llvm.org GIT mirror llvm / release_70 lib / Target / X86 / X86InterleavedAccess.cpp
release_70

Tree @release_70 (Download .tar.gz)

X86InterleavedAccess.cpp @release_70raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
//===- X86InterleavedAccess.cpp -------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This file contains the X86 implementation of the interleaved accesses
/// optimization generating X86-specific instructions/intrinsics for
/// interleaved access groups.
//
//===----------------------------------------------------------------------===//

#include "X86ISelLowering.h"
#include "X86Subtarget.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/VectorUtils.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/MachineValueType.h"
#include <algorithm>
#include <cassert>
#include <cmath>
#include <cstdint>

using namespace llvm;

namespace {

/// This class holds necessary information to represent an interleaved
/// access group and supports utilities to lower the group into
/// X86-specific instructions/intrinsics.
///  E.g. A group of interleaving access loads (Factor = 2; accessing every
///       other element)
///        %wide.vec = load <8 x i32>, <8 x i32>* %ptr
///        %v0 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <0, 2, 4, 6>
///        %v1 = shuffle <8 x i32> %wide.vec, <8 x i32> undef, <1, 3, 5, 7>
class X86InterleavedAccessGroup {
  /// Reference to the wide-load instruction of an interleaved access
  /// group.
  Instruction *const Inst;

  /// Reference to the shuffle(s), consumer(s) of the (load) 'Inst'.
  ArrayRef<ShuffleVectorInst *> Shuffles;

  /// Reference to the starting index of each user-shuffle.
  ArrayRef<unsigned> Indices;

  /// Reference to the interleaving stride in terms of elements.
  const unsigned Factor;

  /// Reference to the underlying target.
  const X86Subtarget &Subtarget;

  const DataLayout &DL;

  IRBuilder<> &Builder;

  /// Breaks down a vector \p 'Inst' of N elements into \p NumSubVectors
  /// sub vectors of type \p T. Returns the sub-vectors in \p DecomposedVectors.
  void decompose(Instruction *Inst, unsigned NumSubVectors, VectorType *T,
                 SmallVectorImpl<Instruction *> &DecomposedVectors);

  /// Performs matrix transposition on a 4x4 matrix \p InputVectors and
  /// returns the transposed-vectors in \p TransposedVectors.
  /// E.g.
  /// InputVectors:
  ///   In-V0 = p1, p2, p3, p4
  ///   In-V1 = q1, q2, q3, q4
  ///   In-V2 = r1, r2, r3, r4
  ///   In-V3 = s1, s2, s3, s4
  /// OutputVectors:
  ///   Out-V0 = p1, q1, r1, s1
  ///   Out-V1 = p2, q2, r2, s2
  ///   Out-V2 = p3, q3, r3, s3
  ///   Out-V3 = P4, q4, r4, s4
  void transpose_4x4(ArrayRef<Instruction *> InputVectors,
                     SmallVectorImpl<Value *> &TransposedMatrix);
  void interleave8bitStride4(ArrayRef<Instruction *> InputVectors,
                             SmallVectorImpl<Value *> &TransposedMatrix,
                             unsigned NumSubVecElems);
  void interleave8bitStride4VF8(ArrayRef<Instruction *> InputVectors,
                                SmallVectorImpl<Value *> &TransposedMatrix);
  void interleave8bitStride3(ArrayRef<Instruction *> InputVectors,
                             SmallVectorImpl<Value *> &TransposedMatrix,
                             unsigned NumSubVecElems);
  void deinterleave8bitStride3(ArrayRef<Instruction *> InputVectors,
                               SmallVectorImpl<Value *> &TransposedMatrix,
                               unsigned NumSubVecElems);

public:
  /// In order to form an interleaved access group X86InterleavedAccessGroup
  /// requires a wide-load instruction \p 'I', a group of interleaved-vectors
  /// \p Shuffs, reference to the first indices of each interleaved-vector
  /// \p 'Ind' and the interleaving stride factor \p F. In order to generate
  /// X86-specific instructions/intrinsics it also requires the underlying
  /// target information \p STarget.
  explicit X86InterleavedAccessGroup(Instruction *I,
                                     ArrayRef<ShuffleVectorInst *> Shuffs,
                                     ArrayRef<unsigned> Ind, const unsigned F,
                                     const X86Subtarget &STarget,
                                     IRBuilder<> &B)
      : Inst(I), Shuffles(Shuffs), Indices(Ind), Factor(F), Subtarget(STarget),
        DL(Inst->getModule()->getDataLayout()), Builder(B) {}

  /// Returns true if this interleaved access group can be lowered into
  /// x86-specific instructions/intrinsics, false otherwise.
  bool isSupported() const;

  /// Lowers this interleaved access group into X86-specific
  /// instructions/intrinsics.
  bool lowerIntoOptimizedSequence();
};

} // end anonymous namespace

bool X86InterleavedAccessGroup::isSupported() const {
  VectorType *ShuffleVecTy = Shuffles[0]->getType();
  Type *ShuffleEltTy = ShuffleVecTy->getVectorElementType();
  unsigned ShuffleElemSize = DL.getTypeSizeInBits(ShuffleEltTy);
  unsigned WideInstSize;

  // Currently, lowering is supported for the following vectors:
  // Stride 4:
  //    1. Store and load of 4-element vectors of 64 bits on AVX.
  //    2. Store of 16/32-element vectors of 8 bits on AVX.
  // Stride 3:
  //    1. Load of 16/32-element vectors of 8 bits on AVX.
  if (!Subtarget.hasAVX() || (Factor != 4 && Factor != 3))
    return false;

  if (isa<LoadInst>(Inst)) {
    WideInstSize = DL.getTypeSizeInBits(Inst->getType());
    if (cast<LoadInst>(Inst)->getPointerAddressSpace())
      return false;
  } else
    WideInstSize = DL.getTypeSizeInBits(Shuffles[0]->getType());

  // We support shuffle represents stride 4 for byte type with size of
  // WideInstSize.
  if (ShuffleElemSize == 64 && WideInstSize == 1024 && Factor == 4)
     return true;

  if (ShuffleElemSize == 8 && isa<StoreInst>(Inst) && Factor == 4 &&
      (WideInstSize == 256 || WideInstSize == 512 || WideInstSize == 1024 ||
       WideInstSize == 2048))
    return true;

  if (ShuffleElemSize == 8 && Factor == 3 &&
      (WideInstSize == 384 || WideInstSize == 768 || WideInstSize == 1536))
    return true;

  return false;
}

void X86InterleavedAccessGroup::decompose(
    Instruction *VecInst, unsigned NumSubVectors, VectorType *SubVecTy,
    SmallVectorImpl<Instruction *> &DecomposedVectors) {
  assert((isa<LoadInst>(VecInst) || isa<ShuffleVectorInst>(VecInst)) &&
         "Expected Load or Shuffle");

  Type *VecWidth = VecInst->getType();
  (void)VecWidth;
  assert(VecWidth->isVectorTy() &&
         DL.getTypeSizeInBits(VecWidth) >=
             DL.getTypeSizeInBits(SubVecTy) * NumSubVectors &&
         "Invalid Inst-size!!!");

  if (auto *SVI = dyn_cast<ShuffleVectorInst>(VecInst)) {
    Value *Op0 = SVI->getOperand(0);
    Value *Op1 = SVI->getOperand(1);

    // Generate N(= NumSubVectors) shuffles of T(= SubVecTy) type.
    for (unsigned i = 0; i < NumSubVectors; ++i)
      DecomposedVectors.push_back(
          cast<ShuffleVectorInst>(Builder.CreateShuffleVector(
              Op0, Op1,
              createSequentialMask(Builder, Indices[i],
                                   SubVecTy->getVectorNumElements(), 0))));
    return;
  }

  // Decompose the load instruction.
  LoadInst *LI = cast<LoadInst>(VecInst);
  Type *VecBasePtrTy = SubVecTy->getPointerTo(LI->getPointerAddressSpace());
  Value *VecBasePtr;
  unsigned int NumLoads = NumSubVectors;
  // In the case of stride 3 with a vector of 32 elements load the information
  // in the following way:
  // [0,1...,VF/2-1,VF/2+VF,VF/2+VF+1,...,2VF-1]
  unsigned VecLength = DL.getTypeSizeInBits(VecWidth);
  if (VecLength == 768 || VecLength == 1536) {
    Type *VecTran =
        VectorType::get(Type::getInt8Ty(LI->getContext()), 16)->getPointerTo();
    VecBasePtr = Builder.CreateBitCast(LI->getPointerOperand(), VecTran);
    NumLoads = NumSubVectors * (VecLength / 384);
  } else
    VecBasePtr = Builder.CreateBitCast(LI->getPointerOperand(), VecBasePtrTy);
  // Generate N loads of T type.
  for (unsigned i = 0; i < NumLoads; i++) {
    // TODO: Support inbounds GEP.
    Value *NewBasePtr = Builder.CreateGEP(VecBasePtr, Builder.getInt32(i));
    Instruction *NewLoad =
        Builder.CreateAlignedLoad(NewBasePtr, LI->getAlignment());
    DecomposedVectors.push_back(NewLoad);
  }
}

// Changing the scale of the vector type by reducing the number of elements and
// doubling the scalar size.
static MVT scaleVectorType(MVT VT) {
  unsigned ScalarSize = VT.getVectorElementType().getScalarSizeInBits() * 2;
  return MVT::getVectorVT(MVT::getIntegerVT(ScalarSize),
                          VT.getVectorNumElements() / 2);
}

static uint32_t Concat[] = {
  0,  1,  2,  3,  4,  5,  6,  7,  8,  9,  10, 11, 12, 13, 14, 15,
  16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31,
  32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47,
  48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63 };

// genShuffleBland - Creates shuffle according to two vectors.This function is
// only works on instructions with lane inside 256 registers. According to
// the mask 'Mask' creates a new Mask 'Out' by the offset of the mask. The
// offset amount depends on the two integer, 'LowOffset' and 'HighOffset'.
// Where the 'LowOffset' refers to the first vector and the highOffset refers to
// the second vector.
// |a0....a5,b0....b4,c0....c4|a16..a21,b16..b20,c16..c20|
// |c5...c10,a5....a9,b5....b9|c21..c26,a22..a26,b21..b25|
// |b10..b15,c11..c15,a10..a15|b26..b31,c27..c31,a27..a31|
// For the sequence to work as a mirror to the load.
// We must consider the elements order as above.
// In this function we are combining two types of shuffles.
// The first one is vpshufed and the second is a type of "blend" shuffle.
// By computing the shuffle on a sequence of 16 elements(one lane) and add the
// correct offset. We are creating a vpsuffed + blend sequence between two
// shuffles.
static void genShuffleBland(MVT VT, ArrayRef<uint32_t> Mask,
  SmallVectorImpl<uint32_t> &Out, int LowOffset,
  int HighOffset) {
  assert(VT.getSizeInBits() >= 256 &&
    "This function doesn't accept width smaller then 256");
  unsigned NumOfElm = VT.getVectorNumElements();
  for (unsigned i = 0; i < Mask.size(); i++)
    Out.push_back(Mask[i] + LowOffset);
  for (unsigned i = 0; i < Mask.size(); i++)
    Out.push_back(Mask[i] + HighOffset + NumOfElm);
}

// reorderSubVector returns the data to is the original state. And de-facto is
// the opposite of  the function concatSubVector.

// For VecElems = 16
// Invec[0] -  |0|      TransposedMatrix[0] - |0|
// Invec[1] -  |1|  =>  TransposedMatrix[1] - |1|
// Invec[2] -  |2|      TransposedMatrix[2] - |2|

// For VecElems = 32
// Invec[0] -  |0|3|      TransposedMatrix[0] - |0|1|
// Invec[1] -  |1|4|  =>  TransposedMatrix[1] - |2|3|
// Invec[2] -  |2|5|      TransposedMatrix[2] - |4|5|

// For VecElems = 64
// Invec[0] -  |0|3|6|9 |     TransposedMatrix[0] - |0|1|2 |3 |
// Invec[1] -  |1|4|7|10| =>  TransposedMatrix[1] - |4|5|6 |7 |
// Invec[2] -  |2|5|8|11|     TransposedMatrix[2] - |8|9|10|11|

static void reorderSubVector(MVT VT, SmallVectorImpl<Value *> &TransposedMatrix,
  ArrayRef<Value *> Vec, ArrayRef<uint32_t> VPShuf,
  unsigned VecElems, unsigned Stride,
  IRBuilder<> Builder) {

  if (VecElems == 16) {
    for (unsigned i = 0; i < Stride; i++)
      TransposedMatrix[i] = Builder.CreateShuffleVector(
        Vec[i], UndefValue::get(Vec[i]->getType()), VPShuf);
    return;
  }

  SmallVector<uint32_t, 32> OptimizeShuf;
  Value *Temp[8];

  for (unsigned i = 0; i < (VecElems / 16) * Stride; i += 2) {
    genShuffleBland(VT, VPShuf, OptimizeShuf, (i / Stride) * 16,
      (i + 1) / Stride * 16);
    Temp[i / 2] = Builder.CreateShuffleVector(
      Vec[i % Stride], Vec[(i + 1) % Stride], OptimizeShuf);
    OptimizeShuf.clear();
  }

  if (VecElems == 32) {
    std::copy(Temp, Temp + Stride, TransposedMatrix.begin());
    return;
  }
  else
    for (unsigned i = 0; i < Stride; i++)
      TransposedMatrix[i] =
      Builder.CreateShuffleVector(Temp[2 * i], Temp[2 * i + 1], Concat);
}

void X86InterleavedAccessGroup::interleave8bitStride4VF8(
    ArrayRef<Instruction *> Matrix,
    SmallVectorImpl<Value *> &TransposedMatrix) {
  // Assuming we start from the following vectors:
  // Matrix[0]= c0 c1 c2 c3 c4 ... c7
  // Matrix[1]= m0 m1 m2 m3 m4 ... m7
  // Matrix[2]= y0 y1 y2 y3 y4 ... y7
  // Matrix[3]= k0 k1 k2 k3 k4 ... k7

  MVT VT = MVT::v8i16;
  TransposedMatrix.resize(2);
  SmallVector<uint32_t, 16> MaskLow;
  SmallVector<uint32_t, 32> MaskLowTemp1, MaskLowWord;
  SmallVector<uint32_t, 32> MaskHighTemp1, MaskHighWord;

  for (unsigned i = 0; i < 8; ++i) {
    MaskLow.push_back(i);
    MaskLow.push_back(i + 8);
  }

  createUnpackShuffleMask<uint32_t>(VT, MaskLowTemp1, true, false);
  createUnpackShuffleMask<uint32_t>(VT, MaskHighTemp1, false, false);
  scaleShuffleMask<uint32_t>(2, MaskHighTemp1, MaskHighWord);
  scaleShuffleMask<uint32_t>(2, MaskLowTemp1, MaskLowWord);
  // IntrVec1Low = c0 m0 c1 m1 c2 m2 c3 m3 c4 m4 c5 m5 c6 m6 c7 m7
  // IntrVec2Low = y0 k0 y1 k1 y2 k2 y3 k3 y4 k4 y5 k5 y6 k6 y7 k7
  Value *IntrVec1Low =
      Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskLow);
  Value *IntrVec2Low =
      Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskLow);

  // TransposedMatrix[0] = c0 m0 y0 k0 c1 m1 y1 k1 c2 m2 y2 k2 c3 m3 y3 k3
  // TransposedMatrix[1] = c4 m4 y4 k4 c5 m5 y5 k5 c6 m6 y6 k6 c7 m7 y7 k7

  TransposedMatrix[0] =
      Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskLowWord);
  TransposedMatrix[1] =
      Builder.CreateShuffleVector(IntrVec1Low, IntrVec2Low, MaskHighWord);
}

void X86InterleavedAccessGroup::interleave8bitStride4(
    ArrayRef<Instruction *> Matrix, SmallVectorImpl<Value *> &TransposedMatrix,
    unsigned NumOfElm) {
  // Example: Assuming we start from the following vectors:
  // Matrix[0]= c0 c1 c2 c3 c4 ... c31
  // Matrix[1]= m0 m1 m2 m3 m4 ... m31
  // Matrix[2]= y0 y1 y2 y3 y4 ... y31
  // Matrix[3]= k0 k1 k2 k3 k4 ... k31

  MVT VT = MVT::getVectorVT(MVT::i8, NumOfElm);
  MVT HalfVT = scaleVectorType(VT);

  TransposedMatrix.resize(4);
  SmallVector<uint32_t, 32> MaskHigh;
  SmallVector<uint32_t, 32> MaskLow;
  SmallVector<uint32_t, 32> LowHighMask[2];
  SmallVector<uint32_t, 32> MaskHighTemp;
  SmallVector<uint32_t, 32> MaskLowTemp;

  // MaskHighTemp and MaskLowTemp built in the vpunpckhbw and vpunpcklbw X86
  // shuffle pattern.

  createUnpackShuffleMask<uint32_t>(VT, MaskLow, true, false);
  createUnpackShuffleMask<uint32_t>(VT, MaskHigh, false, false);

  // MaskHighTemp1 and MaskLowTemp1 built in the vpunpckhdw and vpunpckldw X86
  // shuffle pattern.

  createUnpackShuffleMask<uint32_t>(HalfVT, MaskLowTemp, true, false);
  createUnpackShuffleMask<uint32_t>(HalfVT, MaskHighTemp, false, false);
  scaleShuffleMask<uint32_t>(2, MaskLowTemp, LowHighMask[0]);
  scaleShuffleMask<uint32_t>(2, MaskHighTemp, LowHighMask[1]);

  // IntrVec1Low  = c0  m0  c1  m1 ... c7  m7  | c16 m16 c17 m17 ... c23 m23
  // IntrVec1High = c8  m8  c9  m9 ... c15 m15 | c24 m24 c25 m25 ... c31 m31
  // IntrVec2Low  = y0  k0  y1  k1 ... y7  k7  | y16 k16 y17 k17 ... y23 k23
  // IntrVec2High = y8  k8  y9  k9 ... y15 k15 | y24 k24 y25 k25 ... y31 k31
  Value *IntrVec[4];

  IntrVec[0] = Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskLow);
  IntrVec[1] = Builder.CreateShuffleVector(Matrix[0], Matrix[1], MaskHigh);
  IntrVec[2] = Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskLow);
  IntrVec[3] = Builder.CreateShuffleVector(Matrix[2], Matrix[3], MaskHigh);

  // cmyk4  cmyk5  cmyk6   cmyk7  | cmyk20 cmyk21 cmyk22 cmyk23
  // cmyk12 cmyk13 cmyk14  cmyk15 | cmyk28 cmyk29 cmyk30 cmyk31
  // cmyk0  cmyk1  cmyk2   cmyk3  | cmyk16 cmyk17 cmyk18 cmyk19
  // cmyk8  cmyk9  cmyk10  cmyk11 | cmyk24 cmyk25 cmyk26 cmyk27

  Value *VecOut[4];
  for (int i = 0; i < 4; i++)
    VecOut[i] = Builder.CreateShuffleVector(IntrVec[i / 2], IntrVec[i / 2 + 2],
                                            LowHighMask[i % 2]);

  // cmyk0  cmyk1  cmyk2  cmyk3   | cmyk4  cmyk5  cmyk6  cmyk7
  // cmyk8  cmyk9  cmyk10 cmyk11  | cmyk12 cmyk13 cmyk14 cmyk15
  // cmyk16 cmyk17 cmyk18 cmyk19  | cmyk20 cmyk21 cmyk22 cmyk23
  // cmyk24 cmyk25 cmyk26 cmyk27  | cmyk28 cmyk29 cmyk30 cmyk31

  if (VT == MVT::v16i8) {
    std::copy(VecOut, VecOut + 4, TransposedMatrix.begin());
    return;
  }

  reorderSubVector(VT, TransposedMatrix, VecOut, makeArrayRef(Concat, 16),
		   NumOfElm, 4, Builder);
}

//  createShuffleStride returns shuffle mask of size N.
//  The shuffle pattern is as following :
//  {0, Stride%(VF/Lane), (2*Stride%(VF/Lane))...(VF*Stride/Lane)%(VF/Lane),
//  (VF/ Lane) ,(VF / Lane)+Stride%(VF/Lane),...,
//  (VF / Lane)+(VF*Stride/Lane)%(VF/Lane)}
//  Where Lane is the # of lanes in a register:
//  VectorSize = 128 => Lane = 1
//  VectorSize = 256 => Lane = 2
//  For example shuffle pattern for VF 16 register size 256 -> lanes = 2
//  {<[0|3|6|1|4|7|2|5]-[8|11|14|9|12|15|10|13]>}
static void createShuffleStride(MVT VT, int Stride,
                                SmallVectorImpl<uint32_t> &Mask) {
  int VectorSize = VT.getSizeInBits();
  int VF = VT.getVectorNumElements();
  int LaneCount = std::max(VectorSize / 128, 1);
  for (int Lane = 0; Lane < LaneCount; Lane++)
    for (int i = 0, LaneSize = VF / LaneCount; i != LaneSize; ++i)
      Mask.push_back((i * Stride) % LaneSize + LaneSize * Lane);
}

//  setGroupSize sets 'SizeInfo' to the size(number of elements) of group
//  inside mask a shuffleMask. A mask contains exactly 3 groups, where
//  each group is a monotonically increasing sequence with stride 3.
//  For example shuffleMask {0,3,6,1,4,7,2,5} => {3,3,2}
static void setGroupSize(MVT VT, SmallVectorImpl<uint32_t> &SizeInfo) {
  int VectorSize = VT.getSizeInBits();
  int VF = VT.getVectorNumElements() / std::max(VectorSize / 128, 1);
  for (int i = 0, FirstGroupElement = 0; i < 3; i++) {
    int GroupSize = std::ceil((VF - FirstGroupElement) / 3.0);
    SizeInfo.push_back(GroupSize);
    FirstGroupElement = ((GroupSize)*3 + FirstGroupElement) % VF;
  }
}

//  DecodePALIGNRMask returns the shuffle mask of vpalign instruction.
//  vpalign works according to lanes
//  Where Lane is the # of lanes in a register:
//  VectorWide = 128 => Lane = 1
//  VectorWide = 256 => Lane = 2
//  For Lane = 1 shuffle pattern is: {DiffToJump,...,DiffToJump+VF-1}.
//  For Lane = 2 shuffle pattern is:
//  {DiffToJump,...,VF/2-1,VF,...,DiffToJump+VF-1}.
//  Imm variable sets the offset amount. The result of the
//  function is stored inside ShuffleMask vector and it built as described in
//  the begin of the description. AlignDirection is a boolean that indecat the
//  direction of the alignment. (false - align to the "right" side while true -
//  align to the "left" side)
static void DecodePALIGNRMask(MVT VT, unsigned Imm,
                              SmallVectorImpl<uint32_t> &ShuffleMask,
                              bool AlignDirection = true, bool Unary = false) {
  unsigned NumElts = VT.getVectorNumElements();
  unsigned NumLanes = std::max((int)VT.getSizeInBits() / 128, 1);
  unsigned NumLaneElts = NumElts / NumLanes;

  Imm = AlignDirection ? Imm : (NumLaneElts - Imm);
  unsigned Offset = Imm * (VT.getScalarSizeInBits() / 8);

  for (unsigned l = 0; l != NumElts; l += NumLaneElts) {
    for (unsigned i = 0; i != NumLaneElts; ++i) {
      unsigned Base = i + Offset;
      // if i+offset is out of this lane then we actually need the other source
      // If Unary the other source is the first source.
      if (Base >= NumLaneElts)
        Base = Unary ? Base % NumLaneElts : Base + NumElts - NumLaneElts;
      ShuffleMask.push_back(Base + l);
    }
  }
}

// concatSubVector - The function rebuilds the data to a correct expected
// order. An assumption(The shape of the matrix) was taken for the
// deinterleaved to work with lane's instructions like 'vpalign' or 'vphuf'.
// This function ensures that the data is built in correct way for the lane
// instructions. Each lane inside the vector is a 128-bit length.
//
// The 'InVec' argument contains the data in increasing order. In InVec[0] You
// can find the first 128 bit data. The number of different lanes inside a
// vector depends on the 'VecElems'.In general, the formula is
// VecElems * type / 128. The size of the array 'InVec' depends and equal to
// 'VecElems'.

// For VecElems = 16
// Invec[0] - |0|      Vec[0] - |0|
// Invec[1] - |1|  =>  Vec[1] - |1|
// Invec[2] - |2|      Vec[2] - |2|

// For VecElems = 32
// Invec[0] - |0|1|      Vec[0] - |0|3|
// Invec[1] - |2|3|  =>  Vec[1] - |1|4|
// Invec[2] - |4|5|      Vec[2] - |2|5|

// For VecElems = 64
// Invec[0] - |0|1|2 |3 |      Vec[0] - |0|3|6|9 |
// Invec[1] - |4|5|6 |7 |  =>  Vec[1] - |1|4|7|10|
// Invec[2] - |8|9|10|11|      Vec[2] - |2|5|8|11|

static void concatSubVector(Value **Vec, ArrayRef<Instruction *> InVec,
                            unsigned VecElems, IRBuilder<> Builder) {
  if (VecElems == 16) {
    for (int i = 0; i < 3; i++)
      Vec[i] = InVec[i];
    return;
  }

  for (unsigned j = 0; j < VecElems / 32; j++)
    for (int i = 0; i < 3; i++)
      Vec[i + j * 3] = Builder.CreateShuffleVector(
          InVec[j * 6 + i], InVec[j * 6 + i + 3], makeArrayRef(Concat, 32));

  if (VecElems == 32)
    return;

  for (int i = 0; i < 3; i++)
    Vec[i] = Builder.CreateShuffleVector(Vec[i], Vec[i + 3], Concat);
}

void X86InterleavedAccessGroup::deinterleave8bitStride3(
    ArrayRef<Instruction *> InVec, SmallVectorImpl<Value *> &TransposedMatrix,
    unsigned VecElems) {
  // Example: Assuming we start from the following vectors:
  // Matrix[0]= a0 b0 c0 a1 b1 c1 a2 b2
  // Matrix[1]= c2 a3 b3 c3 a4 b4 c4 a5
  // Matrix[2]= b5 c5 a6 b6 c6 a7 b7 c7

  TransposedMatrix.resize(3);
  SmallVector<uint32_t, 32> VPShuf;
  SmallVector<uint32_t, 32> VPAlign[2];
  SmallVector<uint32_t, 32> VPAlign2;
  SmallVector<uint32_t, 32> VPAlign3;
  SmallVector<uint32_t, 3> GroupSize;
  Value *Vec[6], *TempVector[3];

  MVT VT = MVT::getVT(Shuffles[0]->getType());

  createShuffleStride(VT, 3, VPShuf);
  setGroupSize(VT, GroupSize);

  for (int i = 0; i < 2; i++)
    DecodePALIGNRMask(VT, GroupSize[2 - i], VPAlign[i], false);

  DecodePALIGNRMask(VT, GroupSize[2] + GroupSize[1], VPAlign2, true, true);
  DecodePALIGNRMask(VT, GroupSize[1], VPAlign3, true, true);

  concatSubVector(Vec, InVec, VecElems, Builder);
  // Vec[0]= a0 a1 a2 b0 b1 b2 c0 c1
  // Vec[1]= c2 c3 c4 a3 a4 a5 b3 b4
  // Vec[2]= b5 b6 b7 c5 c6 c7 a6 a7

  for (int i = 0; i < 3; i++)
    Vec[i] = Builder.CreateShuffleVector(
        Vec[i], UndefValue::get(Vec[0]->getType()), VPShuf);

  // TempVector[0]= a6 a7 a0 a1 a2 b0 b1 b2
  // TempVector[1]= c0 c1 c2 c3 c4 a3 a4 a5
  // TempVector[2]= b3 b4 b5 b6 b7 c5 c6 c7

  for (int i = 0; i < 3; i++)
    TempVector[i] =
        Builder.CreateShuffleVector(Vec[(i + 2) % 3], Vec[i], VPAlign[0]);

  // Vec[0]= a3 a4 a5 a6 a7 a0 a1 a2
  // Vec[1]= c5 c6 c7 c0 c1 c2 c3 c4
  // Vec[2]= b0 b1 b2 b3 b4 b5 b6 b7

  for (int i = 0; i < 3; i++)
    Vec[i] = Builder.CreateShuffleVector(TempVector[(i + 1) % 3], TempVector[i],
                                         VPAlign[1]);

  // TransposedMatrix[0]= a0 a1 a2 a3 a4 a5 a6 a7
  // TransposedMatrix[1]= b0 b1 b2 b3 b4 b5 b6 b7
  // TransposedMatrix[2]= c0 c1 c2 c3 c4 c5 c6 c7

  Value *TempVec = Builder.CreateShuffleVector(
      Vec[1], UndefValue::get(Vec[1]->getType()), VPAlign3);
  TransposedMatrix[0] = Builder.CreateShuffleVector(
      Vec[0], UndefValue::get(Vec[1]->getType()), VPAlign2);
  TransposedMatrix[1] = VecElems == 8 ? Vec[2] : TempVec;
  TransposedMatrix[2] = VecElems == 8 ? TempVec : Vec[2];
}

// group2Shuffle reorder the shuffle stride back into continuous order.
// For example For VF16 with Mask1 = {0,3,6,9,12,15,2,5,8,11,14,1,4,7,10,13} =>
// MaskResult = {0,11,6,1,12,7,2,13,8,3,14,9,4,15,10,5}.
static void group2Shuffle(MVT VT, SmallVectorImpl<uint32_t> &Mask,
                          SmallVectorImpl<uint32_t> &Output) {
  int IndexGroup[3] = {0, 0, 0};
  int Index = 0;
  int VectorWidth = VT.getSizeInBits();
  int VF = VT.getVectorNumElements();
  // Find the index of the different groups.
  int Lane = (VectorWidth / 128 > 0) ? VectorWidth / 128 : 1;
  for (int i = 0; i < 3; i++) {
    IndexGroup[(Index * 3) % (VF / Lane)] = Index;
    Index += Mask[i];
  }
  // According to the index compute the convert mask.
  for (int i = 0; i < VF / Lane; i++) {
    Output.push_back(IndexGroup[i % 3]);
    IndexGroup[i % 3]++;
  }
}

void X86InterleavedAccessGroup::interleave8bitStride3(
    ArrayRef<Instruction *> InVec, SmallVectorImpl<Value *> &TransposedMatrix,
    unsigned VecElems) {
  // Example: Assuming we start from the following vectors:
  // Matrix[0]= a0 a1 a2 a3 a4 a5 a6 a7
  // Matrix[1]= b0 b1 b2 b3 b4 b5 b6 b7
  // Matrix[2]= c0 c1 c2 c3 c3 a7 b7 c7

  TransposedMatrix.resize(3);
  SmallVector<uint32_t, 3> GroupSize;
  SmallVector<uint32_t, 32> VPShuf;
  SmallVector<uint32_t, 32> VPAlign[3];
  SmallVector<uint32_t, 32> VPAlign2;
  SmallVector<uint32_t, 32> VPAlign3;

  Value *Vec[3], *TempVector[3];
  MVT VT = MVT::getVectorVT(MVT::i8, VecElems);

  setGroupSize(VT, GroupSize);

  for (int i = 0; i < 3; i++)
    DecodePALIGNRMask(VT, GroupSize[i], VPAlign[i]);

  DecodePALIGNRMask(VT, GroupSize[1] + GroupSize[2], VPAlign2, false, true);
  DecodePALIGNRMask(VT, GroupSize[1], VPAlign3, false, true);

  // Vec[0]= a3 a4 a5 a6 a7 a0 a1 a2
  // Vec[1]= c5 c6 c7 c0 c1 c2 c3 c4
  // Vec[2]= b0 b1 b2 b3 b4 b5 b6 b7

  Vec[0] = Builder.CreateShuffleVector(
      InVec[0], UndefValue::get(InVec[0]->getType()), VPAlign2);
  Vec[1] = Builder.CreateShuffleVector(
      InVec[1], UndefValue::get(InVec[1]->getType()), VPAlign3);
  Vec[2] = InVec[2];

  // Vec[0]= a6 a7 a0 a1 a2 b0 b1 b2
  // Vec[1]= c0 c1 c2 c3 c4 a3 a4 a5
  // Vec[2]= b3 b4 b5 b6 b7 c5 c6 c7

  for (int i = 0; i < 3; i++)
    TempVector[i] =
        Builder.CreateShuffleVector(Vec[i], Vec[(i + 2) % 3], VPAlign[1]);

  // Vec[0]= a0 a1 a2 b0 b1 b2 c0 c1
  // Vec[1]= c2 c3 c4 a3 a4 a5 b3 b4
  // Vec[2]= b5 b6 b7 c5 c6 c7 a6 a7

  for (int i = 0; i < 3; i++)
    Vec[i] = Builder.CreateShuffleVector(TempVector[i], TempVector[(i + 1) % 3],
                                         VPAlign[2]);

  // TransposedMatrix[0] = a0 b0 c0 a1 b1 c1 a2 b2
  // TransposedMatrix[1] = c2 a3 b3 c3 a4 b4 c4 a5
  // TransposedMatrix[2] = b5 c5 a6 b6 c6 a7 b7 c7

  unsigned NumOfElm = VT.getVectorNumElements();
  group2Shuffle(VT, GroupSize, VPShuf);
  reorderSubVector(VT, TransposedMatrix, Vec, VPShuf, NumOfElm,3, Builder);
}

void X86InterleavedAccessGroup::transpose_4x4(
    ArrayRef<Instruction *> Matrix,
    SmallVectorImpl<Value *> &TransposedMatrix) {
  assert(Matrix.size() == 4 && "Invalid matrix size");
  TransposedMatrix.resize(4);

  // dst = src1[0,1],src2[0,1]
  uint32_t IntMask1[] = {0, 1, 4, 5};
  ArrayRef<uint32_t> Mask = makeArrayRef(IntMask1, 4);
  Value *IntrVec1 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask);
  Value *IntrVec2 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask);

  // dst = src1[2,3],src2[2,3]
  uint32_t IntMask2[] = {2, 3, 6, 7};
  Mask = makeArrayRef(IntMask2, 4);
  Value *IntrVec3 = Builder.CreateShuffleVector(Matrix[0], Matrix[2], Mask);
  Value *IntrVec4 = Builder.CreateShuffleVector(Matrix[1], Matrix[3], Mask);

  // dst = src1[0],src2[0],src1[2],src2[2]
  uint32_t IntMask3[] = {0, 4, 2, 6};
  Mask = makeArrayRef(IntMask3, 4);
  TransposedMatrix[0] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask);
  TransposedMatrix[2] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask);

  // dst = src1[1],src2[1],src1[3],src2[3]
  uint32_t IntMask4[] = {1, 5, 3, 7};
  Mask = makeArrayRef(IntMask4, 4);
  TransposedMatrix[1] = Builder.CreateShuffleVector(IntrVec1, IntrVec2, Mask);
  TransposedMatrix[3] = Builder.CreateShuffleVector(IntrVec3, IntrVec4, Mask);
}

// Lowers this interleaved access group into X86-specific
// instructions/intrinsics.
bool X86InterleavedAccessGroup::lowerIntoOptimizedSequence() {
  SmallVector<Instruction *, 4> DecomposedVectors;
  SmallVector<Value *, 4> TransposedVectors;
  VectorType *ShuffleTy = Shuffles[0]->getType();

  if (isa<LoadInst>(Inst)) {
    // Try to generate target-sized register(/instruction).
    decompose(Inst, Factor, ShuffleTy, DecomposedVectors);

    Type *ShuffleEltTy = Inst->getType();
    unsigned NumSubVecElems = ShuffleEltTy->getVectorNumElements() / Factor;
    // Perform matrix-transposition in order to compute interleaved
    // results by generating some sort of (optimized) target-specific
    // instructions.

    switch (NumSubVecElems) {
    default:
      return false;
    case 4:
      transpose_4x4(DecomposedVectors, TransposedVectors);
      break;
    case 8:
    case 16:
    case 32:
    case 64:
      deinterleave8bitStride3(DecomposedVectors, TransposedVectors,
                              NumSubVecElems);
      break;
    }

    // Now replace the unoptimized-interleaved-vectors with the
    // transposed-interleaved vectors.
    for (unsigned i = 0, e = Shuffles.size(); i < e; ++i)
      Shuffles[i]->replaceAllUsesWith(TransposedVectors[Indices[i]]);

    return true;
  }

  Type *ShuffleEltTy = ShuffleTy->getVectorElementType();
  unsigned NumSubVecElems = ShuffleTy->getVectorNumElements() / Factor;

  // Lower the interleaved stores:
  //   1. Decompose the interleaved wide shuffle into individual shuffle
  //   vectors.
  decompose(Shuffles[0], Factor, VectorType::get(ShuffleEltTy, NumSubVecElems),
            DecomposedVectors);

  //   2. Transpose the interleaved-vectors into vectors of contiguous
  //      elements.
  switch (NumSubVecElems) {
  case 4:
    transpose_4x4(DecomposedVectors, TransposedVectors);
    break;
  case 8:
    interleave8bitStride4VF8(DecomposedVectors, TransposedVectors);
    break;
  case 16:
  case 32:
  case 64:
    if (Factor == 4)
      interleave8bitStride4(DecomposedVectors, TransposedVectors,
                            NumSubVecElems);
    if (Factor == 3)
      interleave8bitStride3(DecomposedVectors, TransposedVectors,
                            NumSubVecElems);
    break;
  default:
    return false;
  }

  //   3. Concatenate the contiguous-vectors back into a wide vector.
  Value *WideVec = concatenateVectors(Builder, TransposedVectors);

  //   4. Generate a store instruction for wide-vec.
  StoreInst *SI = cast<StoreInst>(Inst);
  Builder.CreateAlignedStore(WideVec, SI->getPointerOperand(),
                             SI->getAlignment());

  return true;
}

// Lower interleaved load(s) into target specific instructions/
// intrinsics. Lowering sequence varies depending on the vector-types, factor,
// number of shuffles and ISA.
// Currently, lowering is supported for 4x64 bits with Factor = 4 on AVX.
bool X86TargetLowering::lowerInterleavedLoad(
    LoadInst *LI, ArrayRef<ShuffleVectorInst *> Shuffles,
    ArrayRef<unsigned> Indices, unsigned Factor) const {
  assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
         "Invalid interleave factor");
  assert(!Shuffles.empty() && "Empty shufflevector input");
  assert(Shuffles.size() == Indices.size() &&
         "Unmatched number of shufflevectors and indices");

  // Create an interleaved access group.
  IRBuilder<> Builder(LI);
  X86InterleavedAccessGroup Grp(LI, Shuffles, Indices, Factor, Subtarget,
                                Builder);

  return Grp.isSupported() && Grp.lowerIntoOptimizedSequence();
}

bool X86TargetLowering::lowerInterleavedStore(StoreInst *SI,
                                              ShuffleVectorInst *SVI,
                                              unsigned Factor) const {
  assert(Factor >= 2 && Factor <= getMaxSupportedInterleaveFactor() &&
         "Invalid interleave factor");

  assert(SVI->getType()->getVectorNumElements() % Factor == 0 &&
         "Invalid interleaved store");

  // Holds the indices of SVI that correspond to the starting index of each
  // interleaved shuffle.
  SmallVector<unsigned, 4> Indices;
  auto Mask = SVI->getShuffleMask();
  for (unsigned i = 0; i < Factor; i++)
    Indices.push_back(Mask[i]);

  ArrayRef<ShuffleVectorInst *> Shuffles = makeArrayRef(SVI);

  // Create an interleaved access group.
  IRBuilder<> Builder(SI);
  X86InterleavedAccessGroup Grp(SI, Shuffles, Indices, Factor, Subtarget,
                                Builder);

  return Grp.isSupported() && Grp.lowerIntoOptimizedSequence();
}