llvm.org GIT mirror llvm / release_70 lib / Target / ARM / ARMParallelDSP.cpp
release_70

Tree @release_70 (Download .tar.gz)

ARMParallelDSP.cpp @release_70raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
//===- ParallelDSP.cpp - Parallel DSP Pass --------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// Armv6 introduced instructions to perform 32-bit SIMD operations. The
/// purpose of this pass is do some IR pattern matching to create ACLE
/// DSP intrinsics, which map on these 32-bit SIMD operations.
/// This pass runs only when unaligned accesses is supported/enabled.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LoopAccessAnalysis.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/NoFolder.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Pass.h"
#include "llvm/PassRegistry.h"
#include "llvm/PassSupport.h"
#include "llvm/Support/Debug.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/CodeGen/TargetPassConfig.h"
#include "ARM.h"
#include "ARMSubtarget.h"

using namespace llvm;
using namespace PatternMatch;

#define DEBUG_TYPE "arm-parallel-dsp"

STATISTIC(NumSMLAD , "Number of smlad instructions generated");

namespace {
  struct OpChain;
  struct BinOpChain;
  struct Reduction;

  using OpChainList     = SmallVector<std::unique_ptr<OpChain>, 8>;
  using ReductionList   = SmallVector<Reduction, 8>;
  using ValueList       = SmallVector<Value*, 8>;
  using MemInstList     = SmallVector<Instruction*, 8>;
  using PMACPair        = std::pair<BinOpChain*,BinOpChain*>;
  using PMACPairList    = SmallVector<PMACPair, 8>;
  using Instructions    = SmallVector<Instruction*,16>;
  using MemLocList      = SmallVector<MemoryLocation, 4>;

  struct OpChain {
    Instruction   *Root;
    ValueList     AllValues;
    MemInstList   VecLd;    // List of all load instructions.
    MemLocList    MemLocs;  // All memory locations read by this tree.
    bool          ReadOnly = true;

    OpChain(Instruction *I, ValueList &vl) : Root(I), AllValues(vl) { }
    virtual ~OpChain() = default;

    void SetMemoryLocations() {
      const auto Size = MemoryLocation::UnknownSize;
      for (auto *V : AllValues) {
        if (auto *I = dyn_cast<Instruction>(V)) {
          if (I->mayWriteToMemory())
            ReadOnly = false;
          if (auto *Ld = dyn_cast<LoadInst>(V))
            MemLocs.push_back(MemoryLocation(Ld->getPointerOperand(), Size));
        }
      }
    }

    unsigned size() const { return AllValues.size(); }
  };

  // 'BinOpChain' and 'Reduction' are just some bookkeeping data structures.
  // 'Reduction' contains the phi-node and accumulator statement from where we
  // start pattern matching, and 'BinOpChain' the multiplication
  // instructions that are candidates for parallel execution.
  struct BinOpChain : public OpChain {
    ValueList     LHS;      // List of all (narrow) left hand operands.
    ValueList     RHS;      // List of all (narrow) right hand operands.

    BinOpChain(Instruction *I, ValueList &lhs, ValueList &rhs) :
      OpChain(I, lhs), LHS(lhs), RHS(rhs) {
        for (auto *V : RHS)
          AllValues.push_back(V);
      }
  };

  struct Reduction {
    PHINode         *Phi;             // The Phi-node from where we start
                                      // pattern matching.
    Instruction     *AccIntAdd;       // The accumulating integer add statement,
                                      // i.e, the reduction statement.

    OpChainList     MACCandidates;    // The MAC candidates associated with
                                      // this reduction statement.
    Reduction (PHINode *P, Instruction *Acc) : Phi(P), AccIntAdd(Acc) { };
  };

  class ARMParallelDSP : public LoopPass {
    ScalarEvolution   *SE;
    AliasAnalysis     *AA;
    TargetLibraryInfo *TLI;
    DominatorTree     *DT;
    LoopInfo          *LI;
    Loop              *L;
    const DataLayout  *DL;
    Module            *M;

    bool InsertParallelMACs(Reduction &Reduction, PMACPairList &PMACPairs);
    bool AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1, MemInstList &VecMem);
    PMACPairList CreateParallelMACPairs(OpChainList &Candidates);
    Instruction *CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1,
                                 Instruction *Acc, Instruction *InsertAfter);

    /// Try to match and generate: SMLAD, SMLADX - Signed Multiply Accumulate
    /// Dual performs two signed 16x16-bit multiplications. It adds the
    /// products to a 32-bit accumulate operand. Optionally, the instruction can
    /// exchange the halfwords of the second operand before performing the
    /// arithmetic.
    bool MatchSMLAD(Function &F);

  public:
    static char ID;

    ARMParallelDSP() : LoopPass(ID) { }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      LoopPass::getAnalysisUsage(AU);
      AU.addRequired<AssumptionCacheTracker>();
      AU.addRequired<ScalarEvolutionWrapperPass>();
      AU.addRequired<AAResultsWrapperPass>();
      AU.addRequired<TargetLibraryInfoWrapperPass>();
      AU.addRequired<LoopInfoWrapperPass>();
      AU.addRequired<DominatorTreeWrapperPass>();
      AU.addRequired<TargetPassConfig>();
      AU.addPreserved<LoopInfoWrapperPass>();
      AU.setPreservesCFG();
    }

    bool runOnLoop(Loop *TheLoop, LPPassManager &) override {
      L = TheLoop;
      SE = &getAnalysis<ScalarEvolutionWrapperPass>().getSE();
      AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
      TLI = &getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
      DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
      LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
      auto &TPC = getAnalysis<TargetPassConfig>();

      BasicBlock *Header = TheLoop->getHeader();
      if (!Header)
        return false;

      // TODO: We assume the loop header and latch to be the same block.
      // This is not a fundamental restriction, but lifting this would just
      // require more work to do the transformation and then patch up the CFG.
      if (Header != TheLoop->getLoopLatch()) {
        LLVM_DEBUG(dbgs() << "The loop header is not the loop latch: not "
                             "running pass ARMParallelDSP\n");
        return false;
      }

      Function &F = *Header->getParent();
      M = F.getParent();
      DL = &M->getDataLayout();

      auto &TM = TPC.getTM<TargetMachine>();
      auto *ST = &TM.getSubtarget<ARMSubtarget>(F);

      if (!ST->allowsUnalignedMem()) {
        LLVM_DEBUG(dbgs() << "Unaligned memory access not supported: not "
                             "running pass ARMParallelDSP\n");
        return false;
      }

      if (!ST->hasDSP()) {
        LLVM_DEBUG(dbgs() << "DSP extension not enabled: not running pass "
                             "ARMParallelDSP\n");
        return false;
      }

      LoopAccessInfo LAI(L, SE, TLI, AA, DT, LI);
      bool Changes = false;

      LLVM_DEBUG(dbgs() << "\n== Parallel DSP pass ==\n\n");
      Changes = MatchSMLAD(F);
      return Changes;
    }
  };
}

// MaxBitwidth: the maximum supported bitwidth of the elements in the DSP
// instructions, which is set to 16. So here we should collect all i8 and i16
// narrow operations.
// TODO: we currently only collect i16, and will support i8 later, so that's
// why we check that types are equal to MaxBitWidth, and not <= MaxBitWidth.
template<unsigned MaxBitWidth>
static bool IsNarrowSequence(Value *V, ValueList &VL) {
  LLVM_DEBUG(dbgs() << "Is narrow sequence? "; V->dump());
  ConstantInt *CInt;

  if (match(V, m_ConstantInt(CInt))) {
    // TODO: if a constant is used, it needs to fit within the bit width.
    return false;
  }

  auto *I = dyn_cast<Instruction>(V);
  if (!I)
   return false;

  Value *Val, *LHS, *RHS;
  if (match(V, m_Trunc(m_Value(Val)))) {
    if (cast<TruncInst>(I)->getDestTy()->getIntegerBitWidth() == MaxBitWidth)
      return IsNarrowSequence<MaxBitWidth>(Val, VL);
  } else if (match(V, m_Add(m_Value(LHS), m_Value(RHS)))) {
    // TODO: we need to implement sadd16/sadd8 for this, which enables to
    // also do the rewrite for smlad8.ll, but it is unsupported for now.
    LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump());
    return false;
  } else if (match(V, m_ZExtOrSExt(m_Value(Val)))) {
    if (cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() != MaxBitWidth) {
      LLVM_DEBUG(dbgs() << "No, wrong SrcTy size: " <<
        cast<CastInst>(I)->getSrcTy()->getIntegerBitWidth() << "\n");
      return false;
    }

    if (match(Val, m_Load(m_Value()))) {
      LLVM_DEBUG(dbgs() << "Yes, found narrow Load:\t"; Val->dump());
      VL.push_back(Val);
      VL.push_back(I);
      return true;
    }
  }
  LLVM_DEBUG(dbgs() << "No, unsupported Op:\t"; I->dump());
  return false;
}

// Element-by-element comparison of Value lists returning true if they are
// instructions with the same opcode or constants with the same value.
static bool AreSymmetrical(const ValueList &VL0,
                           const ValueList &VL1) {
  if (VL0.size() != VL1.size()) {
    LLVM_DEBUG(dbgs() << "Muls are mismatching operand list lengths: "
                      << VL0.size() << " != " << VL1.size() << "\n");
    return false;
  }

  const unsigned Pairs = VL0.size();
  LLVM_DEBUG(dbgs() << "Number of operand pairs: " << Pairs << "\n");

  for (unsigned i = 0; i < Pairs; ++i) {
    const Value *V0 = VL0[i];
    const Value *V1 = VL1[i];
    const auto *Inst0 = dyn_cast<Instruction>(V0);
    const auto *Inst1 = dyn_cast<Instruction>(V1);

    LLVM_DEBUG(dbgs() << "Pair " << i << ":\n";
               dbgs() << "mul1: "; V0->dump();
               dbgs() << "mul2: "; V1->dump());

    if (!Inst0 || !Inst1)
      return false;

    if (Inst0->isSameOperationAs(Inst1)) {
      LLVM_DEBUG(dbgs() << "OK: same operation found!\n");
      continue;
    }

    const APInt *C0, *C1;
    if (!(match(V0, m_APInt(C0)) && match(V1, m_APInt(C1)) && C0 == C1))
      return false;
  }

  LLVM_DEBUG(dbgs() << "OK: found symmetrical operand lists.\n");
  return true;
}

template<typename MemInst>
static bool AreSequentialAccesses(MemInst *MemOp0, MemInst *MemOp1,
                                  MemInstList &VecMem, const DataLayout &DL,
                                  ScalarEvolution &SE) {
  if (!MemOp0->isSimple() || !MemOp1->isSimple()) {
    LLVM_DEBUG(dbgs() << "No, not touching volatile access\n");
    return false;
  }
  if (isConsecutiveAccess(MemOp0, MemOp1, DL, SE)) {
    VecMem.push_back(MemOp0);
    VecMem.push_back(MemOp1);
    LLVM_DEBUG(dbgs() << "OK: accesses are consecutive.\n");
    return true;
  }
  LLVM_DEBUG(dbgs() << "No, accesses aren't consecutive.\n");
  return false;
}

bool ARMParallelDSP::AreSequentialLoads(LoadInst *Ld0, LoadInst *Ld1,
                                        MemInstList &VecMem) {
  if (!Ld0 || !Ld1)
    return false;

  LLVM_DEBUG(dbgs() << "Are consecutive loads:\n";
    dbgs() << "Ld0:"; Ld0->dump();
    dbgs() << "Ld1:"; Ld1->dump();
  );

  if (!Ld0->hasOneUse() || !Ld1->hasOneUse()) {
    LLVM_DEBUG(dbgs() << "No, load has more than one use.\n");
    return false;
  }

  return AreSequentialAccesses<LoadInst>(Ld0, Ld1, VecMem, *DL, *SE);
}

PMACPairList
ARMParallelDSP::CreateParallelMACPairs(OpChainList &Candidates) {
  const unsigned Elems = Candidates.size();
  PMACPairList PMACPairs;

  if (Elems < 2)
    return PMACPairs;

  // TODO: for now we simply try to match consecutive pairs i and i+1.
  // We can compare all elements, but then we need to compare and evaluate
  // different solutions.
  for(unsigned i=0; i<Elems-1; i+=2) {
    BinOpChain *PMul0 = static_cast<BinOpChain*>(Candidates[i].get());
    BinOpChain *PMul1 = static_cast<BinOpChain*>(Candidates[i+1].get());
    const Instruction *Mul0 = PMul0->Root;
    const Instruction *Mul1 = PMul1->Root;

    if (Mul0 == Mul1)
      continue;

    LLVM_DEBUG(dbgs() << "\nCheck parallel muls:\n";
               dbgs() << "- "; Mul0->dump();
               dbgs() << "- "; Mul1->dump());

    const ValueList &Mul0_LHS = PMul0->LHS;
    const ValueList &Mul0_RHS = PMul0->RHS;
    const ValueList &Mul1_LHS = PMul1->LHS;
    const ValueList &Mul1_RHS = PMul1->RHS;

    if (!AreSymmetrical(Mul0_LHS, Mul1_LHS) ||
        !AreSymmetrical(Mul0_RHS, Mul1_RHS))
      continue;

    LLVM_DEBUG(dbgs() << "OK: mul operands list match:\n");
    // The first elements of each vector should be loads with sexts. If we find
    // that its two pairs of consecutive loads, then these can be transformed
    // into two wider loads and the users can be replaced with DSP
    // intrinsics.
    for (unsigned x = 0; x < Mul0_LHS.size(); x += 2) {
      auto *Ld0 = dyn_cast<LoadInst>(Mul0_LHS[x]);
      auto *Ld1 = dyn_cast<LoadInst>(Mul1_LHS[x]);
      auto *Ld2 = dyn_cast<LoadInst>(Mul0_RHS[x]);
      auto *Ld3 = dyn_cast<LoadInst>(Mul1_RHS[x]);

      LLVM_DEBUG(dbgs() << "Looking at operands " << x << ":\n";
                 dbgs() << "\t mul1: "; Mul0_LHS[x]->dump();
                 dbgs() << "\t mul2: "; Mul1_LHS[x]->dump();
                 dbgs() << "and operands " << x + 2 << ":\n";
                 dbgs() << "\t mul1: "; Mul0_RHS[x]->dump();
                 dbgs() << "\t mul2: "; Mul1_RHS[x]->dump());

      if (AreSequentialLoads(Ld0, Ld1, PMul0->VecLd) &&
          AreSequentialLoads(Ld2, Ld3, PMul1->VecLd)) {
        LLVM_DEBUG(dbgs() << "OK: found two pairs of parallel loads!\n");
        PMACPairs.push_back(std::make_pair(PMul0, PMul1));
      }
    }
  }
  return PMACPairs;
}

bool ARMParallelDSP::InsertParallelMACs(Reduction &Reduction,
                                        PMACPairList &PMACPairs) {
  Instruction *Acc = Reduction.Phi;
  Instruction *InsertAfter = Reduction.AccIntAdd;

  for (auto &Pair : PMACPairs) {
    LLVM_DEBUG(dbgs() << "Found parallel MACs!!\n";
               dbgs() << "- "; Pair.first->Root->dump();
               dbgs() << "- "; Pair.second->Root->dump());
    auto *VecLd0 = cast<LoadInst>(Pair.first->VecLd[0]);
    auto *VecLd1 = cast<LoadInst>(Pair.second->VecLd[0]);
    Acc = CreateSMLADCall(VecLd0, VecLd1, Acc, InsertAfter);
    InsertAfter = Acc;
  }

  if (Acc != Reduction.Phi) {
    LLVM_DEBUG(dbgs() << "Replace Accumulate: "; Acc->dump());
    Reduction.AccIntAdd->replaceAllUsesWith(Acc);
    return true;
  }
  return false;
}

static void MatchReductions(Function &F, Loop *TheLoop, BasicBlock *Header,
                            ReductionList &Reductions) {
  RecurrenceDescriptor RecDesc;
  const bool HasFnNoNaNAttr =
    F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";
  const BasicBlock *Latch = TheLoop->getLoopLatch();

  // We need a preheader as getIncomingValueForBlock assumes there is one.
  if (!TheLoop->getLoopPreheader()) {
    LLVM_DEBUG(dbgs() << "No preheader found, bailing out\n");
    return;
  }

  for (PHINode &Phi : Header->phis()) {
    const auto *Ty = Phi.getType();
    if (!Ty->isIntegerTy(32))
      continue;

    const bool IsReduction =
      RecurrenceDescriptor::AddReductionVar(&Phi,
                                            RecurrenceDescriptor::RK_IntegerAdd,
                                            TheLoop, HasFnNoNaNAttr, RecDesc);
    if (!IsReduction)
      continue;

    Instruction *Acc = dyn_cast<Instruction>(Phi.getIncomingValueForBlock(Latch));
    if (!Acc)
      continue;

    Reductions.push_back(Reduction(&Phi, Acc));
  }

  LLVM_DEBUG(
    dbgs() << "\nAccumulating integer additions (reductions) found:\n";
    for (auto &R : Reductions) {
      dbgs() << "-  "; R.Phi->dump();
      dbgs() << "-> "; R.AccIntAdd->dump();
    }
  );
}

static void AddMACCandidate(OpChainList &Candidates,
                            const Instruction *Acc,
                            Value *MulOp0, Value *MulOp1, int MulOpNum) {
  Instruction *Mul = dyn_cast<Instruction>(Acc->getOperand(MulOpNum));
  LLVM_DEBUG(dbgs() << "OK, found acc mul:\t"; Mul->dump());
  ValueList LHS;
  ValueList RHS;
  if (IsNarrowSequence<16>(MulOp0, LHS) &&
      IsNarrowSequence<16>(MulOp1, RHS)) {
    LLVM_DEBUG(dbgs() << "OK, found narrow mul: "; Mul->dump());
    Candidates.push_back(make_unique<BinOpChain>(Mul, LHS, RHS));
  }
}

static void MatchParallelMACSequences(Reduction &R,
                                      OpChainList &Candidates) {
  const Instruction *Acc = R.AccIntAdd;
  Value *A, *MulOp0, *MulOp1;
  LLVM_DEBUG(dbgs() << "\n- Analysing:\t"; Acc->dump());

  // Pattern 1: the accumulator is the RHS of the mul.
  while(match(Acc, m_Add(m_Mul(m_Value(MulOp0), m_Value(MulOp1)),
                         m_Value(A)))){
    AddMACCandidate(Candidates, Acc, MulOp0, MulOp1, 0);
    Acc = dyn_cast<Instruction>(A);
  }
  // Pattern 2: the accumulator is the LHS of the mul.
  while(match(Acc, m_Add(m_Value(A),
                         m_Mul(m_Value(MulOp0), m_Value(MulOp1))))) {
    AddMACCandidate(Candidates, Acc, MulOp0, MulOp1, 1);
    Acc = dyn_cast<Instruction>(A);
  }

  // The last mul in the chain has a slightly different pattern:
  // the mul is the first operand
  if (match(Acc, m_Add(m_Mul(m_Value(MulOp0), m_Value(MulOp1)), m_Value(A))))
    AddMACCandidate(Candidates, Acc, MulOp0, MulOp1, 0);

  // Because we start at the bottom of the chain, and we work our way up,
  // the muls are added in reverse program order to the list.
  std::reverse(Candidates.begin(), Candidates.end());
}

// Collects all instructions that are not part of the MAC chains, which is the
// set of instructions that can potentially alias with the MAC operands.
static void AliasCandidates(BasicBlock *Header, Instructions &Reads,
                            Instructions &Writes) {
  for (auto &I : *Header) {
    if (I.mayReadFromMemory())
      Reads.push_back(&I);
    if (I.mayWriteToMemory())
      Writes.push_back(&I);
  }
}

// Check whether statements in the basic block that write to memory alias with
// the memory locations accessed by the MAC-chains.
// TODO: we need the read statements when we accept more complicated chains.
static bool AreAliased(AliasAnalysis *AA, Instructions &Reads,
                       Instructions &Writes, OpChainList &MACCandidates) {
  LLVM_DEBUG(dbgs() << "Alias checks:\n");
  for (auto &MAC : MACCandidates) {
    LLVM_DEBUG(dbgs() << "mul: "; MAC->Root->dump());

    // At the moment, we allow only simple chains that only consist of reads,
    // accumulate their result with an integer add, and thus that don't write
    // memory, and simply bail if they do.
    if (!MAC->ReadOnly)
      return true;

    // Now for all writes in the basic block, check that they don't alias with
    // the memory locations accessed by our MAC-chain:
    for (auto *I : Writes) {
      LLVM_DEBUG(dbgs() << "- "; I->dump());
      assert(MAC->MemLocs.size() >= 2 && "expecting at least 2 memlocs");
      for (auto &MemLoc : MAC->MemLocs) {
        if (isModOrRefSet(intersectModRef(AA->getModRefInfo(I, MemLoc),
                                          ModRefInfo::ModRef))) {
          LLVM_DEBUG(dbgs() << "Yes, aliases found\n");
          return true;
        }
      }
    }
  }

  LLVM_DEBUG(dbgs() << "OK: no aliases found!\n");
  return false;
}

static bool CheckMACMemory(OpChainList &Candidates) {
  for (auto &C : Candidates) {
    // A mul has 2 operands, and a narrow op consist of sext and a load; thus
    // we expect at least 4 items in this operand value list.
    if (C->size() < 4) {
      LLVM_DEBUG(dbgs() << "Operand list too short.\n");
      return false;
    }
    C->SetMemoryLocations();
    ValueList &LHS = static_cast<BinOpChain*>(C.get())->LHS;
    ValueList &RHS = static_cast<BinOpChain*>(C.get())->RHS;

    // Use +=2 to skip over the expected extend instructions.
    for (unsigned i = 0, e = LHS.size(); i < e; i += 2) {
      if (!isa<LoadInst>(LHS[i]) || !isa<LoadInst>(RHS[i]))
        return false;
    }
  }
  return true;
}

// Loop Pass that needs to identify integer add/sub reductions of 16-bit vector
// multiplications.
// To use SMLAD:
// 1) we first need to find integer add reduction PHIs,
// 2) then from the PHI, look for this pattern:
//
// acc0 = phi i32 [0, %entry], [%acc1, %loop.body]
// ld0 = load i16
// sext0 = sext i16 %ld0 to i32
// ld1 = load i16
// sext1 = sext i16 %ld1 to i32
// mul0 = mul %sext0, %sext1
// ld2 = load i16
// sext2 = sext i16 %ld2 to i32
// ld3 = load i16
// sext3 = sext i16 %ld3 to i32
// mul1 = mul i32 %sext2, %sext3
// add0 = add i32 %mul0, %acc0
// acc1 = add i32 %add0, %mul1
//
// Which can be selected to:
//
// ldr.h r0
// ldr.h r1
// smlad r2, r0, r1, r2
//
// If constants are used instead of loads, these will need to be hoisted
// out and into a register.
//
// If loop invariants are used instead of loads, these need to be packed
// before the loop begins.
//
bool ARMParallelDSP::MatchSMLAD(Function &F) {
  BasicBlock *Header = L->getHeader();
  LLVM_DEBUG(dbgs() << "= Matching SMLAD =\n";
             dbgs() << "Header block:\n"; Header->dump();
             dbgs() << "Loop info:\n\n"; L->dump());

  bool Changed = false;
  ReductionList Reductions;
  MatchReductions(F, L, Header, Reductions);

  for (auto &R : Reductions) {
    OpChainList MACCandidates;
    MatchParallelMACSequences(R, MACCandidates);
    if (!CheckMACMemory(MACCandidates))
      continue;

    R.MACCandidates = std::move(MACCandidates);

    LLVM_DEBUG(dbgs() << "MAC candidates:\n";
      for (auto &M : R.MACCandidates)
        M->Root->dump();
      dbgs() << "\n";);
  }

  // Collect all instructions that may read or write memory. Our alias
  // analysis checks bail out if any of these instructions aliases with an
  // instruction from the MAC-chain.
  Instructions Reads, Writes;
  AliasCandidates(Header, Reads, Writes);

  for (auto &R : Reductions) {
    if (AreAliased(AA, Reads, Writes, R.MACCandidates))
      return false;
    PMACPairList PMACPairs = CreateParallelMACPairs(R.MACCandidates);
    Changed |= InsertParallelMACs(R, PMACPairs);
  }

  LLVM_DEBUG(if (Changed) dbgs() << "Header block:\n"; Header->dump(););
  return Changed;
}

static void CreateLoadIns(IRBuilder<NoFolder> &IRB, Instruction *Acc,
                          LoadInst **VecLd) {
  const Type *AccTy = Acc->getType();
  const unsigned AddrSpace = (*VecLd)->getPointerAddressSpace();

  Value *VecPtr = IRB.CreateBitCast((*VecLd)->getPointerOperand(),
                                    AccTy->getPointerTo(AddrSpace));
  *VecLd = IRB.CreateAlignedLoad(VecPtr, (*VecLd)->getAlignment());
}

Instruction *ARMParallelDSP::CreateSMLADCall(LoadInst *VecLd0, LoadInst *VecLd1,
                                             Instruction *Acc,
                                             Instruction *InsertAfter) {
  LLVM_DEBUG(dbgs() << "Create SMLAD intrinsic using:\n";
             dbgs() << "- "; VecLd0->dump();
             dbgs() << "- "; VecLd1->dump();
             dbgs() << "- "; Acc->dump());

  IRBuilder<NoFolder> Builder(InsertAfter->getParent(),
                              ++BasicBlock::iterator(InsertAfter));

  // Replace the reduction chain with an intrinsic call
  CreateLoadIns(Builder, Acc, &VecLd0);
  CreateLoadIns(Builder, Acc, &VecLd1);
  Value* Args[] = { VecLd0, VecLd1, Acc };
  Function *SMLAD = Intrinsic::getDeclaration(M, Intrinsic::arm_smlad);
  CallInst *Call = Builder.CreateCall(SMLAD, Args);
  NumSMLAD++;
  return Call;
}

Pass *llvm::createARMParallelDSPPass() {
  return new ARMParallelDSP();
}

char ARMParallelDSP::ID = 0;

INITIALIZE_PASS_BEGIN(ARMParallelDSP, "arm-parallel-dsp",
                "Transform loops to use DSP intrinsics", false, false)
INITIALIZE_PASS_END(ARMParallelDSP, "arm-parallel-dsp",
                "Transform loops to use DSP intrinsics", false, false)