namespace {

class X86SpeculativeLoadHardeningPass : public MachineFunctionPass {
public:
  X86SpeculativeLoadHardeningPass() : MachineFunctionPass(ID) {
    initializeX86SpeculativeLoadHardeningPassPass(
        *PassRegistry::getPassRegistry());
  }

  StringRef getPassName() const override {
    return "X86 speculative load hardening";
  }
  bool runOnMachineFunction(MachineFunction &MF) override;
  void getAnalysisUsage(AnalysisUsage &AU) const override;

  /// Pass identification, replacement for typeid.
  static char ID;

private:
  /// The information about a block's conditional terminators needed to trace
  /// our predicate state through the exiting edges.
  struct BlockCondInfo {
    MachineBasicBlock *MBB;

    // We mostly have one conditional branch, and in extremely rare cases have
    // two. Three and more are so rare as to be unimportant for compile time.
    SmallVector<MachineInstr *, 2> CondBrs;

    MachineInstr *UncondBr;
  };

  /// Manages the predicate state traced through the program.
  struct PredState {
    unsigned InitialReg;
    unsigned PoisonReg;

    const TargetRegisterClass *RC;
    MachineSSAUpdater SSA;

    PredState(MachineFunction &MF, const TargetRegisterClass *RC)
        : RC(RC), SSA(MF) {}
  };

  const X86Subtarget *Subtarget;
  MachineRegisterInfo *MRI;
  const X86InstrInfo *TII;
  const TargetRegisterInfo *TRI;

  Optional<PredState> PS;

  void hardenEdgesWithLFENCE(MachineFunction &MF);

  SmallVector<BlockCondInfo, 16> collectBlockCondInfo(MachineFunction &MF);

  SmallVector<MachineInstr *, 16>
  tracePredStateThroughCFG(MachineFunction &MF, ArrayRef<BlockCondInfo> Infos);

  void unfoldCallAndJumpLoads(MachineFunction &MF);

  void tracePredStateThroughBlocksAndHarden(MachineFunction &MF);

  unsigned saveEFLAGS(MachineBasicBlock &MBB,
                      MachineBasicBlock::iterator InsertPt, DebugLoc Loc);
  void restoreEFLAGS(MachineBasicBlock &MBB,
                     MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
                     unsigned OFReg);

  void mergePredStateIntoSP(MachineBasicBlock &MBB,
                            MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
                            unsigned PredStateReg);
  unsigned extractPredStateFromSP(MachineBasicBlock &MBB,
                                  MachineBasicBlock::iterator InsertPt,
                                  DebugLoc Loc);

  void
  hardenLoadAddr(MachineInstr &MI, MachineOperand &BaseMO,
                 MachineOperand &IndexMO,
                 SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg);
  MachineInstr *
  sinkPostLoadHardenedInst(MachineInstr &MI,
                           SmallPtrSetImpl<MachineInstr *> &HardenedInstrs);
  bool canHardenRegister(unsigned Reg);
  unsigned hardenValueInRegister(unsigned Reg, MachineBasicBlock &MBB,
                                 MachineBasicBlock::iterator InsertPt,
                                 DebugLoc Loc);
  unsigned hardenPostLoad(MachineInstr &MI);
  void hardenReturnInstr(MachineInstr &MI);
  void tracePredStateThroughCall(MachineInstr &MI);
  void hardenIndirectCallOrJumpInstr(
      MachineInstr &MI,
      SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg);
};

} // end anonymous namespace

char X86SpeculativeLoadHardeningPass::ID = 0;

void X86SpeculativeLoadHardeningPass::getAnalysisUsage(
    AnalysisUsage &AU) const {
  MachineFunctionPass::getAnalysisUsage(AU);
}

static MachineBasicBlock &splitEdge(MachineBasicBlock &MBB,
                                    MachineBasicBlock &Succ, int SuccCount,
                                    MachineInstr *Br, MachineInstr *&UncondBr,
                                    const X86InstrInfo &TII) {
  assert(!Succ.isEHPad() && "Shouldn't get edges to EH pads!");

  MachineFunction &MF = *MBB.getParent();

  MachineBasicBlock &NewMBB = *MF.CreateMachineBasicBlock();

  // We have to insert the new block immediately after the current one as we
  // don't know what layout-successor relationships the successor has and we
  // may not be able to (and generally don't want to) try to fix those up.
  MF.insert(std::next(MachineFunction::iterator(&MBB)), &NewMBB);

  // Update the branch instruction if necessary.
  if (Br) {
    assert(Br->getOperand(0).getMBB() == &Succ &&
           "Didn't start with the right target!");
    Br->getOperand(0).setMBB(&NewMBB);

    // If this successor was reached through a branch rather than fallthrough,
    // we might have *broken* fallthrough and so need to inject a new
    // unconditional branch.
    if (!UncondBr) {
      MachineBasicBlock &OldLayoutSucc =
          *std::next(MachineFunction::iterator(&NewMBB));
      assert(MBB.isSuccessor(&OldLayoutSucc) &&
             "Without an unconditional branch, the old layout successor should "
             "be an actual successor!");
      auto BrBuilder =
          BuildMI(&MBB, DebugLoc(), TII.get(X86::JMP_1)).addMBB(&OldLayoutSucc);
      // Update the unconditional branch now that we've added one.
      UncondBr = &*BrBuilder;
    }

    // Insert unconditional "jump Succ" instruction in the new block if
    // necessary.
    if (!NewMBB.isLayoutSuccessor(&Succ)) {
      SmallVector<MachineOperand, 4> Cond;
      TII.insertBranch(NewMBB, &Succ, nullptr, Cond, Br->getDebugLoc());
    }
  } else {
    assert(!UncondBr &&
           "Cannot have a branchless successor and an unconditional branch!");
    assert(NewMBB.isLayoutSuccessor(&Succ) &&
           "A non-branch successor must have been a layout successor before "
           "and now is a layout successor of the new block.");
  }

  // If this is the only edge to the successor, we can just replace it in the
  // CFG. Otherwise we need to add a new entry in the CFG for the new
  // successor.
  if (SuccCount == 1) {
    MBB.replaceSuccessor(&Succ, &NewMBB);
  } else {
    MBB.splitSuccessor(&Succ, &NewMBB);
  }

  // Hook up the edge from the new basic block to the old successor in the CFG.
  NewMBB.addSuccessor(&Succ);

  // Fix PHI nodes in Succ so they refer to NewMBB instead of MBB.
  for (MachineInstr &MI : Succ) {
    if (!MI.isPHI())
      break;
    for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
         OpIdx += 2) {
      MachineOperand &OpV = MI.getOperand(OpIdx);
      MachineOperand &OpMBB = MI.getOperand(OpIdx + 1);
      assert(OpMBB.isMBB() && "Block operand to a PHI is not a block!");
      if (OpMBB.getMBB() != &MBB)
        continue;

      // If this is the last edge to the succesor, just replace MBB in the PHI
      if (SuccCount == 1) {
        OpMBB.setMBB(&NewMBB);
        break;
      }

      // Otherwise, append a new pair of operands for the new incoming edge.
      MI.addOperand(MF, OpV);
      MI.addOperand(MF, MachineOperand::CreateMBB(&NewMBB));
      break;
    }
  }

  // Inherit live-ins from the successor
  for (auto &LI : Succ.liveins())
    NewMBB.addLiveIn(LI);

  LLVM_DEBUG(dbgs() << "  Split edge from '" << MBB.getName() << "' to '"
                    << Succ.getName() << "'.\n");
  return NewMBB;
}

/// Removing duplicate PHI operands to leave the PHI in a canonical and
/// predictable form.
///
/// FIXME: It's really frustrating that we have to do this, but SSA-form in MIR
/// isn't what you might expect. We may have multiple entries in PHI nodes for
/// a single predecessor. This makes CFG-updating extremely complex, so here we
/// simplify all PHI nodes to a model even simpler than the IR's model: exactly
/// one entry per predecessor, regardless of how many edges there are.
static void canonicalizePHIOperands(MachineFunction &MF) {
  SmallPtrSet<MachineBasicBlock *, 4> Preds;
  SmallVector<int, 4> DupIndices;
  for (auto &MBB : MF)
    for (auto &MI : MBB) {
      if (!MI.isPHI())
        break;

      // First we scan the operands of the PHI looking for duplicate entries
      // a particular predecessor. We retain the operand index of each duplicate
      // entry found.
      for (int OpIdx = 1, NumOps = MI.getNumOperands(); OpIdx < NumOps;
           OpIdx += 2)
        if (!Preds.insert(MI.getOperand(OpIdx + 1).getMBB()).second)
          DupIndices.push_back(OpIdx);

      // Now walk the duplicate indices, removing both the block and value. Note
      // that these are stored as a vector making this element-wise removal
      // :w
      // potentially quadratic.
      //
      // FIXME: It is really frustrating that we have to use a quadratic
      // removal algorithm here. There should be a better way, but the use-def
      // updates required make that impossible using the public API.
      //
      // Note that we have to process these backwards so that we don't
      // invalidate other indices with each removal.
      while (!DupIndices.empty()) {
        int OpIdx = DupIndices.pop_back_val();
        // Remove both the block and value operand, again in reverse order to
        // preserve indices.
        MI.RemoveOperand(OpIdx + 1);
        MI.RemoveOperand(OpIdx);
      }

      Preds.clear();
    }
}

/// Helper to scan a function for loads vulnerable to misspeculation that we
/// want to harden.
///
/// We use this to avoid making changes to functions where there is nothing we
/// need to do to harden against misspeculation.
static bool hasVulnerableLoad(MachineFunction &MF) {
  for (MachineBasicBlock &MBB : MF) {
    for (MachineInstr &MI : MBB) {
      // Loads within this basic block after an LFENCE are not at risk of
      // speculatively executing with invalid predicates from prior control
      // flow. So break out of this block but continue scanning the function.
      if (MI.getOpcode() == X86::LFENCE)
        break;

      // Looking for loads only.
      if (!MI.mayLoad())
        continue;

      // An MFENCE is modeled as a load but isn't vulnerable to misspeculation.
      if (MI.getOpcode() == X86::MFENCE)
        continue;

      // We found a load.
      return true;
    }
  }

  // No loads found.
  return false;
}

bool X86SpeculativeLoadHardeningPass::runOnMachineFunction(
    MachineFunction &MF) {
  LLVM_DEBUG(dbgs() << "********** " << getPassName() << " : " << MF.getName()
                    << " **********\n");

  Subtarget = &MF.getSubtarget<X86Subtarget>();
  MRI = &MF.getRegInfo();
  TII = Subtarget->getInstrInfo();
  TRI = Subtarget->getRegisterInfo();

  // FIXME: Support for 32-bit.
  PS.emplace(MF, &X86::GR64_NOSPRegClass);

  if (MF.begin() == MF.end())
    // Nothing to do for a degenerate empty function...
    return false;

  // We support an alternative hardening technique based on a debug flag.
  if (HardenEdgesWithLFENCE) {
    hardenEdgesWithLFENCE(MF);
    return true;
  }

  // Create a dummy debug loc to use for all the generated code here.
  DebugLoc Loc;

  MachineBasicBlock &Entry = *MF.begin();
  auto EntryInsertPt = Entry.SkipPHIsLabelsAndDebug(Entry.begin());

  // Do a quick scan to see if we have any checkable loads.
  bool HasVulnerableLoad = hasVulnerableLoad(MF);

  // See if we have any conditional branching blocks that we will need to trace
  // predicate state through.
  SmallVector<BlockCondInfo, 16> Infos = collectBlockCondInfo(MF);

  // If we have no interesting conditions or loads, nothing to do here.
  if (!HasVulnerableLoad && Infos.empty())
    return true;

  // The poison value is required to be an all-ones value for many aspects of
  // this mitigation.
  const int PoisonVal = -1;
  PS->PoisonReg = MRI->createVirtualRegister(PS->RC);
  BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV64ri32), PS->PoisonReg)
      .addImm(PoisonVal);
  ++NumInstsInserted;

  // If we have loads being hardened and we've asked for call and ret edges to
  // get a full fence-based mitigation, inject that fence.
  if (HasVulnerableLoad && FenceCallAndRet) {
    // We need to insert an LFENCE at the start of the function to suspend any
    // incoming misspeculation from the caller. This helps two-fold: the caller
    // may not have been protected as this code has been, and this code gets to
    // not take any specific action to protect across calls.
    // FIXME: We could skip this for functions which unconditionally return
    // a constant.
    BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::LFENCE));
    ++NumInstsInserted;
    ++NumLFENCEsInserted;
  }

  // If we guarded the entry with an LFENCE and have no conditionals to protect
  // in blocks, then we're done.
  if (FenceCallAndRet && Infos.empty())
    // We may have changed the function's code at this point to insert fences.
    return true;

  // For every basic block in the function which can b
  if (HardenInterprocedurally && !FenceCallAndRet) {
    // Set up the predicate state by extracting it from the incoming stack
    // pointer so we pick up any misspeculation in our caller.
    PS->InitialReg = extractPredStateFromSP(Entry, EntryInsertPt, Loc);
  } else {
    // Otherwise, just build the predicate state itself by zeroing a register
    // as we don't need any initial state.
    PS->InitialReg = MRI->createVirtualRegister(PS->RC);
    unsigned PredStateSubReg = MRI->createVirtualRegister(&X86::GR32RegClass);
    auto ZeroI = BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::MOV32r0),
                         PredStateSubReg);
    ++NumInstsInserted;
    MachineOperand *ZeroEFLAGSDefOp =
        ZeroI->findRegisterDefOperand(X86::EFLAGS);
    assert(ZeroEFLAGSDefOp && ZeroEFLAGSDefOp->isImplicit() &&
           "Must have an implicit def of EFLAGS!");
    ZeroEFLAGSDefOp->setIsDead(true);
    BuildMI(Entry, EntryInsertPt, Loc, TII->get(X86::SUBREG_TO_REG),
            PS->InitialReg)
        .addImm(0)
        .addReg(PredStateSubReg)
        .addImm(X86::sub_32bit);
  }

  // We're going to need to trace predicate state throughout the function's
  // CFG. Prepare for this by setting up our initial state of PHIs with unique
  // predecessor entries and all the initial predicate state.
  canonicalizePHIOperands(MF);

  // Track the updated values in an SSA updater to rewrite into SSA form at the
  // end.
  PS->SSA.Initialize(PS->InitialReg);
  PS->SSA.AddAvailableValue(&Entry, PS->InitialReg);

  // Trace through the CFG.
  auto CMovs = tracePredStateThroughCFG(MF, Infos);

  // We may also enter basic blocks in this function via exception handling
  // control flow. Here, if we are hardening interprocedurally, we need to
  // re-capture the predicate state from the throwing code. In the Itanium ABI,
  // the throw will always look like a call to __cxa_throw and will have the
  // predicate state in the stack pointer, so extract fresh predicate state from
  // the stack pointer and make it available in SSA.
  // FIXME: Handle non-itanium ABI EH models.
  if (HardenInterprocedurally) {
    for (MachineBasicBlock &MBB : MF) {
      assert(!MBB.isEHScopeEntry() && "Only Itanium ABI EH supported!");
      assert(!MBB.isEHFuncletEntry() && "Only Itanium ABI EH supported!");
      assert(!MBB.isCleanupFuncletEntry() && "Only Itanium ABI EH supported!");
      if (!MBB.isEHPad())
        continue;
      PS->SSA.AddAvailableValue(
          &MBB,
          extractPredStateFromSP(MBB, MBB.SkipPHIsAndLabels(MBB.begin()), Loc));
    }
  }

  // If we are going to harden calls and jumps we need to unfold their memory
  // operands.
  if (HardenIndirectCallsAndJumps)
    unfoldCallAndJumpLoads(MF);

  // Now that we have the predicate state available at the start of each block
  // in the CFG, trace it through each block, hardening vulnerable instructions
  // as we go.
  tracePredStateThroughBlocksAndHarden(MF);

  // Now rewrite all the uses of the pred state using the SSA updater to insert
  // PHIs connecting the state between blocks along the CFG edges.
  for (MachineInstr *CMovI : CMovs)
    for (MachineOperand &Op : CMovI->operands()) {
      if (!Op.isReg() || Op.getReg() != PS->InitialReg)
        continue;

      PS->SSA.RewriteUse(Op);
    }

  LLVM_DEBUG(dbgs() << "Final speculative load hardened function:\n"; MF.dump();
             dbgs() << "\n"; MF.verify(this));
  return true;
}

/// Implements the naive hardening approach of putting an LFENCE after every
/// potentially mis-predicted control flow construct.
///
/// We include this as an alternative mostly for the purpose of comparison. The
/// performance impact of this is expected to be extremely severe and not
/// practical for any real-world users.
void X86SpeculativeLoadHardeningPass::hardenEdgesWithLFENCE(
    MachineFunction &MF) {
  // First, we scan the function looking for blocks that are reached along edges
  // that we might want to harden.
  SmallSetVector<MachineBasicBlock *, 8> Blocks;
  for (MachineBasicBlock &MBB : MF) {
    // If there are no or only one successor, nothing to do here.
    if (MBB.succ_size() <= 1)
      continue;

    // Skip blocks unless their terminators start with a branch. Other
    // terminators don't seem interesting for guarding against misspeculation.
    auto TermIt = MBB.getFirstTerminator();
    if (TermIt == MBB.end() || !TermIt->isBranch())
      continue;

    // Add all the non-EH-pad succossors to the blocks we want to harden. We
    // skip EH pads because there isn't really a condition of interest on
    // entering.
    for (MachineBasicBlock *SuccMBB : MBB.successors())
      if (!SuccMBB->isEHPad())
        Blocks.insert(SuccMBB);
  }

  for (MachineBasicBlock *MBB : Blocks) {
    auto InsertPt = MBB->SkipPHIsAndLabels(MBB->begin());
    BuildMI(*MBB, InsertPt, DebugLoc(), TII->get(X86::LFENCE));
    ++NumInstsInserted;
    ++NumLFENCEsInserted;
  }
}

SmallVector<X86SpeculativeLoadHardeningPass::BlockCondInfo, 16>
X86SpeculativeLoadHardeningPass::collectBlockCondInfo(MachineFunction &MF) {
  SmallVector<BlockCondInfo, 16> Infos;

  // Walk the function and build up a summary for each block's conditions that
  // we need to trace through.
  for (MachineBasicBlock &MBB : MF) {
    // If there are no or only one successor, nothing to do here.
    if (MBB.succ_size() <= 1)
      continue;

    // We want to reliably handle any conditional branch terminators in the
    // MBB, so we manually analyze the branch. We can handle all of the
    // permutations here, including ones that analyze branch cannot.
    //
    // The approach is to walk backwards across the terminators, resetting at
    // any unconditional non-indirect branch, and track all conditional edges
    // to basic blocks as well as the fallthrough or unconditional successor
    // edge. For each conditional edge, we track the target and the opposite
    // condition code in order to inject a "no-op" cmov into that successor
    // that will harden the predicate. For the fallthrough/unconditional
    // edge, we inject a separate cmov for each conditional branch with
    // matching condition codes. This effectively implements an "and" of the
    // condition flags, even if there isn't a single condition flag that would
    // directly implement that. We don't bother trying to optimize either of
    // these cases because if such an optimization is possible, LLVM should
    // have optimized the conditional *branches* in that way already to reduce
    // instruction count. This late, we simply assume the minimal number of
    // branch instructions is being emitted and use that to guide our cmov
    // insertion.

    BlockCondInfo Info = {&MBB, {}, nullptr};

    // Now walk backwards through the terminators and build up successors they
    // reach and the conditions.
    for (MachineInstr &MI : llvm::reverse(MBB)) {
      // Once we've handled all the terminators, we're done.
      if (!MI.isTerminator())
        break;

      // If we see a non-branch terminator, we can't handle anything so bail.
      if (!MI.isBranch()) {
        Info.CondBrs.clear();
        break;
      }

      // If we see an unconditional branch, reset our state, clear any
      // fallthrough, and set this is the "else" successor.
      if (MI.getOpcode() == X86::JMP_1) {
        Info.CondBrs.clear();
        Info.UncondBr = &MI;
        continue;
      }

      // If we get an invalid condition, we have an indirect branch or some
      // other unanalyzable "fallthrough" case. We model this as a nullptr for
      // the destination so we can still guard any conditional successors.
      // Consider code sequences like:
      // ```
      //   jCC L1
      //   jmpq *%rax
      // ```
      // We still want to harden the edge to `L1`.
      if (X86::getCondFromBranchOpc(MI.getOpcode()) == X86::COND_INVALID) {
        Info.CondBrs.clear();
        Info.UncondBr = &MI;
        continue;
      }

      // We have a vanilla conditional branch, add it to our list.
      Info.CondBrs.push_back(&MI);
    }
    if (Info.CondBrs.empty()) {
      ++NumBranchesUntraced;
      LLVM_DEBUG(dbgs() << "WARNING: unable to secure successors of block:\n";
                 MBB.dump());
      continue;
    }

    Infos.push_back(Info);
  }

  return Infos;
}

/// Trace the predicate state through the CFG, instrumenting each conditional
/// branch such that misspeculation through an edge will poison the predicate
/// state.
///
/// Returns the list of inserted CMov instructions so that they can have their
/// uses of the predicate state rewritten into proper SSA form once it is
/// complete.
SmallVector<MachineInstr *, 16>
X86SpeculativeLoadHardeningPass::tracePredStateThroughCFG(
    MachineFunction &MF, ArrayRef<BlockCondInfo> Infos) {
  // Collect the inserted cmov instructions so we can rewrite their uses of the
  // predicate state into SSA form.
  SmallVector<MachineInstr *, 16> CMovs;

  // Now walk all of the basic blocks looking for ones that end in conditional
  // jumps where we need to update this register along each edge.
  for (const BlockCondInfo &Info : Infos) {
    MachineBasicBlock &MBB = *Info.MBB;
    const SmallVectorImpl<MachineInstr *> &CondBrs = Info.CondBrs;
    MachineInstr *UncondBr = Info.UncondBr;

    LLVM_DEBUG(dbgs() << "Tracing predicate through block: " << MBB.getName()
                      << "\n");
    ++NumCondBranchesTraced;

    // Compute the non-conditional successor as either the target of any
    // unconditional branch or the layout successor.
    MachineBasicBlock *UncondSucc =
        UncondBr ? (UncondBr->getOpcode() == X86::JMP_1
                        ? UncondBr->getOperand(0).getMBB()
                        : nullptr)
                 : &*std::next(MachineFunction::iterator(&MBB));

    // Count how many edges there are to any given successor.
    SmallDenseMap<MachineBasicBlock *, int> SuccCounts;
    if (UncondSucc)
      ++SuccCounts[UncondSucc];
    for (auto *CondBr : CondBrs)
      ++SuccCounts[CondBr->getOperand(0).getMBB()];

    // A lambda to insert cmov instructions into a block checking all of the
    // condition codes in a sequence.
    auto BuildCheckingBlockForSuccAndConds =
        [&](MachineBasicBlock &MBB, MachineBasicBlock &Succ, int SuccCount,
            MachineInstr *Br, MachineInstr *&UncondBr,
            ArrayRef<X86::CondCode> Conds) {
          // First, we split the edge to insert the checking block into a safe
          // location.
          auto &CheckingMBB =
              (SuccCount == 1 && Succ.pred_size() == 1)
                  ? Succ
                  : splitEdge(MBB, Succ, SuccCount, Br, UncondBr, *TII);

          bool LiveEFLAGS = Succ.isLiveIn(X86::EFLAGS);
          if (!LiveEFLAGS)
            CheckingMBB.addLiveIn(X86::EFLAGS);

          // Now insert the cmovs to implement the checks.
          auto InsertPt = CheckingMBB.begin();
          assert((InsertPt == CheckingMBB.end() || !InsertPt->isPHI()) &&
                 "Should never have a PHI in the initial checking block as it "
                 "always has a single predecessor!");

          // We will wire each cmov to each other, but need to start with the
          // incoming pred state.
          unsigned CurStateReg = PS->InitialReg;

          for (X86::CondCode Cond : Conds) {
            int PredStateSizeInBytes = TRI->getRegSizeInBits(*PS->RC) / 8;
            auto CMovOp = X86::getCMovFromCond(Cond, PredStateSizeInBytes);

            unsigned UpdatedStateReg = MRI->createVirtualRegister(PS->RC);
            // Note that we intentionally use an empty debug location so that
            // this picks up the preceding location.
            auto CMovI = BuildMI(CheckingMBB, InsertPt, DebugLoc(),
                                 TII->get(CMovOp), UpdatedStateReg)
                             .addReg(CurStateReg)
                             .addReg(PS->PoisonReg);
            // If this is the last cmov and the EFLAGS weren't originally
            // live-in, mark them as killed.
            if (!LiveEFLAGS && Cond == Conds.back())
              CMovI->findRegisterUseOperand(X86::EFLAGS)->setIsKill(true);

            ++NumInstsInserted;
            LLVM_DEBUG(dbgs() << "  Inserting cmov: "; CMovI->dump();
                       dbgs() << "\n");

            // The first one of the cmovs will be using the top level
            // `PredStateReg` and need to get rewritten into SSA form.
            if (CurStateReg == PS->InitialReg)
              CMovs.push_back(&*CMovI);

            // The next cmov should start from this one's def.
            CurStateReg = UpdatedStateReg;
          }

          // And put the last one into the available values for SSA form of our
          // predicate state.
          PS->SSA.AddAvailableValue(&CheckingMBB, CurStateReg);
        };

    std::vector<X86::CondCode> UncondCodeSeq;
    for (auto *CondBr : CondBrs) {
      MachineBasicBlock &Succ = *CondBr->getOperand(0).getMBB();
      int &SuccCount = SuccCounts[&Succ];

      X86::CondCode Cond = X86::getCondFromBranchOpc(CondBr->getOpcode());
      X86::CondCode InvCond = X86::GetOppositeBranchCondition(Cond);
      UncondCodeSeq.push_back(Cond);

      BuildCheckingBlockForSuccAndConds(MBB, Succ, SuccCount, CondBr, UncondBr,
                                        {InvCond});

      // Decrement the successor count now that we've split one of the edges.
      // We need to keep the count of edges to the successor accurate in order
      // to know above when to *replace* the successor in the CFG vs. just
      // adding the new successor.
      --SuccCount;
    }

    // Since we may have split edges and changed the number of successors,
    // normalize the probabilities. This avoids doing it each time we split an
    // edge.
    MBB.normalizeSuccProbs();

    // Finally, we need to insert cmovs into the "fallthrough" edge. Here, we
    // need to intersect the other condition codes. We can do this by just
    // doing a cmov for each one.
    if (!UncondSucc)
      // If we have no fallthrough to protect (perhaps it is an indirect jump?)
      // just skip this and continue.
      continue;

    assert(SuccCounts[UncondSucc] == 1 &&
           "We should never have more than one edge to the unconditional "
           "successor at this point because every other edge must have been "
           "split above!");

    // Sort and unique the codes to minimize them.
    llvm::sort(UncondCodeSeq.begin(), UncondCodeSeq.end());
    UncondCodeSeq.erase(std::unique(UncondCodeSeq.begin(), UncondCodeSeq.end()),
                        UncondCodeSeq.end());

    // Build a checking version of the successor.
    BuildCheckingBlockForSuccAndConds(MBB, *UncondSucc, /*SuccCount*/ 1,
                                      UncondBr, UncondBr, UncondCodeSeq);
  }

  return CMovs;
}

/// Compute the register class for the unfolded load.
///
/// FIXME: This should probably live in X86InstrInfo, potentially by adding
/// a way to unfold into a newly created vreg rather than requiring a register
/// input.
static const TargetRegisterClass *
getRegClassForUnfoldedLoad(MachineFunction &MF, const X86InstrInfo &TII,
                           unsigned Opcode) {
  unsigned Index;
  unsigned UnfoldedOpc = TII.getOpcodeAfterMemoryUnfold(
      Opcode, /*UnfoldLoad*/ true, /*UnfoldStore*/ false, &Index);
  const MCInstrDesc &MCID = TII.get(UnfoldedOpc);
  return TII.getRegClass(MCID, Index, &TII.getRegisterInfo(), MF);
}

void X86SpeculativeLoadHardeningPass::unfoldCallAndJumpLoads(
    MachineFunction &MF) {
  for (MachineBasicBlock &MBB : MF)
    for (auto MII = MBB.instr_begin(), MIE = MBB.instr_end(); MII != MIE;) {
      // Grab a reference and increment the iterator so we can remove this
      // instruction if needed without disturbing the iteration.
      MachineInstr &MI = *MII++;

      // Must either be a call or a branch.
      if (!MI.isCall() && !MI.isBranch())
        continue;
      // We only care about loading variants of these instructions.
      if (!MI.mayLoad())
        continue;

      switch (MI.getOpcode()) {
      default: {
        LLVM_DEBUG(
            dbgs() << "ERROR: Found an unexpected loading branch or call "
                      "instruction:\n";
            MI.dump(); dbgs() << "\n");
        report_fatal_error("Unexpected loading branch or call!");
      }

      case X86::FARCALL16m:
      case X86::FARCALL32m:
      case X86::FARCALL64:
      case X86::FARJMP16m:
      case X86::FARJMP32m:
      case X86::FARJMP64:
        // We cannot mitigate far jumps or calls, but we also don't expect them
        // to be vulnerable to Spectre v1.2 style attacks.
        continue;

      case X86::CALL16m:
      case X86::CALL16m_NT:
      case X86::CALL32m:
      case X86::CALL32m_NT:
      case X86::CALL64m:
      case X86::CALL64m_NT:
      case X86::JMP16m:
      case X86::JMP16m_NT:
      case X86::JMP32m:
      case X86::JMP32m_NT:
      case X86::JMP64m:
      case X86::JMP64m_NT:
      case X86::TAILJMPm64:
      case X86::TAILJMPm64_REX:
      case X86::TAILJMPm:
      case X86::TCRETURNmi64:
      case X86::TCRETURNmi: {
        // Use the generic unfold logic now that we know we're dealing with
        // expected instructions.
        // FIXME: We don't have test coverage for all of these!
        auto *UnfoldedRC = getRegClassForUnfoldedLoad(MF, *TII, MI.getOpcode());
        if (!UnfoldedRC) {
          LLVM_DEBUG(dbgs()
                         << "ERROR: Unable to unfold load from instruction:\n";
                     MI.dump(); dbgs() << "\n");
          report_fatal_error("Unable to unfold load!");
        }
        unsigned Reg = MRI->createVirtualRegister(UnfoldedRC);
        SmallVector<MachineInstr *, 2> NewMIs;
        // If we were able to compute an unfolded reg class, any failure here
        // is just a programming error so just assert.
        bool Unfolded =
            TII->unfoldMemoryOperand(MF, MI, Reg, /*UnfoldLoad*/ true,
                                     /*UnfoldStore*/ false, NewMIs);
        (void)Unfolded;
        assert(Unfolded &&
               "Computed unfolded register class but failed to unfold");
        // Now stitch the new instructions into place and erase the old one.
        for (auto *NewMI : NewMIs)
          MBB.insert(MI.getIterator(), NewMI);
        MI.eraseFromParent();
        LLVM_DEBUG({
          dbgs() << "Unfolded load successfully into:\n";
          for (auto *NewMI : NewMIs) {
            NewMI->dump();
            dbgs() << "\n";
          }
        });
        continue;
      }
      }
      llvm_unreachable("Escaped switch with default!");
    }
}

/// Returns true if the instruction has no behavior (specified or otherwise)
/// that is based on the value of any of its register operands
///
/// A classical example of something that is inherently not data invariant is an
/// indirect jump -- the destination is loaded into icache based on the bits set
/// in the jump destination register.
///
/// FIXME: This should become part of our instruction tables.
static bool isDataInvariant(MachineInstr &MI) {
  switch (MI.getOpcode()) {
  default:
    // By default, assume that the instruction is not data invariant.
    return false;

    // Some target-independent operations that trivially lower to data-invariant
    // instructions.
  case TargetOpcode::COPY:
  case TargetOpcode::INSERT_SUBREG:
  case TargetOpcode::SUBREG_TO_REG:
    return true;

  // On x86 it is believed that imul is constant time w.r.t. the loaded data.
  // However, they set flags and are perhaps the most surprisingly constant
  // time operations so we call them out here separately.
  case X86::IMUL16rr:
  case X86::IMUL16rri8:
  case X86::IMUL16rri:
  case X86::IMUL32rr:
  case X86::IMUL32rri8:
  case X86::IMUL32rri:
  case X86::IMUL64rr:
  case X86::IMUL64rri32:
  case X86::IMUL64rri8:

  // Bit scanning and counting instructions that are somewhat surprisingly
  // constant time as they scan across bits and do other fairly complex
  // operations like popcnt, but are believed to be constant time on x86.
  // However, these set flags.
  case X86::BSF16rr:
  case X86::BSF32rr:
  case X86::BSF64rr:
  case X86::BSR16rr:
  case X86::BSR32rr:
  case X86::BSR64rr:
  case X86::LZCNT16rr:
  case X86::LZCNT32rr:
  case X86::LZCNT64rr:
  case X86::POPCNT16rr:
  case X86::POPCNT32rr:
  case X86::POPCNT64rr:
  case X86::TZCNT16rr:
  case X86::TZCNT32rr:
  case X86::TZCNT64rr:

  // Bit manipulation instructions are effectively combinations of basic
  // arithmetic ops, and should still execute in constant time. These also
  // set flags.
  case X86::BLCFILL32rr:
  case X86::BLCFILL64rr:
  case X86::BLCI32rr:
  case X86::BLCI64rr:
  case X86::BLCIC32rr:
  case X86::BLCIC64rr:
  case X86::BLCMSK32rr:
  case X86::BLCMSK64rr:
  case X86::BLCS32rr:
  case X86::BLCS64rr:
  case X86::BLSFILL32rr:
  case X86::BLSFILL64rr:
  case X86::BLSI32rr:
  case X86::BLSI64rr:
  case X86::BLSIC32rr:
  case X86::BLSIC64rr:
  case X86::BLSMSK32rr:
  case X86::BLSMSK64rr:
  case X86::BLSR32rr:
  case X86::BLSR64rr:
  case X86::TZMSK32rr:
  case X86::TZMSK64rr:

  // Bit extracting and clearing instructions should execute in constant time,
  // and set flags.
  case X86::BEXTR32rr:
  case X86::BEXTR64rr:
  case X86::BEXTRI32ri:
  case X86::BEXTRI64ri:
  case X86::BZHI32rr:
  case X86::BZHI64rr:

  // Shift and rotate.
  case X86::ROL8r1:  case X86::ROL16r1:  case X86::ROL32r1:  case X86::ROL64r1:
  case X86::ROL8rCL: case X86::ROL16rCL: case X86::ROL32rCL: case X86::ROL64rCL:
  case X86::ROL8ri:  case X86::ROL16ri:  case X86::ROL32ri:  case X86::ROL64ri:
  case X86::ROR8r1:  case X86::ROR16r1:  case X86::ROR32r1:  case X86::ROR64r1:
  case X86::ROR8rCL: case X86::ROR16rCL: case X86::ROR32rCL: case X86::ROR64rCL:
  case X86::ROR8ri:  case X86::ROR16ri:  case X86::ROR32ri:  case X86::ROR64ri:
  case X86::SAR8r1:  case X86::SAR16r1:  case X86::SAR32r1:  case X86::SAR64r1:
  case X86::SAR8rCL: case X86::SAR16rCL: case X86::SAR32rCL: case X86::SAR64rCL:
  case X86::SAR8ri:  case X86::SAR16ri:  case X86::SAR32ri:  case X86::SAR64ri:
  case X86::SHL8r1:  case X86::SHL16r1:  case X86::SHL32r1:  case X86::SHL64r1:
  case X86::SHL8rCL: case X86::SHL16rCL: case X86::SHL32rCL: case X86::SHL64rCL:
  case X86::SHL8ri:  case X86::SHL16ri:  case X86::SHL32ri:  case X86::SHL64ri:
  case X86::SHR8r1:  case X86::SHR16r1:  case X86::SHR32r1:  case X86::SHR64r1:
  case X86::SHR8rCL: case X86::SHR16rCL: case X86::SHR32rCL: case X86::SHR64rCL:
  case X86::SHR8ri:  case X86::SHR16ri:  case X86::SHR32ri:  case X86::SHR64ri:
  case X86::SHLD16rrCL: case X86::SHLD32rrCL: case X86::SHLD64rrCL:
  case X86::SHLD16rri8: case X86::SHLD32rri8: case X86::SHLD64rri8:
  case X86::SHRD16rrCL: case X86::SHRD32rrCL: case X86::SHRD64rrCL:
  case X86::SHRD16rri8: case X86::SHRD32rri8: case X86::SHRD64rri8:

  // Basic arithmetic is constant time on the input but does set flags.
  case X86::ADC8rr:   case X86::ADC8ri:
  case X86::ADC16rr:  case X86::ADC16ri:   case X86::ADC16ri8:
  case X86::ADC32rr:  case X86::ADC32ri:   case X86::ADC32ri8:
  case X86::ADC64rr:  case X86::ADC64ri8:  case X86::ADC64ri32:
  case X86::ADD8rr:   case X86::ADD8ri:
  case X86::ADD16rr:  case X86::ADD16ri:   case X86::ADD16ri8:
  case X86::ADD32rr:  case X86::ADD32ri:   case X86::ADD32ri8:
  case X86::ADD64rr:  case X86::ADD64ri8:  case X86::ADD64ri32:
  case X86::AND8rr:   case X86::AND8ri:
  case X86::AND16rr:  case X86::AND16ri:   case X86::AND16ri8:
  case X86::AND32rr:  case X86::AND32ri:   case X86::AND32ri8:
  case X86::AND64rr:  case X86::AND64ri8:  case X86::AND64ri32:
  case X86::OR8rr:    case X86::OR8ri:
  case X86::OR16rr:   case X86::OR16ri:    case X86::OR16ri8:
  case X86::OR32rr:   case X86::OR32ri:    case X86::OR32ri8:
  case X86::OR64rr:   case X86::OR64ri8:   case X86::OR64ri32:
  case X86::SBB8rr:   case X86::SBB8ri:
  case X86::SBB16rr:  case X86::SBB16ri:   case X86::SBB16ri8:
  case X86::SBB32rr:  case X86::SBB32ri:   case X86::SBB32ri8:
  case X86::SBB64rr:  case X86::SBB64ri8:  case X86::SBB64ri32:
  case X86::SUB8rr:   case X86::SUB8ri:
  case X86::SUB16rr:  case X86::SUB16ri:   case X86::SUB16ri8:
  case X86::SUB32rr:  case X86::SUB32ri:   case X86::SUB32ri8:
  case X86::SUB64rr:  case X86::SUB64ri8:  case X86::SUB64ri32:
  case X86::XOR8rr:   case X86::XOR8ri:
  case X86::XOR16rr:  case X86::XOR16ri:   case X86::XOR16ri8:
  case X86::XOR32rr:  case X86::XOR32ri:   case X86::XOR32ri8:
  case X86::XOR64rr:  case X86::XOR64ri8:  case X86::XOR64ri32:
  // Arithmetic with just 32-bit and 64-bit variants and no immediates.
  case X86::ADCX32rr: case X86::ADCX64rr:
  case X86::ADOX32rr: case X86::ADOX64rr:
  case X86::ANDN32rr: case X86::ANDN64rr:
  // Unary arithmetic operations.
  case X86::DEC8r: case X86::DEC16r: case X86::DEC32r: case X86::DEC64r:
  case X86::INC8r: case X86::INC16r: case X86::INC32r: case X86::INC64r:
  case X86::NEG8r: case X86::NEG16r: case X86::NEG32r: case X86::NEG64r:
    // Check whether the EFLAGS implicit-def is dead. We assume that this will
    // always find the implicit-def because this code should only be reached
    // for instructions that do in fact implicitly def this.
    if (!MI.findRegisterDefOperand(X86::EFLAGS)->isDead()) {
      // If we would clobber EFLAGS that are used, just bail for now.
      LLVM_DEBUG(dbgs() << "    Unable to harden post-load due to EFLAGS: ";
                 MI.dump(); dbgs() << "\n");
      return false;
    }

    // Otherwise, fallthrough to handle these the same as instructions that
    // don't set EFLAGS.
    LLVM_FALLTHROUGH;

  // Unlike other arithmetic, NOT doesn't set EFLAGS.
  case X86::NOT8r: case X86::NOT16r: case X86::NOT32r: case X86::NOT64r:

  // Various move instructions used to zero or sign extend things. Note that we
  // intentionally don't support the _NOREX variants as we can't handle that
  // register constraint anyways.
  case X86::MOVSX16rr8:
  case X86::MOVSX32rr8: case X86::MOVSX32rr16:
  case X86::MOVSX64rr8: case X86::MOVSX64rr16: case X86::MOVSX64rr32:
  case X86::MOVZX16rr8:
  case X86::MOVZX32rr8: case X86::MOVZX32rr16:
  case X86::MOVZX64rr8: case X86::MOVZX64rr16:
  case X86::MOV32rr:

  // Arithmetic instructions that are both constant time and don't set flags.
  case X86::RORX32ri:
  case X86::RORX64ri:
  case X86::SARX32rr:
  case X86::SARX64rr:
  case X86::SHLX32rr:
  case X86::SHLX64rr:
  case X86::SHRX32rr:
  case X86::SHRX64rr:

  // LEA doesn't actually access memory, and its arithmetic is constant time.
  case X86::LEA16r:
  case X86::LEA32r:
  case X86::LEA64_32r:
  case X86::LEA64r:
    return true;
  }
}

/// Returns true if the instruction has no behavior (specified or otherwise)
/// that is based on the value loaded from memory or the value of any
/// non-address register operands.
///
/// For example, if the latency of the instruction is dependent on the
/// particular bits set in any of the registers *or* any of the bits loaded from
/// memory.
///
/// A classical example of something that is inherently not data invariant is an
/// indirect jump -- the destination is loaded into icache based on the bits set
/// in the jump destination register.
///
/// FIXME: This should become part of our instruction tables.
static bool isDataInvariantLoad(MachineInstr &MI) {
  switch (MI.getOpcode()) {
  default:
    // By default, assume that the load will immediately leak.
    return false;

  // On x86 it is believed that imul is constant time w.r.t. the loaded data.
  // However, they set flags and are perhaps the most surprisingly constant
  // time operations so we call them out here separately.
  case X86::IMUL16rm:
  case X86::IMUL16rmi8:
  case X86::IMUL16rmi:
  case X86::IMUL32rm:
  case X86::IMUL32rmi8:
  case X86::IMUL32rmi:
  case X86::IMUL64rm:
  case X86::IMUL64rmi32:
  case X86::IMUL64rmi8:

  // Bit scanning and counting instructions that are somewhat surprisingly
  // constant time as they scan across bits and do other fairly complex
  // operations like popcnt, but are believed to be constant time on x86.
  // However, these set flags.
  case X86::BSF16rm:
  case X86::BSF32rm:
  case X86::BSF64rm:
  case X86::BSR16rm:
  case X86::BSR32rm:
  case X86::BSR64rm:
  case X86::LZCNT16rm:
  case X86::LZCNT32rm:
  case X86::LZCNT64rm:
  case X86::POPCNT16rm:
  case X86::POPCNT32rm:
  case X86::POPCNT64rm:
  case X86::TZCNT16rm:
  case X86::TZCNT32rm:
  case X86::TZCNT64rm:

  // Bit manipulation instructions are effectively combinations of basic
  // arithmetic ops, and should still execute in constant time. These also
  // set flags.
  case X86::BLCFILL32rm:
  case X86::BLCFILL64rm:
  case X86::BLCI32rm:
  case X86::BLCI64rm:
  case X86::BLCIC32rm:
  case X86::BLCIC64rm:
  case X86::BLCMSK32rm:
  case X86::BLCMSK64rm:
  case X86::BLCS32rm:
  case X86::BLCS64rm:
  case X86::BLSFILL32rm:
  case X86::BLSFILL64rm:
  case X86::BLSI32rm:
  case X86::BLSI64rm:
  case X86::BLSIC32rm:
  case X86::BLSIC64rm:
  case X86::BLSMSK32rm:
  case X86::BLSMSK64rm:
  case X86::BLSR32rm:
  case X86::BLSR64rm:
  case X86::TZMSK32rm:
  case X86::TZMSK64rm:

  // Bit extracting and clearing instructions should execute in constant time,
  // and set flags.
  case X86::BEXTR32rm:
  case X86::BEXTR64rm:
  case X86::BEXTRI32mi:
  case X86::BEXTRI64mi:
  case X86::BZHI32rm:
  case X86::BZHI64rm:

  // Basic arithmetic is constant time on the input but does set flags.
  case X86::ADC8rm:
  case X86::ADC16rm:
  case X86::ADC32rm:
  case X86::ADC64rm:
  case X86::ADCX32rm:
  case X86::ADCX64rm:
  case X86::ADD8rm:
  case X86::ADD16rm:
  case X86::ADD32rm:
  case X86::ADD64rm:
  case X86::ADOX32rm:
  case X86::ADOX64rm:
  case X86::AND8rm:
  case X86::AND16rm:
  case X86::AND32rm:
  case X86::AND64rm:
  case X86::ANDN32rm:
  case X86::ANDN64rm:
  case X86::OR8rm:
  case X86::OR16rm:
  case X86::OR32rm:
  case X86::OR64rm:
  case X86::SBB8rm:
  case X86::SBB16rm:
  case X86::SBB32rm:
  case X86::SBB64rm:
  case X86::SUB8rm:
  case X86::SUB16rm:
  case X86::SUB32rm:
  case X86::SUB64rm:
  case X86::XOR8rm:
  case X86::XOR16rm:
  case X86::XOR32rm:
  case X86::XOR64rm:
    // Check whether the EFLAGS implicit-def is dead. We assume that this will
    // always find the implicit-def because this code should only be reached
    // for instructions that do in fact implicitly def this.
    if (!MI.findRegisterDefOperand(X86::EFLAGS)->isDead()) {
      // If we would clobber EFLAGS that are used, just bail for now.
      LLVM_DEBUG(dbgs() << "    Unable to harden post-load due to EFLAGS: ";
                 MI.dump(); dbgs() << "\n");
      return false;
    }

    // Otherwise, fallthrough to handle these the same as instructions that
    // don't set EFLAGS.
    LLVM_FALLTHROUGH;

  // Integer multiply w/o affecting flags is still believed to be constant
  // time on x86. Called out separately as this is among the most surprising
  // instructions to exhibit that behavior.
  case X86::MULX32rm:
  case X86::MULX64rm:

  // Arithmetic instructions that are both constant time and don't set flags.
  case X86::RORX32mi:
  case X86::RORX64mi:
  case X86::SARX32rm:
  case X86::SARX64rm:
  case X86::SHLX32rm:
  case X86::SHLX64rm:
  case X86::SHRX32rm:
  case X86::SHRX64rm:

  // Conversions are believed to be constant time and don't set flags.
  case X86::CVTTSD2SI64rm: case X86::VCVTTSD2SI64rm: case X86::VCVTTSD2SI64Zrm:
  case X86::CVTTSD2SIrm:   case X86::VCVTTSD2SIrm:   case X86::VCVTTSD2SIZrm:
  case X86::CVTTSS2SI64rm: case X86::VCVTTSS2SI64rm: case X86::VCVTTSS2SI64Zrm:
  case X86::CVTTSS2SIrm:   case X86::VCVTTSS2SIrm:   case X86::VCVTTSS2SIZrm:
  case X86::CVTSI2SDrm:    case X86::VCVTSI2SDrm:    case X86::VCVTSI2SDZrm:
  case X86::CVTSI2SSrm:    case X86::VCVTSI2SSrm:    case X86::VCVTSI2SSZrm:
  case X86::CVTSI642SDrm:  case X86::VCVTSI642SDrm:  case X86::VCVTSI642SDZrm:
  case X86::CVTSI642SSrm:  case X86::VCVTSI642SSrm:  case X86::VCVTSI642SSZrm:
  case X86::CVTSS2SDrm:    case X86::VCVTSS2SDrm:    case X86::VCVTSS2SDZrm:
  case X86::CVTSD2SSrm:    case X86::VCVTSD2SSrm:    case X86::VCVTSD2SSZrm:
  // AVX512 added unsigned integer conversions.
  case X86::VCVTTSD2USI64Zrm:
  case X86::VCVTTSD2USIZrm:
  case X86::VCVTTSS2USI64Zrm:
  case X86::VCVTTSS2USIZrm:
  case X86::VCVTUSI2SDZrm:
  case X86::VCVTUSI642SDZrm:
  case X86::VCVTUSI2SSZrm:
  case X86::VCVTUSI642SSZrm:

  // Loads to register don't set flags.
  case X86::MOV8rm:
  case X86::MOV8rm_NOREX:
  case X86::MOV16rm:
  case X86::MOV32rm:
  case X86::MOV64rm:
  case X86::MOVSX16rm8:
  case X86::MOVSX32rm16:
  case X86::MOVSX32rm8:
  case X86::MOVSX32rm8_NOREX:
  case X86::MOVSX64rm16:
  case X86::MOVSX64rm32:
  case X86::MOVSX64rm8:
  case X86::MOVZX16rm8:
  case X86::MOVZX32rm16:
  case X86::MOVZX32rm8:
  case X86::MOVZX32rm8_NOREX:
  case X86::MOVZX64rm16:
  case X86::MOVZX64rm8:
    return true;
  }
}

static bool isEFLAGSLive(MachineBasicBlock &MBB, MachineBasicBlock::iterator I,
                         const TargetRegisterInfo &TRI) {
  // Check if EFLAGS are alive by seeing if there is a def of them or they
  // live-in, and then seeing if that def is in turn used.
  for (MachineInstr &MI : llvm::reverse(llvm::make_range(MBB.begin(), I))) {
    if (MachineOperand *DefOp = MI.findRegisterDefOperand(X86::EFLAGS)) {
      // If the def is dead, then EFLAGS is not live.
      if (DefOp->isDead())
        return false;

      // Otherwise we've def'ed it, and it is live.
      return true;
    }
    // While at this instruction, also check if we use and kill EFLAGS
    // which means it isn't live.
    if (MI.killsRegister(X86::EFLAGS, &TRI))
      return false;
  }

  // If we didn't find anything conclusive (neither definitely alive or
  // definitely dead) return whether it lives into the block.
  return MBB.isLiveIn(X86::EFLAGS);
}

/// Trace the predicate state through each of the blocks in the function,
/// hardening everything necessary along the way.
///
/// We call this routine once the initial predicate state has been established
/// for each basic block in the function in the SSA updater. This routine traces
/// it through the instructions within each basic block, and for non-returning
/// blocks informs the SSA updater about the final state that lives out of the
/// block. Along the way, it hardens any vulnerable instruction using the
/// currently valid predicate state. We have to do these two things together
/// because the SSA updater only works across blocks. Within a block, we track
/// the current predicate state directly and update it as it changes.
///
/// This operates in two passes over each block. First, we analyze the loads in
/// the block to determine which strategy will be used to harden them: hardening
/// the address or hardening the loaded value when loaded into a register
/// amenable to hardening. We have to process these first because the two
/// strategies may interact -- later hardening may change what strategy we wish
/// to use. We also will analyze data dependencies between loads and avoid
/// hardening those loads that are data dependent on a load with a hardened
/// address. We also skip hardening loads already behind an LFENCE as that is
/// sufficient to harden them against misspeculation.
///
/// Second, we actively trace the predicate state through the block, applying
/// the hardening steps we determined necessary in the first pass as we go.
///
/// These two passes are applied to each basic block. We operate one block at a
/// time to simplify reasoning about reachability and sequencing.
void X86SpeculativeLoadHardeningPass::tracePredStateThroughBlocksAndHarden(
    MachineFunction &MF) {
  SmallPtrSet<MachineInstr *, 16> HardenPostLoad;
  SmallPtrSet<MachineInstr *, 16> HardenLoadAddr;

  SmallSet<unsigned, 16> HardenedAddrRegs;

  SmallDenseMap<unsigned, unsigned, 32> AddrRegToHardenedReg;

  // Track the set of load-dependent registers through the basic block. Because
  // the values of these registers have an existing data dependency on a loaded
  // value which we would have checked, we can omit any checks on them.
  SparseBitVector<> LoadDepRegs;

  for (MachineBasicBlock &MBB : MF) {
    // The first pass over the block: collect all the loads which can have their
    // loaded value hardened and all the loads that instead need their address
    // hardened. During this walk we propagate load dependence for address
    // hardened loads and also look for LFENCE to stop hardening wherever
    // possible. When deciding whether or not to harden the loaded value or not,
    // we check to see if any registers used in the address will have been
    // hardened at this point and if so, harden any remaining address registers
    // as that often successfully re-uses hardened addresses and minimizes
    // instructions.
    //
    // FIXME: We should consider an aggressive mode where we continue to keep as
    // many loads value hardened even when some address register hardening would
    // be free (due to reuse).
    //
    // Note that we only need this pass if we are actually hardening loads.
    if (HardenLoads)
      for (MachineInstr &MI : MBB) {
        // We naively assume that all def'ed registers of an instruction have
        // a data dependency on all of their operands.
        // FIXME: Do a more careful analysis of x86 to build a conservative
        // model here.
        if (llvm::any_of(MI.uses(), [&](MachineOperand &Op) {
              return Op.isReg() && LoadDepRegs.test(Op.getReg());
            }))
          for (MachineOperand &Def : MI.defs())
            if (Def.isReg())
              LoadDepRegs.set(Def.getReg());

        // Both Intel and AMD are guiding that they will change the semantics of
        // LFENCE to be a speculation barrier, so if we see an LFENCE, there is
        // no more need to guard things in this block.
        if (MI.getOpcode() == X86::LFENCE)
          break;

        // If this instruction cannot load, nothing to do.
        if (!MI.mayLoad())
          continue;

        // Some instructions which "load" are trivially safe or unimportant.
        if (MI.getOpcode() == X86::MFENCE)
          continue;

        // Extract the memory operand information about this instruction.
        // FIXME: This doesn't handle loading pseudo instructions which we often
        // could handle with similarly generic logic. We probably need to add an
        // MI-layer routine similar to the MC-layer one we use here which maps
        // pseudos much like this maps real instructions.
        const MCInstrDesc &Desc = MI.getDesc();
        int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
        if (MemRefBeginIdx < 0) {
          LLVM_DEBUG(dbgs()
                         << "WARNING: unable to harden loading instruction: ";
                     MI.dump());
          continue;
        }

        MemRefBeginIdx += X86II::getOperandBias(Desc);

        MachineOperand &BaseMO =
            MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
        MachineOperand &IndexMO =
            MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);

        // If we have at least one (non-frame-index, non-RIP) register operand,
        // and neither operand is load-dependent, we need to check the load.
        unsigned BaseReg = 0, IndexReg = 0;
        if (!BaseMO.isFI() && BaseMO.getReg() != X86::RIP &&
            BaseMO.getReg() != X86::NoRegister)
          BaseReg = BaseMO.getReg();
        if (IndexMO.getReg() != X86::NoRegister)
          IndexReg = IndexMO.getReg();

        if (!BaseReg && !IndexReg)
          // No register operands!
          continue;

        // If any register operand is dependent, this load is dependent and we
        // needn't check it.
        // FIXME: Is this true in the case where we are hardening loads after
        // they complete? Unclear, need to investigate.
        if ((BaseReg && LoadDepRegs.test(BaseReg)) ||
            (IndexReg && LoadDepRegs.test(IndexReg)))
          continue;

        // If post-load hardening is enabled, this load is compatible with
        // post-load hardening, and we aren't already going to harden one of the
        // address registers, queue it up to be hardened post-load. Notably,
        // even once hardened this won't introduce a useful dependency that
        // could prune out subsequent loads.
        if (EnablePostLoadHardening && isDataInvariantLoad(MI) &&
            MI.getDesc().getNumDefs() == 1 && MI.getOperand(0).isReg() &&
            canHardenRegister(MI.getOperand(0).getReg()) &&
            !HardenedAddrRegs.count(BaseReg) &&
            !HardenedAddrRegs.count(IndexReg)) {
          HardenPostLoad.insert(&MI);
          HardenedAddrRegs.insert(MI.getOperand(0).getReg());
          continue;
        }

        // Record this instruction for address hardening and record its register
        // operands as being address-hardened.
        HardenLoadAddr.insert(&MI);
        if (BaseReg)
          HardenedAddrRegs.insert(BaseReg);
        if (IndexReg)
          HardenedAddrRegs.insert(IndexReg);

        for (MachineOperand &Def : MI.defs())
          if (Def.isReg())
            LoadDepRegs.set(Def.getReg());
      }

    // Now re-walk the instructions in the basic block, and apply whichever
    // hardening strategy we have elected. Note that we do this in a second
    // pass specifically so that we have the complete set of instructions for
    // which we will do post-load hardening and can defer it in certain
    // circumstances.
    //
    // FIXME: This could probably be made even more effective by doing it
    // across the entire function. Rather than just walking the flat list
    // backwards here, we could walk the function in PO and each block bottom
    // up, allowing us to in some cases sink hardening across block blocks. As
    // long as the in-block predicate state is used at the eventual hardening
    // site, this remains safe.
    for (MachineInstr &MI : MBB) {
      if (HardenLoads) {
        // We cannot both require hardening the def of a load and its address.
        assert(!(HardenLoadAddr.count(&MI) && HardenPostLoad.count(&MI)) &&
               "Requested to harden both the address and def of a load!");

        // Check if this is a load whose address needs to be hardened.
        if (HardenLoadAddr.erase(&MI)) {
          const MCInstrDesc &Desc = MI.getDesc();
          int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
          assert(MemRefBeginIdx >= 0 && "Cannot have an invalid index here!");

          MemRefBeginIdx += X86II::getOperandBias(Desc);

          MachineOperand &BaseMO =
              MI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
          MachineOperand &IndexMO =
              MI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
          hardenLoadAddr(MI, BaseMO, IndexMO, AddrRegToHardenedReg);
          continue;
        }

        // Test if this instruction is one of our post load instructions (and
        // remove it from the set if so).
        if (HardenPostLoad.erase(&MI)) {
          assert(!MI.isCall() && "Must not try to post-load harden a call!");

          // If this is a data-invariant load, we want to try and sink any
          // hardening as far as possible.
          if (isDataInvariantLoad(MI)) {
            // Sink the instruction we'll need to harden as far as we can down
            // the graph.
            MachineInstr *SunkMI = sinkPostLoadHardenedInst(MI, HardenPostLoad);

            // If we managed to sink this instruction, update everything so we
            // harden that instruction when we reach it in the instruction
            // sequence.
            if (SunkMI != &MI) {
              // If in sinking there was no instruction needing to be hardened,
              // we're done.
              if (!SunkMI)
                continue;

              // Otherwise, add this to the set of defs we harden.
              HardenPostLoad.insert(SunkMI);
              continue;
            }
          }

          unsigned HardenedReg = hardenPostLoad(MI);

          // Mark the resulting hardened register as such so we don't re-harden.
          AddrRegToHardenedReg[HardenedReg] = HardenedReg;

          continue;
        }

        // Check for an indirect call or branch that may need its input hardened
        // even if we couldn't find the specific load used, or were able to
        // avoid hardening it for some reason. Note that here we cannot break
        // out afterward as we may still need to handle any call aspect of this
        // instruction.
        if ((MI.isCall() || MI.isBranch()) && HardenIndirectCallsAndJumps)
          hardenIndirectCallOrJumpInstr(MI, AddrRegToHardenedReg);
      }

      // After we finish hardening loads we handle interprocedural hardening if
      // enabled and relevant for this instruction.
      if (!HardenInterprocedurally)
        continue;
      if (!MI.isCall() && !MI.isReturn())
        continue;

      // If this is a direct return (IE, not a tail call) just directly harden
      // it.
      if (MI.isReturn() && !MI.isCall()) {
        hardenReturnInstr(MI);
        continue;
      }

      // Otherwise we have a call. We need to handle transferring the predicate
      // state into a call and recovering it after the call returns unless this
      // is a tail call.
      assert(MI.isCall() && "Should only reach here for calls!");
      tracePredStateThroughCall(MI);
    }

    HardenPostLoad.clear();
    HardenLoadAddr.clear();
    HardenedAddrRegs.clear();
    AddrRegToHardenedReg.clear();

    // Currently, we only track data-dependent loads within a basic block.
    // FIXME: We should see if this is necessary or if we could be more
    // aggressive here without opening up attack avenues.
    LoadDepRegs.clear();
  }
}

/// Save EFLAGS into the returned GPR. This can in turn be restored with
/// `restoreEFLAGS`.
///
/// Note that LLVM can only lower very simple patterns of saved and restored
/// EFLAGS registers. The restore should always be within the same basic block
/// as the save so that no PHI nodes are inserted.
unsigned X86SpeculativeLoadHardeningPass::saveEFLAGS(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
    DebugLoc Loc) {
  // FIXME: Hard coding this to a 32-bit register class seems weird, but matches
  // what instruction selection does.
  unsigned Reg = MRI->createVirtualRegister(&X86::GR32RegClass);
  // We directly copy the FLAGS register and rely on later lowering to clean
  // this up into the appropriate setCC instructions.
  BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), Reg).addReg(X86::EFLAGS);
  ++NumInstsInserted;
  return Reg;
}

/// Restore EFLAGS from the provided GPR. This should be produced by
/// `saveEFLAGS`.
///
/// This must be done within the same basic block as the save in order to
/// reliably lower.
void X86SpeculativeLoadHardeningPass::restoreEFLAGS(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
    unsigned Reg) {
  BuildMI(MBB, InsertPt, Loc, TII->get(X86::COPY), X86::EFLAGS).addReg(Reg);
  ++NumInstsInserted;
}

/// Takes the current predicate state (in a register) and merges it into the
/// stack pointer. The state is essentially a single bit, but we merge this in
/// a way that won't form non-canonical pointers and also will be preserved
/// across normal stack adjustments.
void X86SpeculativeLoadHardeningPass::mergePredStateIntoSP(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt, DebugLoc Loc,
    unsigned PredStateReg) {
  unsigned TmpReg = MRI->createVirtualRegister(PS->RC);
  // FIXME: This hard codes a shift distance based on the number of bits needed
  // to stay canonical on 64-bit. We should compute this somehow and support
  // 32-bit as part of that.
  auto ShiftI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHL64ri), TmpReg)
                    .addReg(PredStateReg, RegState::Kill)
                    .addImm(47);
  ShiftI->addRegisterDead(X86::EFLAGS, TRI);
  ++NumInstsInserted;
  auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), X86::RSP)
                 .addReg(X86::RSP)
                 .addReg(TmpReg, RegState::Kill);
  OrI->addRegisterDead(X86::EFLAGS, TRI);
  ++NumInstsInserted;
}

/// Extracts the predicate state stored in the high bits of the stack pointer.
unsigned X86SpeculativeLoadHardeningPass::extractPredStateFromSP(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
    DebugLoc Loc) {
  unsigned PredStateReg = MRI->createVirtualRegister(PS->RC);
  unsigned TmpReg = MRI->createVirtualRegister(PS->RC);

  // We know that the stack pointer will have any preserved predicate state in
  // its high bit. We just want to smear this across the other bits. Turns out,
  // this is exactly what an arithmetic right shift does.
  BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), TmpReg)
      .addReg(X86::RSP);
  auto ShiftI =
      BuildMI(MBB, InsertPt, Loc, TII->get(X86::SAR64ri), PredStateReg)
          .addReg(TmpReg, RegState::Kill)
          .addImm(TRI->getRegSizeInBits(*PS->RC) - 1);
  ShiftI->addRegisterDead(X86::EFLAGS, TRI);
  ++NumInstsInserted;

  return PredStateReg;
}

void X86SpeculativeLoadHardeningPass::hardenLoadAddr(
    MachineInstr &MI, MachineOperand &BaseMO, MachineOperand &IndexMO,
    SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) {
  MachineBasicBlock &MBB = *MI.getParent();
  DebugLoc Loc = MI.getDebugLoc();

  // Check if EFLAGS are alive by seeing if there is a def of them or they
  // live-in, and then seeing if that def is in turn used.
  bool EFLAGSLive = isEFLAGSLive(MBB, MI.getIterator(), *TRI);

  SmallVector<MachineOperand *, 2> HardenOpRegs;

  if (BaseMO.isFI()) {
    // A frame index is never a dynamically controllable load, so only
    // harden it if we're covering fixed address loads as well.
    LLVM_DEBUG(
        dbgs() << "  Skipping hardening base of explicit stack frame load: ";
        MI.dump(); dbgs() << "\n");
  } else if (BaseMO.getReg() == X86::RIP ||
             BaseMO.getReg() == X86::NoRegister) {
    // For both RIP-relative addressed loads or absolute loads, we cannot
    // meaningfully harden them because the address being loaded has no
    // dynamic component.
    //
    // FIXME: When using a segment base (like TLS does) we end up with the
    // dynamic address being the base plus -1 because we can't mutate the
    // segment register here. This allows the signed 32-bit offset to point at
    // valid segment-relative addresses and load them successfully.
    LLVM_DEBUG(
        dbgs() << "  Cannot harden base of "
               << (BaseMO.getReg() == X86::RIP ? "RIP-relative" : "no-base")
               << " address in a load!");
  } else {
    assert(BaseMO.isReg() &&
           "Only allowed to have a frame index or register base.");
    HardenOpRegs.push_back(&BaseMO);
  }

  if (IndexMO.getReg() != X86::NoRegister &&
      (HardenOpRegs.empty() ||
       HardenOpRegs.front()->getReg() != IndexMO.getReg()))
    HardenOpRegs.push_back(&IndexMO);

  assert((HardenOpRegs.size() == 1 || HardenOpRegs.size() == 2) &&
         "Should have exactly one or two registers to harden!");
  assert((HardenOpRegs.size() == 1 ||
          HardenOpRegs[0]->getReg() != HardenOpRegs[1]->getReg()) &&
         "Should not have two of the same registers!");

  // Remove any registers that have alreaded been checked.
  llvm::erase_if(HardenOpRegs, [&](MachineOperand *Op) {
    // See if this operand's register has already been checked.
    auto It = AddrRegToHardenedReg.find(Op->getReg());
    if (It == AddrRegToHardenedReg.end())
      // Not checked, so retain this one.
      return false;

    // Otherwise, we can directly update this operand and remove it.
    Op->setReg(It->second);
    return true;
  });
  // If there are none left, we're done.
  if (HardenOpRegs.empty())
    return;

  // Compute the current predicate state.
  unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);

  auto InsertPt = MI.getIterator();

  // If EFLAGS are live and we don't have access to instructions that avoid
  // clobbering EFLAGS we need to save and restore them. This in turn makes
  // the EFLAGS no longer live.
  unsigned FlagsReg = 0;
  if (EFLAGSLive && !Subtarget->hasBMI2()) {
    EFLAGSLive = false;
    FlagsReg = saveEFLAGS(MBB, InsertPt, Loc);
  }

  for (MachineOperand *Op : HardenOpRegs) {
    unsigned OpReg = Op->getReg();
    auto *OpRC = MRI->getRegClass(OpReg);
    unsigned TmpReg = MRI->createVirtualRegister(OpRC);

    // If this is a vector register, we'll need somewhat custom logic to handle
    // hardening it.
    if (!Subtarget->hasVLX() && (OpRC->hasSuperClassEq(&X86::VR128RegClass) ||
                                 OpRC->hasSuperClassEq(&X86::VR256RegClass))) {
      assert(Subtarget->hasAVX2() && "AVX2-specific register classes!");
      bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128RegClass);

      // Move our state into a vector register.
      // FIXME: We could skip this at the cost of longer encodings with AVX-512
      // but that doesn't seem likely worth it.
      unsigned VStateReg = MRI->createVirtualRegister(&X86::VR128RegClass);
      auto MovI =
          BuildMI(MBB, InsertPt, Loc, TII->get(X86::VMOV64toPQIrr), VStateReg)
              .addReg(StateReg);
      (void)MovI;
      ++NumInstsInserted;
      LLVM_DEBUG(dbgs() << "  Inserting mov: "; MovI->dump(); dbgs() << "\n");

      // Broadcast it across the vector register.
      unsigned VBStateReg = MRI->createVirtualRegister(OpRC);
      auto BroadcastI = BuildMI(MBB, InsertPt, Loc,
                                TII->get(Is128Bit ? X86::VPBROADCASTQrr
                                                  : X86::VPBROADCASTQYrr),
                                VBStateReg)
                            .addReg(VStateReg);
      (void)BroadcastI;
      ++NumInstsInserted;
      LLVM_DEBUG(dbgs() << "  Inserting broadcast: "; BroadcastI->dump();
                 dbgs() << "\n");

      // Merge our potential poison state into the value with a vector or.
      auto OrI =
          BuildMI(MBB, InsertPt, Loc,
                  TII->get(Is128Bit ? X86::VPORrr : X86::VPORYrr), TmpReg)
              .addReg(VBStateReg)
              .addReg(OpReg);
      (void)OrI;
      ++NumInstsInserted;
      LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
    } else if (OpRC->hasSuperClassEq(&X86::VR128XRegClass) ||
               OpRC->hasSuperClassEq(&X86::VR256XRegClass) ||
               OpRC->hasSuperClassEq(&X86::VR512RegClass)) {
      assert(Subtarget->hasAVX512() && "AVX512-specific register classes!");
      bool Is128Bit = OpRC->hasSuperClassEq(&X86::VR128XRegClass);
      bool Is256Bit = OpRC->hasSuperClassEq(&X86::VR256XRegClass);
      if (Is128Bit || Is256Bit)
        assert(Subtarget->hasVLX() && "AVX512VL-specific register classes!");

      // Broadcast our state into a vector register.
      unsigned VStateReg = MRI->createVirtualRegister(OpRC);
      unsigned BroadcastOp =
          Is128Bit ? X86::VPBROADCASTQrZ128r
                   : Is256Bit ? X86::VPBROADCASTQrZ256r : X86::VPBROADCASTQrZr;
      auto BroadcastI =
          BuildMI(MBB, InsertPt, Loc, TII->get(BroadcastOp), VStateReg)
              .addReg(StateReg);
      (void)BroadcastI;
      ++NumInstsInserted;
      LLVM_DEBUG(dbgs() << "  Inserting broadcast: "; BroadcastI->dump();
                 dbgs() << "\n");

      // Merge our potential poison state into the value with a vector or.
      unsigned OrOp = Is128Bit ? X86::VPORQZ128rr
                               : Is256Bit ? X86::VPORQZ256rr : X86::VPORQZrr;
      auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOp), TmpReg)
                     .addReg(VStateReg)
                     .addReg(OpReg);
      (void)OrI;
      ++NumInstsInserted;
      LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
    } else {
      // FIXME: Need to support GR32 here for 32-bit code.
      assert(OpRC->hasSuperClassEq(&X86::GR64RegClass) &&
             "Not a supported register class for address hardening!");

      if (!EFLAGSLive) {
        // Merge our potential poison state into the value with an or.
        auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(X86::OR64rr), TmpReg)
                       .addReg(StateReg)
                       .addReg(OpReg);
        OrI->addRegisterDead(X86::EFLAGS, TRI);
        ++NumInstsInserted;
        LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");
      } else {
        // We need to avoid touching EFLAGS so shift out all but the least
        // significant bit using the instruction that doesn't update flags.
        auto ShiftI =
            BuildMI(MBB, InsertPt, Loc, TII->get(X86::SHRX64rr), TmpReg)
                .addReg(OpReg)
                .addReg(StateReg);
        (void)ShiftI;
        ++NumInstsInserted;
        LLVM_DEBUG(dbgs() << "  Inserting shrx: "; ShiftI->dump();
                   dbgs() << "\n");
      }
    }

    // Record this register as checked and update the operand.
    assert(!AddrRegToHardenedReg.count(Op->getReg()) &&
           "Should not have checked this register yet!");
    AddrRegToHardenedReg[Op->getReg()] = TmpReg;
    Op->setReg(TmpReg);
    ++NumAddrRegsHardened;
  }

  // And restore the flags if needed.
  if (FlagsReg)
    restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg);
}

MachineInstr *X86SpeculativeLoadHardeningPass::sinkPostLoadHardenedInst(
    MachineInstr &InitialMI, SmallPtrSetImpl<MachineInstr *> &HardenedInstrs) {
  assert(isDataInvariantLoad(InitialMI) &&
         "Cannot get here with a non-invariant load!");

  // See if we can sink hardening the loaded value.
  auto SinkCheckToSingleUse =
      [&](MachineInstr &MI) -> Optional<MachineInstr *> {
    unsigned DefReg = MI.getOperand(0).getReg();

    // We need to find a single use which we can sink the check. We can
    // primarily do this because many uses may already end up checked on their
    // own.
    MachineInstr *SingleUseMI = nullptr;
    for (MachineInstr &UseMI : MRI->use_instructions(DefReg)) {
      // If we're already going to harden this use, it is data invariant and
      // within our block.
      if (HardenedInstrs.count(&UseMI)) {
        if (!isDataInvariantLoad(UseMI)) {
          // If we've already decided to harden a non-load, we must have sunk
          // some other post-load hardened instruction to it and it must itself
          // be data-invariant.
          assert(isDataInvariant(UseMI) &&
                 "Data variant instruction being hardened!");
          continue;
        }

        // Otherwise, this is a load and the load component can't be data
        // invariant so check how this register is being used.
        const MCInstrDesc &Desc = UseMI.getDesc();
        int MemRefBeginIdx = X86II::getMemoryOperandNo(Desc.TSFlags);
        assert(MemRefBeginIdx >= 0 &&
               "Should always have mem references here!");
        MemRefBeginIdx += X86II::getOperandBias(Desc);

        MachineOperand &BaseMO =
            UseMI.getOperand(MemRefBeginIdx + X86::AddrBaseReg);
        MachineOperand &IndexMO =
            UseMI.getOperand(MemRefBeginIdx + X86::AddrIndexReg);
        if ((BaseMO.isReg() && BaseMO.getReg() == DefReg) ||
            (IndexMO.isReg() && IndexMO.getReg() == DefReg))
          // The load uses the register as part of its address making it not
          // invariant.
          return {};

        continue;
      }

      if (SingleUseMI)
        // We already have a single use, this would make two. Bail.
        return {};

      // If this single use isn't data invariant, isn't in this block, or has
      // interfering EFLAGS, we can't sink the hardening to it.
      if (!isDataInvariant(UseMI) || UseMI.getParent() != MI.getParent())
        return {};

      // If this instruction defines multiple registers bail as we won't harden
      // all of them.
      if (UseMI.getDesc().getNumDefs() > 1)
        return {};

      // If this register isn't a virtual register we can't walk uses of sanely,
      // just bail. Also check that its register class is one of the ones we
      // can harden.
      unsigned UseDefReg = UseMI.getOperand(0).getReg();
      if (!TRI->isVirtualRegister(UseDefReg) ||
          !canHardenRegister(UseDefReg))
        return {};

      SingleUseMI = &UseMI;
    }

    // If SingleUseMI is still null, there is no use that needs its own
    // checking. Otherwise, it is the single use that needs checking.
    return {SingleUseMI};
  };

  MachineInstr *MI = &InitialMI;
  while (Optional<MachineInstr *> SingleUse = SinkCheckToSingleUse(*MI)) {
    // Update which MI we're checking now.
    MI = *SingleUse;
    if (!MI)
      break;
  }

  return MI;
}

bool X86SpeculativeLoadHardeningPass::canHardenRegister(unsigned Reg) {
  auto *RC = MRI->getRegClass(Reg);
  int RegBytes = TRI->getRegSizeInBits(*RC) / 8;
  if (RegBytes > 8)
    // We don't support post-load hardening of vectors.
    return false;

  // If this register class is explicitly constrained to a class that doesn't
  // require REX prefix, we may not be able to satisfy that constraint when
  // emitting the hardening instructions, so bail out here.
  // FIXME: This seems like a pretty lame hack. The way this comes up is when we
  // end up both with a NOREX and REX-only register as operands to the hardening
  // instructions. It would be better to fix that code to handle this situation
  // rather than hack around it in this way.
  const TargetRegisterClass *NOREXRegClasses[] = {
      &X86::GR8_NOREXRegClass, &X86::GR16_NOREXRegClass,
      &X86::GR32_NOREXRegClass, &X86::GR64_NOREXRegClass};
  if (RC == NOREXRegClasses[Log2_32(RegBytes)])
    return false;

  const TargetRegisterClass *GPRRegClasses[] = {
      &X86::GR8RegClass, &X86::GR16RegClass, &X86::GR32RegClass,
      &X86::GR64RegClass};
  return RC->hasSuperClassEq(GPRRegClasses[Log2_32(RegBytes)]);
}

/// Harden a value in a register.
///
/// This is the low-level logic to fully harden a value sitting in a register
/// against leaking during speculative execution.
///
/// Unlike hardening an address that is used by a load, this routine is required
/// to hide *all* incoming bits in the register.
///
/// `Reg` must be a virtual register. Currently, it is required to be a GPR no
/// larger than the predicate state register. FIXME: We should support vector
/// registers here by broadcasting the predicate state.
///
/// The new, hardened virtual register is returned. It will have the same
/// register class as `Reg`.
unsigned X86SpeculativeLoadHardeningPass::hardenValueInRegister(
    unsigned Reg, MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertPt,
    DebugLoc Loc) {
  assert(canHardenRegister(Reg) && "Cannot harden this register!");
  assert(TRI->isVirtualRegister(Reg) && "Cannot harden a physical register!");

  auto *RC = MRI->getRegClass(Reg);
  int Bytes = TRI->getRegSizeInBits(*RC) / 8;

  unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);

  // FIXME: Need to teach this about 32-bit mode.
  if (Bytes != 8) {
    unsigned SubRegImms[] = {X86::sub_8bit, X86::sub_16bit, X86::sub_32bit};
    unsigned SubRegImm = SubRegImms[Log2_32(Bytes)];
    unsigned NarrowStateReg = MRI->createVirtualRegister(RC);
    BuildMI(MBB, InsertPt, Loc, TII->get(TargetOpcode::COPY), NarrowStateReg)
        .addReg(StateReg, 0, SubRegImm);
    StateReg = NarrowStateReg;
  }

  unsigned FlagsReg = 0;
  if (isEFLAGSLive(MBB, InsertPt, *TRI))
    FlagsReg = saveEFLAGS(MBB, InsertPt, Loc);

  unsigned NewReg = MRI->createVirtualRegister(RC);
  unsigned OrOpCodes[] = {X86::OR8rr, X86::OR16rr, X86::OR32rr, X86::OR64rr};
  unsigned OrOpCode = OrOpCodes[Log2_32(Bytes)];
  auto OrI = BuildMI(MBB, InsertPt, Loc, TII->get(OrOpCode), NewReg)
                 .addReg(StateReg)
                 .addReg(Reg);
  OrI->addRegisterDead(X86::EFLAGS, TRI);
  ++NumInstsInserted;
  LLVM_DEBUG(dbgs() << "  Inserting or: "; OrI->dump(); dbgs() << "\n");

  if (FlagsReg)
    restoreEFLAGS(MBB, InsertPt, Loc, FlagsReg);

  return NewReg;
}

/// Harden a load by hardening the loaded value in the defined register.
///
/// We can harden a non-leaking load into a register without touching the
/// address by just hiding all of the loaded bits during misspeculation. We use
/// an `or` instruction to do this because we set up our poison value as all
/// ones. And the goal is just for the loaded bits to not be exposed to
/// execution and coercing them to one is sufficient.
///
/// Returns the newly hardened register.
unsigned X86SpeculativeLoadHardeningPass::hardenPostLoad(MachineInstr &MI) {
  MachineBasicBlock &MBB = *MI.getParent();
  DebugLoc Loc = MI.getDebugLoc();

  auto &DefOp = MI.getOperand(0);
  unsigned OldDefReg = DefOp.getReg();
  auto *DefRC = MRI->getRegClass(OldDefReg);

  // Because we want to completely replace the uses of this def'ed value with
  // the hardened value, create a dedicated new register that will only be used
  // to communicate the unhardened value to the hardening.
  unsigned UnhardenedReg = MRI->createVirtualRegister(DefRC);
  DefOp.setReg(UnhardenedReg);

  // Now harden this register's value, getting a hardened reg that is safe to
  // use. Note that we insert the instructions to compute this *after* the
  // defining instruction, not before it.
  unsigned HardenedReg = hardenValueInRegister(
      UnhardenedReg, MBB, std::next(MI.getIterator()), Loc);

  // Finally, replace the old register (which now only has the uses of the
  // original def) with the hardened register.
  MRI->replaceRegWith(/*FromReg*/ OldDefReg, /*ToReg*/ HardenedReg);

  ++NumPostLoadRegsHardened;
  return HardenedReg;
}

/// Harden a return instruction.
///
/// Returns implicitly perform a load which we need to harden. Without hardening
/// this load, an attacker my speculatively write over the return address to
/// steer speculation of the return to an attacker controlled address. This is
/// called Spectre v1.1 or Bounds Check Bypass Store (BCBS) and is described in
/// this paper:
/// https://people.csail.mit.edu/vlk/spectre11.pdf
///
/// We can harden this by introducing an LFENCE that will delay any load of the
/// return address until prior instructions have retired (and thus are not being
/// speculated), or we can harden the address used by the implicit load: the
/// stack pointer.
///
/// If we are not using an LFENCE, hardening the stack pointer has an additional
/// benefit: it allows us to pass the predicate state accumulated in this
/// function back to the caller. In the absence of a BCBS attack on the return,
/// the caller will typically be resumed and speculatively executed due to the
/// Return Stack Buffer (RSB) prediction which is very accurate and has a high
/// priority. It is possible that some code from the caller will be executed
/// speculatively even during a BCBS-attacked return until the steering takes
/// effect. Whenever this happens, the caller can recover the (poisoned)
/// predicate state from the stack pointer and continue to harden loads.
void X86SpeculativeLoadHardeningPass::hardenReturnInstr(MachineInstr &MI) {
  MachineBasicBlock &MBB = *MI.getParent();
  DebugLoc Loc = MI.getDebugLoc();
  auto InsertPt = MI.getIterator();

  if (FenceCallAndRet) {
    // Simply forcibly block speculation of loads out of the function by using
    // an LFENCE. This is potentially a heavy-weight mitigation strategy, but
    // should be secure, is simple from an ABI perspective, and the cost can be
    // minimized through inlining.
    //
    // FIXME: We should investigate ways to establish a strong data-dependency
    // on the return. However, poisoning the stack pointer is unlikely to work
    // because the return is *predicted* rather than relying on the load of the
    // return address to actually resolve.
    BuildMI(MBB, InsertPt, Loc, TII->get(X86::LFENCE));
    ++NumInstsInserted;
    ++NumLFENCEsInserted;
    return;
  }

  // Take our predicate state, shift it to the high 17 bits (so that we keep
  // pointers canonical) and merge it into RSP. This will allow the caller to
  // extract it when we return (speculatively).
  mergePredStateIntoSP(MBB, InsertPt, Loc, PS->SSA.GetValueAtEndOfBlock(&MBB));
}

/// Trace the predicate state through a call.
///
/// There are several layers of this needed to handle the full complexity of
/// calls.
///
/// First, we need to send the predicate state into the called function. We do
/// this by merging it into the high bits of the stack pointer.
///
/// For tail calls, this is all we need to do.
///
/// For calls where we might return to control flow, we further need to extract
/// the predicate state built up within that function from the high bits of the
/// stack pointer, and make that the newly available predicate state.
void X86SpeculativeLoadHardeningPass::tracePredStateThroughCall(
    MachineInstr &MI) {
  MachineBasicBlock &MBB = *MI.getParent();
  auto InsertPt = MI.getIterator();
  DebugLoc Loc = MI.getDebugLoc();

  // First, we transfer the predicate state into the called function by merging
  // it into the stack pointer. This will kill the current def of the state.
  unsigned StateReg = PS->SSA.GetValueAtEndOfBlock(&MBB);
  mergePredStateIntoSP(MBB, InsertPt, Loc, StateReg);

  // If this call is also a return, it is a tail call and we don't need anything
  // else to handle it so just continue.
  // FIXME: We should also handle noreturn calls.
  if (MI.isReturn())
    return;

  // We need to step past the call and recover the predicate state from SP after
  // the return, and make this new state available.
  ++InsertPt;
  unsigned NewStateReg = extractPredStateFromSP(MBB, InsertPt, Loc);
  PS->SSA.AddAvailableValue(&MBB, NewStateReg);
}

/// An attacker may speculatively store over a value that is then speculatively
/// loaded and used as the target of an indirect call or jump instruction. This
/// is called Spectre v1.2 or Bounds Check Bypass Store (BCBS) and is described
/// in this paper:
/// https://people.csail.mit.edu/vlk/spectre11.pdf
///
/// When this happens, the speculative execution of the call or jump will end up
/// being steered to this attacker controlled address. While most such loads
/// will be adequately hardened already, we want to ensure that they are
/// definitively treated as needing post-load hardening. While address hardening
/// is sufficient to prevent secret data from leaking to the attacker, it may
/// not be sufficient to prevent an attacker from steering speculative
/// execution. We forcibly unfolded all relevant loads above and so will always
/// have an opportunity to post-load harden here, we just need to scan for cases
/// not already flagged and add them.
void X86SpeculativeLoadHardeningPass::hardenIndirectCallOrJumpInstr(
    MachineInstr &MI,
    SmallDenseMap<unsigned, unsigned, 32> &AddrRegToHardenedReg) {
  switch (MI.getOpcode()) {
  case X86::FARCALL16m:
  case X86::FARCALL32m:
  case X86::FARCALL64:
  case X86::FARJMP16m:
  case X86::FARJMP32m:
  case X86::FARJMP64:
    // We don't need to harden either far calls or far jumps as they are
    // safe from Spectre.
    return;

  default:
    break;
  }

  // We should never see a loading instruction at this point, as those should
  // have been unfolded.
  assert(!MI.mayLoad() && "Found a lingering loading instruction!");

  // If the first operand isn't a register, this is a branch or call
  // instruction with an immediate operand which doesn't need to be hardened.
  if (!MI.getOperand(0).isReg())
    return;

  // For all of these, the target register is the first operand of the
  // instruction.
  auto &TargetOp = MI.getOperand(0);
  unsigned OldTargetReg = TargetOp.getReg();

  // Try to lookup a hardened version of this register. We retain a reference
  // here as we want to update the map to track any newly computed hardened
  // register.
  unsigned &HardenedTargetReg = AddrRegToHardenedReg[OldTargetReg];

  // If we don't have a hardened register yet, compute one. Otherwise, just use
  // the already hardened register.
  //
  // FIXME: It is a little suspect that we use partially hardened registers that
  // only feed addresses. The complexity of partial hardening with SHRX
  // continues to pile up. Should definitively measure its value and consider
  // eliminating it.
  if (!HardenedTargetReg)
    HardenedTargetReg = hardenValueInRegister(
        OldTargetReg, *MI.getParent(), MI.getIterator(), MI.getDebugLoc());

  // Set the target operand to the hardened register.
  TargetOp.setReg(HardenedTargetReg);

  ++NumCallsOrJumpsHardened;
}

INITIALIZE_PASS_BEGIN(X86SpeculativeLoadHardeningPass, DEBUG_TYPE,
                      "X86 speculative load hardener", false, false)
INITIALIZE_PASS_END(X86SpeculativeLoadHardeningPass, DEBUG_TYPE,
                    "X86 speculative load hardener", false, false)

FunctionPass *llvm::createX86SpeculativeLoadHardeningPass() {
  return new X86SpeculativeLoadHardeningPass();
}