llvm.org GIT mirror llvm / release_70 lib / Target / X86 / X86ScheduleBtVer2.td
release_70

Tree @release_70 (Download .tar.gz)

X86ScheduleBtVer2.td @release_70raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
//=- X86ScheduleBtVer2.td - X86 BtVer2 (Jaguar) Scheduling ---*- tablegen -*-=//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the machine model for AMD btver2 (Jaguar) to support
// instruction scheduling and other instruction cost heuristics. Based off AMD Software
// Optimization Guide for AMD Family 16h Processors & Instruction Latency appendix.
//
//===----------------------------------------------------------------------===//

def BtVer2Model : SchedMachineModel {
  // All x86 instructions are modeled as a single micro-op, and btver2 can
  // decode 2 instructions per cycle.
  let IssueWidth = 2;
  let MicroOpBufferSize = 64; // Retire Control Unit
  let LoadLatency = 5; // FPU latency (worse case cf Integer 3 cycle latency)
  let HighLatency = 25;
  let MispredictPenalty = 14; // Minimum branch misdirection penalty
  let PostRAScheduler = 1;

  // FIXME: SSE4/AVX is unimplemented. This flag is set to allow
  // the scheduler to assign a default model to unrecognized opcodes.
  let CompleteModel = 0;
}

let SchedModel = BtVer2Model in {

// Jaguar can issue up to 6 micro-ops in one cycle
def JALU0 : ProcResource<1>; // Integer Pipe0: integer ALU0 (also handle FP->INT jam)
def JALU1 : ProcResource<1>; // Integer Pipe1: integer ALU1/MUL/DIV
def JLAGU : ProcResource<1>; // Integer Pipe2: LAGU
def JSAGU : ProcResource<1>; // Integer Pipe3: SAGU (also handles 3-operand LEA)
def JFPU0 : ProcResource<1>; // Vector/FPU Pipe0: VALU0/VIMUL/FPA
def JFPU1 : ProcResource<1>; // Vector/FPU Pipe1: VALU1/STC/FPM

// The Integer PRF for Jaguar is 64 entries, and it holds the architectural and
// speculative version of the 64-bit integer registers.
// Reference: www.realworldtech.com/jaguar/4/
//
// The processor always keeps the different parts of an integer register
// together. An instruction that writes to a part of a register will therefore
// have a false dependence on any previous write to the same register or any
// part of it.
// Reference: Section 21.10 "AMD Bobcat and Jaguar pipeline: Partial register
// access" - Agner Fog's "microarchitecture.pdf".
def JIntegerPRF : RegisterFile<64, [GR64, CCR]>;

// The Jaguar FP Retire Queue renames SIMD and FP uOps onto a pool of 72 SSE
// registers. Operations on 256-bit data types are cracked into two COPs.
// Reference: www.realworldtech.com/jaguar/4/
def JFpuPRF: RegisterFile<72, [VR64, VR128, VR256], [1, 1, 2]>;

// The retire control unit (RCU) can track up to 64 macro-ops in-flight. It can
// retire up to two macro-ops per cycle.
// Reference: "Software Optimization Guide for AMD Family 16h Processors"
def JRCU : RetireControlUnit<64, 2>;

// Integer Pipe Scheduler
def JALU01 : ProcResGroup<[JALU0, JALU1]> {
  let BufferSize=20;
}

// AGU Pipe Scheduler
def JLSAGU : ProcResGroup<[JLAGU, JSAGU]> {
  let BufferSize=12;
}

// Fpu Pipe Scheduler
def JFPU01 : ProcResGroup<[JFPU0, JFPU1]> {
  let BufferSize=18;
}

// Functional units
def JDiv    : ProcResource<1>; // integer division
def JMul    : ProcResource<1>; // integer multiplication
def JVALU0  : ProcResource<1>; // vector integer
def JVALU1  : ProcResource<1>; // vector integer
def JVIMUL  : ProcResource<1>; // vector integer multiplication
def JSTC    : ProcResource<1>; // vector store/convert
def JFPM    : ProcResource<1>; // FP multiplication
def JFPA    : ProcResource<1>; // FP addition

// Functional unit groups
def JFPX  : ProcResGroup<[JFPA, JFPM]>;
def JVALU : ProcResGroup<[JVALU0, JVALU1]>;

// Integer loads are 3 cycles, so ReadAfterLd registers needn't be available until 3
// cycles after the memory operand.
def : ReadAdvance<ReadAfterLd, 3>;

// Many SchedWrites are defined in pairs with and without a folded load.
// Instructions with folded loads are usually micro-fused, so they only appear
// as two micro-ops when dispatched by the schedulers.
// This multiclass defines the resource usage for variants with and without
// folded loads.
multiclass JWriteResIntPair<X86FoldableSchedWrite SchedRW,
                            list<ProcResourceKind> ExePorts,
                            int Lat, list<int> Res = [], int UOps = 1> {
  // Register variant is using a single cycle on ExePort.
  def : WriteRes<SchedRW, ExePorts> {
    let Latency = Lat;
    let ResourceCycles = Res;
    let NumMicroOps = UOps;
  }

  // Memory variant also uses a cycle on JLAGU and adds 3 cycles to the
  // latency.
  def : WriteRes<SchedRW.Folded, !listconcat([JLAGU], ExePorts)> {
    let Latency = !add(Lat, 3);
    let ResourceCycles = !if(!empty(Res), [], !listconcat([1], Res));
    let NumMicroOps = UOps;
  }
}

multiclass JWriteResFpuPair<X86FoldableSchedWrite SchedRW,
                            list<ProcResourceKind> ExePorts,
                            int Lat, list<int> Res = [], int UOps = 1> {
  // Register variant is using a single cycle on ExePort.
  def : WriteRes<SchedRW, ExePorts> {
    let Latency = Lat;
    let ResourceCycles = Res;
    let NumMicroOps = UOps;
  }

  // Memory variant also uses a cycle on JLAGU and adds 5 cycles to the
  // latency.
  def : WriteRes<SchedRW.Folded, !listconcat([JLAGU], ExePorts)> {
    let Latency = !add(Lat, 5);
    let ResourceCycles = !if(!empty(Res), [], !listconcat([1], Res));
    let NumMicroOps = UOps;
  }
}

multiclass JWriteResYMMPair<X86FoldableSchedWrite SchedRW,
                            list<ProcResourceKind> ExePorts,
                            int Lat, list<int> Res = [2], int UOps = 2> {
  // Register variant is using a single cycle on ExePort.
  def : WriteRes<SchedRW, ExePorts> {
    let Latency = Lat;
    let ResourceCycles = Res;
    let NumMicroOps = UOps;
  }

  // Memory variant also uses 2 cycles on JLAGU and adds 5 cycles to the
  // latency.
  def : WriteRes<SchedRW.Folded, !listconcat([JLAGU], ExePorts)> {
    let Latency = !add(Lat, 5);
    let ResourceCycles = !listconcat([2], Res);
    let NumMicroOps = UOps;
  }
}

// A folded store needs a cycle on the SAGU for the store data.
def : WriteRes<WriteRMW, [JSAGU]>;

////////////////////////////////////////////////////////////////////////////////
// Arithmetic.
////////////////////////////////////////////////////////////////////////////////

defm : JWriteResIntPair<WriteALU,    [JALU01], 1>;
defm : JWriteResIntPair<WriteADC,    [JALU01], 1, [2]>;
defm : JWriteResIntPair<WriteIMul,   [JALU1, JMul], 3, [1, 1], 2>; // i8/i16/i32 multiplication
defm : JWriteResIntPair<WriteIMul64, [JALU1, JMul], 6, [1, 4], 2>; // i64 multiplication
defm : X86WriteRes<WriteIMulH,       [JALU1], 6, [4], 1>;

defm : X86WriteRes<WriteBSWAP32, [JALU01], 1, [1], 1>;
defm : X86WriteRes<WriteBSWAP64, [JALU01], 1, [1], 1>;

defm : JWriteResIntPair<WriteDiv8,   [JALU1, JDiv], 12, [1, 12], 1>;
defm : JWriteResIntPair<WriteDiv16,  [JALU1, JDiv], 17, [1, 17], 2>;
defm : JWriteResIntPair<WriteDiv32,  [JALU1, JDiv], 25, [1, 25], 2>;
defm : JWriteResIntPair<WriteDiv64,  [JALU1, JDiv], 41, [1, 41], 2>;
defm : JWriteResIntPair<WriteIDiv8,  [JALU1, JDiv], 12, [1, 12], 1>;
defm : JWriteResIntPair<WriteIDiv16, [JALU1, JDiv], 17, [1, 17], 2>;
defm : JWriteResIntPair<WriteIDiv32, [JALU1, JDiv], 25, [1, 25], 2>;
defm : JWriteResIntPair<WriteIDiv64, [JALU1, JDiv], 41, [1, 41], 2>;

defm : JWriteResIntPair<WriteCRC32,  [JALU01], 3, [4], 3>;

defm : JWriteResIntPair<WriteCMOV,  [JALU01], 1>; // Conditional move.
defm : JWriteResIntPair<WriteCMOV2, [JALU01], 1>; // Conditional (CF + ZF flag) move.
defm : X86WriteRes<WriteFCMOV, [JFPU0, JFPA], 3, [1,1], 1>; // x87 conditional move.
def  : WriteRes<WriteSETCC, [JALU01]>; // Setcc.
def  : WriteRes<WriteSETCCStore, [JALU01,JSAGU]>;
def  : WriteRes<WriteLAHFSAHF, [JALU01]>;
def  : WriteRes<WriteBitTest,[JALU01]>;

// This is for simple LEAs with one or two input operands.
def : WriteRes<WriteLEA, [JALU01]>;

// Bit counts.
defm : JWriteResIntPair<WriteBSF, [JALU01], 5, [4], 8>;
defm : JWriteResIntPair<WriteBSR, [JALU01], 5, [4], 8>;
defm : JWriteResIntPair<WritePOPCNT,         [JALU01], 1>;
defm : JWriteResIntPair<WriteLZCNT,          [JALU01], 1>;
defm : JWriteResIntPair<WriteTZCNT,          [JALU01], 2, [2]>;

// BMI1 BEXTR, BMI2 BZHI
defm : JWriteResIntPair<WriteBEXTR, [JALU01], 1>;
defm : X86WriteResPairUnsupported<WriteBZHI>;

////////////////////////////////////////////////////////////////////////////////
// Integer shifts and rotates.
////////////////////////////////////////////////////////////////////////////////

defm : JWriteResIntPair<WriteShift, [JALU01], 1>;

// SHLD/SHRD.
defm : X86WriteRes<WriteSHDrri, [JALU01], 3, [6], 6>;
defm : X86WriteRes<WriteSHDrrcl,[JALU01], 4, [8], 7>;
defm : X86WriteRes<WriteSHDmri, [JLAGU, JALU01], 9, [1, 22], 8>;
defm : X86WriteRes<WriteSHDmrcl,[JLAGU, JALU01], 9, [1, 22], 8>;

////////////////////////////////////////////////////////////////////////////////
// Loads, stores, and moves, not folded with other operations.
////////////////////////////////////////////////////////////////////////////////

def : WriteRes<WriteLoad,    [JLAGU]> { let Latency = 5; }
def : WriteRes<WriteStore,   [JSAGU]>;
def : WriteRes<WriteStoreNT, [JSAGU]>;
def : WriteRes<WriteMove,    [JALU01]>;

// Load/store MXCSR.
// FIXME: These are copy and pasted from WriteLoad/Store.
def : WriteRes<WriteLDMXCSR, [JLAGU]> { let Latency = 5; }
def : WriteRes<WriteSTMXCSR, [JSAGU]>;

// Treat misc copies as a move.
def : InstRW<[WriteMove], (instrs COPY)>;

////////////////////////////////////////////////////////////////////////////////
// Idioms that clear a register, like xorps %xmm0, %xmm0.
// These can often bypass execution ports completely.
////////////////////////////////////////////////////////////////////////////////

def : WriteRes<WriteZero,  []>;

////////////////////////////////////////////////////////////////////////////////
// Branches don't produce values, so they have no latency, but they still
// consume resources. Indirect branches can fold loads.
////////////////////////////////////////////////////////////////////////////////

defm : JWriteResIntPair<WriteJump,  [JALU01], 1>;

////////////////////////////////////////////////////////////////////////////////
// Special case scheduling classes.
////////////////////////////////////////////////////////////////////////////////

def : WriteRes<WriteSystem,     [JALU01]> { let Latency = 100; }
def : WriteRes<WriteMicrocoded, [JALU01]> { let Latency = 100; }
def : WriteRes<WriteFence,  [JSAGU]>;

// Nops don't have dependencies, so there's no actual latency, but we set this
// to '1' to tell the scheduler that the nop uses an ALU slot for a cycle.
def : WriteRes<WriteNop, [JALU01]> { let Latency = 1; }

////////////////////////////////////////////////////////////////////////////////
// Floating point. This covers both scalar and vector operations.
////////////////////////////////////////////////////////////////////////////////

defm : X86WriteRes<WriteFLD0,          [JFPU1, JSTC], 3, [1,1], 1>;
defm : X86WriteRes<WriteFLD1,          [JFPU1, JSTC], 3, [1,1], 1>;
defm : X86WriteRes<WriteFLDC,          [JFPU1, JSTC], 3, [1,1], 1>;
defm : X86WriteRes<WriteFLoad,         [JLAGU, JFPU01, JFPX], 5, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFLoadX,        [JLAGU, JFPU01, JFPX], 5, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFLoadY,        [JLAGU, JFPU01, JFPX], 5, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFMaskedLoad,   [JLAGU, JFPU01, JFPX], 6, [1, 1, 2], 1>;
defm : X86WriteRes<WriteFMaskedLoadY,  [JLAGU, JFPU01, JFPX], 6, [2, 2, 4], 2>;

defm : X86WriteRes<WriteFStore,        [JSAGU, JFPU1,  JSTC], 2, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFStoreX,       [JSAGU, JFPU1,  JSTC], 1, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFStoreY,       [JSAGU, JFPU1,  JSTC], 1, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFStoreNT,      [JSAGU, JFPU1,  JSTC], 3, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFStoreNTX,     [JSAGU, JFPU1,  JSTC], 3, [1, 1, 1], 1>;
defm : X86WriteRes<WriteFStoreNTY,     [JSAGU, JFPU1,  JSTC], 3, [2, 2, 2], 1>;
defm : X86WriteRes<WriteFMaskedStore,  [JSAGU, JFPU01, JFPX], 6, [1, 1, 4], 1>;
defm : X86WriteRes<WriteFMaskedStoreY, [JSAGU, JFPU01, JFPX], 6, [2, 2, 4], 2>;

defm : X86WriteRes<WriteFMove,         [JFPU01, JFPX], 1, [1, 1], 1>;
defm : X86WriteRes<WriteFMoveX,        [JFPU01, JFPX], 1, [1, 1], 1>;
defm : X86WriteRes<WriteFMoveY,        [JFPU01, JFPX], 1, [2, 2], 2>;

defm : X86WriteRes<WriteEMMS,          [JFPU01, JFPX], 2, [1, 1], 1>;

defm : JWriteResFpuPair<WriteFAdd,         [JFPU0, JFPA],  3>;
defm : JWriteResFpuPair<WriteFAddX,        [JFPU0, JFPA],  3>;
defm : JWriteResYMMPair<WriteFAddY,        [JFPU0, JFPA],  3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFAddZ>;
defm : JWriteResFpuPair<WriteFAdd64,       [JFPU0, JFPA],  3>;
defm : JWriteResFpuPair<WriteFAdd64X,      [JFPU0, JFPA],  3>;
defm : JWriteResYMMPair<WriteFAdd64Y,      [JFPU0, JFPA],  3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFAdd64Z>;
defm : JWriteResFpuPair<WriteFCmp,         [JFPU0, JFPA],  2>;
defm : JWriteResFpuPair<WriteFCmpX,        [JFPU0, JFPA],  2>;
defm : JWriteResYMMPair<WriteFCmpY,        [JFPU0, JFPA],  2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFCmpZ>;
defm : JWriteResFpuPair<WriteFCmp64,       [JFPU0, JFPA],  2>;
defm : JWriteResFpuPair<WriteFCmp64X,      [JFPU0, JFPA],  2>;
defm : JWriteResYMMPair<WriteFCmp64Y,      [JFPU0, JFPA],  2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFCmp64Z>;
defm : JWriteResFpuPair<WriteFCom,  [JFPU0, JFPA, JALU0],  3>;
defm : JWriteResFpuPair<WriteFMul,         [JFPU1, JFPM],  2>;
defm : JWriteResFpuPair<WriteFMulX,        [JFPU1, JFPM],  2>;
defm : JWriteResYMMPair<WriteFMulY,        [JFPU1, JFPM],  2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFMulZ>;
defm : JWriteResFpuPair<WriteFMul64,       [JFPU1, JFPM],  4, [1,2]>;
defm : JWriteResFpuPair<WriteFMul64X,      [JFPU1, JFPM],  4, [1,2]>;
defm : JWriteResYMMPair<WriteFMul64Y,      [JFPU1, JFPM],  4, [2,4], 2>;
defm : X86WriteResPairUnsupported<WriteFMul64Z>;
defm : X86WriteResPairUnsupported<WriteFMA>;
defm : X86WriteResPairUnsupported<WriteFMAX>;
defm : X86WriteResPairUnsupported<WriteFMAY>;
defm : X86WriteResPairUnsupported<WriteFMAZ>;
defm : JWriteResFpuPair<WriteDPPD,   [JFPU1, JFPM, JFPA],  9, [1, 3, 3],  3>;
defm : JWriteResFpuPair<WriteDPPS,   [JFPU1, JFPM, JFPA], 11, [1, 3, 3],  5>;
defm : JWriteResYMMPair<WriteDPPSY,  [JFPU1, JFPM, JFPA], 12, [2, 6, 6], 10>;
defm : X86WriteResPairUnsupported<WriteDPPSZ>;
defm : JWriteResFpuPair<WriteFRcp,         [JFPU1, JFPM],  2>;
defm : JWriteResFpuPair<WriteFRcpX,        [JFPU1, JFPM],  2>;
defm : JWriteResYMMPair<WriteFRcpY,        [JFPU1, JFPM],  2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFRcpZ>;
defm : JWriteResFpuPair<WriteFRsqrt,       [JFPU1, JFPM],  2>;
defm : JWriteResFpuPair<WriteFRsqrtX,      [JFPU1, JFPM],  2>;
defm : JWriteResYMMPair<WriteFRsqrtY,      [JFPU1, JFPM],  2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFRsqrtZ>;
defm : JWriteResFpuPair<WriteFDiv,         [JFPU1, JFPM], 19, [1, 19]>;
defm : JWriteResFpuPair<WriteFDivX,        [JFPU1, JFPM], 19, [1, 19]>;
defm : JWriteResYMMPair<WriteFDivY,        [JFPU1, JFPM], 38, [2, 38], 2>;
defm : X86WriteResPairUnsupported<WriteFDivZ>;
defm : JWriteResFpuPair<WriteFDiv64,       [JFPU1, JFPM], 19, [1, 19]>;
defm : JWriteResFpuPair<WriteFDiv64X,      [JFPU1, JFPM], 19, [1, 19]>;
defm : JWriteResYMMPair<WriteFDiv64Y,      [JFPU1, JFPM], 38, [2, 38], 2>;
defm : X86WriteResPairUnsupported<WriteFDiv64Z>;
defm : JWriteResFpuPair<WriteFSqrt,        [JFPU1, JFPM], 21, [1, 21]>;
defm : JWriteResFpuPair<WriteFSqrtX,       [JFPU1, JFPM], 21, [1, 21]>;
defm : JWriteResYMMPair<WriteFSqrtY,       [JFPU1, JFPM], 42, [2, 42], 2>;
defm : X86WriteResPairUnsupported<WriteFSqrtZ>;
defm : JWriteResFpuPair<WriteFSqrt64,      [JFPU1, JFPM], 27, [1, 27]>;
defm : JWriteResFpuPair<WriteFSqrt64X,     [JFPU1, JFPM], 27, [1, 27]>;
defm : JWriteResYMMPair<WriteFSqrt64Y,     [JFPU1, JFPM], 54, [2, 54], 2>;
defm : X86WriteResPairUnsupported<WriteFSqrt64Z>;
defm : JWriteResFpuPair<WriteFSqrt80,      [JFPU1, JFPM], 35, [1, 35]>;
defm : JWriteResFpuPair<WriteFSign,        [JFPU1, JFPM],  2>;
defm : JWriteResFpuPair<WriteFRnd,         [JFPU1, JSTC],  3>;
defm : JWriteResYMMPair<WriteFRndY,        [JFPU1, JSTC],  3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteFRndZ>;
defm : JWriteResFpuPair<WriteFLogic,      [JFPU01, JFPX],  1>;
defm : JWriteResYMMPair<WriteFLogicY,     [JFPU01, JFPX],  1, [2, 2], 2>;
defm : X86WriteResPairUnsupported<WriteFLogicZ>;
defm : JWriteResFpuPair<WriteFTest,       [JFPU0, JFPA, JALU0], 3>;
defm : JWriteResYMMPair<WriteFTestY ,     [JFPU01, JFPX, JFPA, JALU0], 4, [2, 2, 2, 1], 3>;
defm : X86WriteResPairUnsupported<WriteFTestZ>;
defm : JWriteResFpuPair<WriteFShuffle,    [JFPU01, JFPX],  1>;
defm : JWriteResYMMPair<WriteFShuffleY,   [JFPU01, JFPX],  1, [2, 2], 2>;
defm : X86WriteResPairUnsupported<WriteFShuffleZ>;
defm : JWriteResFpuPair<WriteFVarShuffle, [JFPU01, JFPX],  2, [1, 4], 3>;
defm : JWriteResYMMPair<WriteFVarShuffleY,[JFPU01, JFPX],  3, [2, 6], 6>;
defm : X86WriteResPairUnsupported<WriteFVarShuffleZ>;
defm : JWriteResFpuPair<WriteFBlend,      [JFPU01, JFPX],  1>;
defm : JWriteResYMMPair<WriteFBlendY,     [JFPU01, JFPX],  1, [2, 2], 2>;
defm : X86WriteResPairUnsupported<WriteFBlendZ>;
defm : JWriteResFpuPair<WriteFVarBlend,   [JFPU01, JFPX],  2, [1, 4], 3>;
defm : JWriteResYMMPair<WriteFVarBlendY,  [JFPU01, JFPX],  3, [2, 6], 6>;
defm : X86WriteResPairUnsupported<WriteFVarBlendZ>;
defm : JWriteResFpuPair<WriteFShuffle256, [JFPU01, JFPX],  1>;
defm : X86WriteResPairUnsupported<WriteFVarShuffle256>;

////////////////////////////////////////////////////////////////////////////////
// Conversions.
////////////////////////////////////////////////////////////////////////////////

defm : JWriteResFpuPair<WriteCvtSS2I,      [JFPU1, JSTC, JFPA, JALU0], 7, [1,1,1,1], 2>;
defm : JWriteResFpuPair<WriteCvtPS2I,      [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtPS2IY,     [JFPU1, JSTC], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteCvtPS2IZ>;
defm : JWriteResFpuPair<WriteCvtSD2I,      [JFPU1, JSTC, JFPA, JALU0], 7, [1,1,1,1], 2>;
defm : JWriteResFpuPair<WriteCvtPD2I,      [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtPD2IY,     [JFPU1, JSTC, JFPX], 6, [2,2,4], 3>;
defm : X86WriteResPairUnsupported<WriteCvtPD2IZ>;

// FIXME: f+3 ST, LD+STC latency
defm : JWriteResFpuPair<WriteCvtI2SS,      [JFPU1, JSTC], 9, [1,1], 2>;
defm : JWriteResFpuPair<WriteCvtI2PS,      [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtI2PSY,     [JFPU1, JSTC], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteCvtI2PSZ>;
defm : JWriteResFpuPair<WriteCvtI2SD,      [JFPU1, JSTC], 9, [1,1], 2>;
defm : JWriteResFpuPair<WriteCvtI2PD,      [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtI2PDY,     [JFPU1, JSTC], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteCvtI2PDZ>;

defm : JWriteResFpuPair<WriteCvtSS2SD,      [JFPU1, JSTC], 7, [1,2], 2>;
defm : JWriteResFpuPair<WriteCvtPS2PD,      [JFPU1, JSTC], 2, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtPS2PDY,     [JFPU1, JSTC], 2, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteCvtPS2PDZ>;

defm : JWriteResFpuPair<WriteCvtSD2SS,    [JFPU1, JSTC], 7, [1,2], 2>;
defm : JWriteResFpuPair<WriteCvtPD2PS,    [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtPD2PSY,   [JFPU1, JSTC, JFPX], 6, [2,2,4], 3>;
defm : X86WriteResPairUnsupported<WriteCvtPD2PSZ>;

defm : JWriteResFpuPair<WriteCvtPH2PS,     [JFPU1, JSTC], 3, [1,1], 1>;
defm : JWriteResYMMPair<WriteCvtPH2PSY,    [JFPU1, JSTC], 3, [2,2], 2>;
defm : X86WriteResPairUnsupported<WriteCvtPH2PSZ>;

defm : X86WriteRes<WriteCvtPS2PH,                 [JFPU1, JSTC], 3, [1,1], 1>;
defm : X86WriteRes<WriteCvtPS2PHY,          [JFPU1, JSTC, JFPX], 6, [2,2,2], 3>;
defm : X86WriteResUnsupported<WriteCvtPS2PHZ>;
defm : X86WriteRes<WriteCvtPS2PHSt,        [JFPU1, JSTC, JSAGU], 4, [1,1,1], 1>;
defm : X86WriteRes<WriteCvtPS2PHYSt, [JFPU1, JSTC, JFPX, JSAGU], 7, [2,2,2,1], 3>;
defm : X86WriteResUnsupported<WriteCvtPS2PHZSt>;

////////////////////////////////////////////////////////////////////////////////
// Vector integer operations.
////////////////////////////////////////////////////////////////////////////////

defm : X86WriteRes<WriteVecLoad,          [JLAGU, JFPU01, JVALU], 5, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecLoadX,         [JLAGU, JFPU01, JVALU], 5, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecLoadY,         [JLAGU, JFPU01, JVALU], 5, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecLoadNT,        [JLAGU, JFPU01, JVALU], 5, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecLoadNTY,       [JLAGU, JFPU01, JVALU], 5, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecMaskedLoad,    [JLAGU, JFPU01, JVALU], 6, [1, 1, 2], 1>;
defm : X86WriteRes<WriteVecMaskedLoadY,   [JLAGU, JFPU01, JVALU], 6, [2, 2, 4], 2>;

defm : X86WriteRes<WriteVecStore,         [JSAGU, JFPU1,   JSTC], 2, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecStoreX,        [JSAGU, JFPU1,   JSTC], 1, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecStoreY,        [JSAGU, JFPU1,   JSTC], 1, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecStoreNT,       [JSAGU, JFPU1,   JSTC], 2, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecStoreNTY,      [JSAGU, JFPU1,   JSTC], 2, [2, 2, 2], 1>;
defm : X86WriteRes<WriteVecMaskedStore,   [JSAGU, JFPU01, JVALU], 6, [1, 1, 4], 1>;
defm : X86WriteRes<WriteVecMaskedStoreY,  [JSAGU, JFPU01, JVALU], 6, [2, 2, 4], 2>;

defm : X86WriteRes<WriteVecMove,          [JFPU01, JVALU], 1, [1, 1], 1>;
defm : X86WriteRes<WriteVecMoveX,         [JFPU01, JVALU], 1, [1, 1], 1>;
defm : X86WriteRes<WriteVecMoveY,         [JFPU01, JVALU], 1, [2, 2], 2>;
defm : X86WriteRes<WriteVecMoveToGpr,     [JFPU0, JFPA, JALU0], 4, [1, 1, 1], 1>;
defm : X86WriteRes<WriteVecMoveFromGpr,   [JFPU01, JFPX], 8, [1, 1], 2>;

defm : JWriteResFpuPair<WriteVecALU,      [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecALUX,     [JFPU01, JVALU], 1>;
defm : X86WriteResPairUnsupported<WriteVecALUY>;
defm : X86WriteResPairUnsupported<WriteVecALUZ>;
defm : JWriteResFpuPair<WriteVecShift,    [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecShiftX,   [JFPU01, JVALU], 1>;
defm : X86WriteResPairUnsupported<WriteVecShiftY>;
defm : X86WriteResPairUnsupported<WriteVecShiftZ>;
defm : JWriteResFpuPair<WriteVecShiftImm, [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecShiftImmX,[JFPU01, JVALU], 1>;
defm : X86WriteResPairUnsupported<WriteVecShiftImmY>;
defm : X86WriteResPairUnsupported<WriteVecShiftImmZ>;
defm : X86WriteResPairUnsupported<WriteVarVecShift>;
defm : X86WriteResPairUnsupported<WriteVarVecShiftY>;
defm : X86WriteResPairUnsupported<WriteVarVecShiftZ>;
defm : JWriteResFpuPair<WriteVecIMul,     [JFPU0, JVIMUL], 2>;
defm : JWriteResFpuPair<WriteVecIMulX,    [JFPU0, JVIMUL], 2>;
defm : X86WriteResPairUnsupported<WriteVecIMulY>;
defm : X86WriteResPairUnsupported<WriteVecIMulZ>;
defm : JWriteResFpuPair<WritePMULLD,      [JFPU0, JFPU01, JVIMUL, JVALU], 4, [2, 1, 2, 1], 3>;
defm : X86WriteResPairUnsupported<WritePMULLDY>;
defm : X86WriteResPairUnsupported<WritePMULLDZ>;
defm : JWriteResFpuPair<WriteMPSAD,       [JFPU0, JVIMUL], 3, [1, 2]>;
defm : X86WriteResPairUnsupported<WriteMPSADY>;
defm : X86WriteResPairUnsupported<WriteMPSADZ>;
defm : JWriteResFpuPair<WritePSADBW,      [JFPU01, JVALU], 2>;
defm : JWriteResFpuPair<WritePSADBWX,     [JFPU01, JVALU], 2>;
defm : X86WriteResPairUnsupported<WritePSADBWY>;
defm : X86WriteResPairUnsupported<WritePSADBWZ>;
defm : JWriteResFpuPair<WritePHMINPOS,    [JFPU0,  JVALU], 2>;
defm : JWriteResFpuPair<WriteShuffle,     [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteShuffleX,    [JFPU01, JVALU], 1>;
defm : X86WriteResPairUnsupported<WriteShuffleY>;
defm : X86WriteResPairUnsupported<WriteShuffleZ>;
defm : JWriteResFpuPair<WriteVarShuffle,  [JFPU01, JVALU], 2, [1, 4], 3>;
defm : JWriteResFpuPair<WriteVarShuffleX, [JFPU01, JVALU], 2, [1, 4], 3>;
defm : X86WriteResPairUnsupported<WriteVarShuffleY>;
defm : X86WriteResPairUnsupported<WriteVarShuffleZ>;
defm : JWriteResFpuPair<WriteBlend,       [JFPU01, JVALU], 1>;
defm : X86WriteResPairUnsupported<WriteBlendY>;
defm : X86WriteResPairUnsupported<WriteBlendZ>;
defm : JWriteResFpuPair<WriteVarBlend,    [JFPU01, JVALU], 2, [1, 4], 3>;
defm : X86WriteResPairUnsupported<WriteVarBlendY>;
defm : X86WriteResPairUnsupported<WriteVarBlendZ>;
defm : JWriteResFpuPair<WriteVecLogic,    [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WriteVecLogicX,   [JFPU01, JVALU], 1>;
defm : X86WriteResPairUnsupported<WriteVecLogicY>;
defm : X86WriteResPairUnsupported<WriteVecLogicZ>;
defm : JWriteResFpuPair<WriteVecTest,     [JFPU0, JFPA, JALU0], 3>;
defm : JWriteResYMMPair<WriteVecTestY,    [JFPU01, JFPX, JFPA, JALU0], 4, [2, 2, 2, 1], 3>;
defm : X86WriteResPairUnsupported<WriteVecTestZ>;
defm : X86WriteResPairUnsupported<WriteShuffle256>;
defm : X86WriteResPairUnsupported<WriteVarShuffle256>;

////////////////////////////////////////////////////////////////////////////////
// Vector insert/extract operations.
////////////////////////////////////////////////////////////////////////////////

defm : X86WriteRes<WriteVecInsert,      [JFPU01, JVALU], 7, [1,1], 2>;
defm : X86WriteRes<WriteVecInsertLd,    [JFPU01, JVALU, JLAGU], 4, [1,1,1], 1>;
defm : X86WriteRes<WriteVecExtract,     [JFPU0, JFPA, JALU0], 3, [1,1,1], 1>;
defm : X86WriteRes<WriteVecExtractSt,   [JFPU1, JSTC, JSAGU], 3, [1,1,1], 1>;

////////////////////////////////////////////////////////////////////////////////
// SSE42 String instructions.
////////////////////////////////////////////////////////////////////////////////

defm : JWriteResFpuPair<WritePCmpIStrI, [JFPU1, JVALU1, JFPA, JALU0], 7, [1, 2, 1, 1], 3>;
defm : JWriteResFpuPair<WritePCmpIStrM, [JFPU1, JVALU1, JFPA, JALU0], 8, [1, 2, 1, 1], 3>;
defm : JWriteResFpuPair<WritePCmpEStrI, [JFPU1, JSAGU, JLAGU, JVALU, JVALU1, JFPA, JALU0], 14, [1, 2, 2, 6, 4, 1, 1], 9>;
defm : JWriteResFpuPair<WritePCmpEStrM, [JFPU1, JSAGU, JLAGU, JVALU, JVALU1, JFPA, JALU0], 14, [1, 2, 2, 6, 4, 1, 1], 9>;

////////////////////////////////////////////////////////////////////////////////
// MOVMSK Instructions.
////////////////////////////////////////////////////////////////////////////////

def  : WriteRes<WriteFMOVMSK,    [JFPU0, JFPA, JALU0]> { let Latency = 3; }
def  : WriteRes<WriteVecMOVMSK,  [JFPU0, JFPA, JALU0]> { let Latency = 3; }
defm : X86WriteResUnsupported<WriteVecMOVMSKY>;
def  : WriteRes<WriteMMXMOVMSK,  [JFPU0, JFPA, JALU0]> { let Latency = 3; }

////////////////////////////////////////////////////////////////////////////////
// AES Instructions.
////////////////////////////////////////////////////////////////////////////////

defm : JWriteResFpuPair<WriteAESIMC,      [JFPU0, JVIMUL], 2>;
defm : JWriteResFpuPair<WriteAESKeyGen,   [JFPU0, JVIMUL], 2>;
defm : JWriteResFpuPair<WriteAESDecEnc,   [JFPU0, JVIMUL], 3, [1, 1], 2>;

////////////////////////////////////////////////////////////////////////////////
// Horizontal add/sub  instructions.
////////////////////////////////////////////////////////////////////////////////

defm : JWriteResFpuPair<WriteFHAdd,         [JFPU0, JFPA], 3>;
defm : JWriteResYMMPair<WriteFHAddY,        [JFPU0, JFPA], 3, [2,2], 2>;
defm : JWriteResFpuPair<WritePHAdd,       [JFPU01, JVALU], 1>;
defm : JWriteResFpuPair<WritePHAddX,      [JFPU01, JVALU], 1>;
defm : X86WriteResPairUnsupported<WritePHAddY>;

////////////////////////////////////////////////////////////////////////////////
// Carry-less multiplication instructions.
////////////////////////////////////////////////////////////////////////////////

defm : JWriteResFpuPair<WriteCLMul,       [JFPU0, JVIMUL], 2>;

////////////////////////////////////////////////////////////////////////////////
// SSE4A instructions.
////////////////////////////////////////////////////////////////////////////////

def JWriteINSERTQ: SchedWriteRes<[JFPU01, JVALU]> {
  let Latency = 2;
  let ResourceCycles = [1, 4];
}
def : InstRW<[JWriteINSERTQ], (instrs INSERTQ, INSERTQI)>;

////////////////////////////////////////////////////////////////////////////////
// AVX instructions.
////////////////////////////////////////////////////////////////////////////////

def JWriteVBROADCASTYLd: SchedWriteRes<[JLAGU, JFPU01, JFPX]> {
  let Latency = 6;
  let ResourceCycles = [1, 2, 4];
  let NumMicroOps = 2;
}
def : InstRW<[JWriteVBROADCASTYLd, ReadAfterLd], (instrs VBROADCASTSDYrm,
                                                         VBROADCASTSSYrm)>;

def JWriteJVZEROALL: SchedWriteRes<[]> {
  let Latency = 90;
  let NumMicroOps = 73;
}
def : InstRW<[JWriteJVZEROALL], (instrs VZEROALL)>;

def JWriteJVZEROUPPER: SchedWriteRes<[]> {
  let Latency = 46;
  let NumMicroOps = 37;
}
def : InstRW<[JWriteJVZEROUPPER], (instrs VZEROUPPER)>;

///////////////////////////////////////////////////////////////////////////////
//  SchedWriteVariant definitions.
///////////////////////////////////////////////////////////////////////////////

def JWriteZeroLatency : SchedWriteRes<[]> {
  let Latency = 0;
}

// Certain instructions that use the same register for both source
// operands do not have a real dependency on the previous contents of the
// register, and thus, do not have to wait before completing. They can be
// optimized out at register renaming stage.
// Reference: Section 10.8 of the "Software Optimization Guide for AMD Family
// 15h Processors".
// Reference: Agner's Fog "The microarchitecture of Intel, AMD and VIA CPUs",
// Section 21.8 [Dependency-breaking instructions].

def JWriteZeroIdiom : SchedWriteVariant<[
    SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
    SchedVar<MCSchedPredicate<TruePred>,           [WriteALU]>
]>;
def : InstRW<[JWriteZeroIdiom], (instrs SUB32rr, SUB64rr,
                                        XOR32rr, XOR64rr)>;

def JWriteFZeroIdiom : SchedWriteVariant<[
    SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
    SchedVar<MCSchedPredicate<TruePred>,           [WriteFLogic]>
]>;
def : InstRW<[JWriteFZeroIdiom], (instrs XORPSrr, VXORPSrr, XORPDrr, VXORPDrr,
                                         ANDNPSrr, VANDNPSrr,
                                         ANDNPDrr, VANDNPDrr)>;

def JWriteVZeroIdiomLogic : SchedWriteVariant<[
    SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
    SchedVar<MCSchedPredicate<TruePred>,           [WriteVecLogic]>
]>;
def : InstRW<[JWriteVZeroIdiomLogic], (instrs MMX_PXORirr, MMX_PANDNirr)>;

def JWriteVZeroIdiomLogicX : SchedWriteVariant<[
    SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
    SchedVar<MCSchedPredicate<TruePred>,           [WriteVecLogicX]>
]>;
def : InstRW<[JWriteVZeroIdiomLogicX], (instrs PXORrr, VPXORrr,
                                               PANDNrr, VPANDNrr)>;

def JWriteVZeroIdiomALU : SchedWriteVariant<[
    SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
    SchedVar<MCSchedPredicate<TruePred>,           [WriteVecALU]>
]>;
def : InstRW<[JWriteVZeroIdiomALU], (instrs MMX_PSUBBirr, MMX_PSUBDirr,
                                            MMX_PSUBQirr, MMX_PSUBWirr,
                                            MMX_PCMPGTBirr, MMX_PCMPGTDirr,
                                            MMX_PCMPGTWirr)>;

def JWriteVZeroIdiomALUX : SchedWriteVariant<[
    SchedVar<MCSchedPredicate<ZeroIdiomPredicate>, [JWriteZeroLatency]>,
    SchedVar<MCSchedPredicate<TruePred>,           [WriteVecALUX]>
]>;
def : InstRW<[JWriteVZeroIdiomALUX], (instrs PSUBBrr, VPSUBBrr,
                                             PSUBDrr, VPSUBDrr,
                                             PSUBQrr, VPSUBQrr,
                                             PSUBWrr, VPSUBWrr,
                                             PCMPGTBrr, VPCMPGTBrr,
                                             PCMPGTDrr, VPCMPGTDrr,
                                             PCMPGTQrr, VPCMPGTQrr,
                                             PCMPGTWrr, VPCMPGTWrr)>;

// This write is used for slow LEA instructions.
def JWrite3OpsLEA : SchedWriteRes<[JALU1, JSAGU]> {
  let Latency = 2;
}

// On Jaguar, a slow LEA is either a 3Ops LEA (base, index, offset), or an LEA
// with a `Scale` value different than 1.
def JSlowLEAPredicate : MCSchedPredicate<
  CheckAny<[
    // A 3-operand LEA (base, index, offset).
    IsThreeOperandsLEAFn,
    // An LEA with a "Scale" different than 1.
    CheckAll<[
      CheckIsImmOperand<2>,
      CheckNot<CheckImmOperand<2, 1>>
    ]>
  ]>
>;

def JWriteLEA : SchedWriteVariant<[
    SchedVar<JSlowLEAPredicate,          [JWrite3OpsLEA]>,
    SchedVar<MCSchedPredicate<TruePred>, [WriteLEA]>
]>;

def : InstRW<[JWriteLEA], (instrs LEA32r, LEA64r, LEA64_32r)>;

def JSlowLEA16r : SchedWriteRes<[JALU01]> {
  let Latency = 3;
  let ResourceCycles = [4];
}

def : InstRW<[JSlowLEA16r], (instrs LEA16r)>;

} // SchedModel