llvm.org GIT mirror llvm / release_70 include / llvm / Support / Endian.h
release_70

Tree @release_70 (Download .tar.gz)

Endian.h @release_70raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
//===- Endian.h - Utilities for IO with endian specific data ----*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file declares generic functions to read and write endian specific data.
//
//===----------------------------------------------------------------------===//

#ifndef LLVM_SUPPORT_ENDIAN_H
#define LLVM_SUPPORT_ENDIAN_H

#include "llvm/Support/AlignOf.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/SwapByteOrder.h"
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <type_traits>

namespace llvm {
namespace support {

enum endianness {big, little, native};

// These are named values for common alignments.
enum {aligned = 0, unaligned = 1};

namespace detail {

/// ::value is either alignment, or alignof(T) if alignment is 0.
template<class T, int alignment>
struct PickAlignment {
 enum { value = alignment == 0 ? alignof(T) : alignment };
};

} // end namespace detail

namespace endian {

constexpr endianness system_endianness() {
  return sys::IsBigEndianHost ? big : little;
}

template <typename value_type>
inline value_type byte_swap(value_type value, endianness endian) {
  if ((endian != native) && (endian != system_endianness()))
    sys::swapByteOrder(value);
  return value;
}

/// Swap the bytes of value to match the given endianness.
template<typename value_type, endianness endian>
inline value_type byte_swap(value_type value) {
  return byte_swap(value, endian);
}

/// Read a value of a particular endianness from memory.
template <typename value_type, std::size_t alignment>
inline value_type read(const void *memory, endianness endian) {
  value_type ret;

  memcpy(&ret,
         LLVM_ASSUME_ALIGNED(
             memory, (detail::PickAlignment<value_type, alignment>::value)),
         sizeof(value_type));
  return byte_swap<value_type>(ret, endian);
}

template<typename value_type,
         endianness endian,
         std::size_t alignment>
inline value_type read(const void *memory) {
  return read<value_type, alignment>(memory, endian);
}

/// Read a value of a particular endianness from a buffer, and increment the
/// buffer past that value.
template <typename value_type, std::size_t alignment, typename CharT>
inline value_type readNext(const CharT *&memory, endianness endian) {
  value_type ret = read<value_type, alignment>(memory, endian);
  memory += sizeof(value_type);
  return ret;
}

template<typename value_type, endianness endian, std::size_t alignment,
         typename CharT>
inline value_type readNext(const CharT *&memory) {
  return readNext<value_type, alignment, CharT>(memory, endian);
}

/// Write a value to memory with a particular endianness.
template <typename value_type, std::size_t alignment>
inline void write(void *memory, value_type value, endianness endian) {
  value = byte_swap<value_type>(value, endian);
  memcpy(LLVM_ASSUME_ALIGNED(
             memory, (detail::PickAlignment<value_type, alignment>::value)),
         &value, sizeof(value_type));
}

template<typename value_type,
         endianness endian,
         std::size_t alignment>
inline void write(void *memory, value_type value) {
  write<value_type, alignment>(memory, value, endian);
}

template <typename value_type>
using make_unsigned_t = typename std::make_unsigned<value_type>::type;

/// Read a value of a particular endianness from memory, for a location
/// that starts at the given bit offset within the first byte.
template <typename value_type, endianness endian, std::size_t alignment>
inline value_type readAtBitAlignment(const void *memory, uint64_t startBit) {
  assert(startBit < 8);
  if (startBit == 0)
    return read<value_type, endian, alignment>(memory);
  else {
    // Read two values and compose the result from them.
    value_type val[2];
    memcpy(&val[0],
           LLVM_ASSUME_ALIGNED(
               memory, (detail::PickAlignment<value_type, alignment>::value)),
           sizeof(value_type) * 2);
    val[0] = byte_swap<value_type, endian>(val[0]);
    val[1] = byte_swap<value_type, endian>(val[1]);

    // Shift bits from the lower value into place.
    make_unsigned_t<value_type> lowerVal = val[0] >> startBit;
    // Mask off upper bits after right shift in case of signed type.
    make_unsigned_t<value_type> numBitsFirstVal =
        (sizeof(value_type) * 8) - startBit;
    lowerVal &= ((make_unsigned_t<value_type>)1 << numBitsFirstVal) - 1;

    // Get the bits from the upper value.
    make_unsigned_t<value_type> upperVal =
        val[1] & (((make_unsigned_t<value_type>)1 << startBit) - 1);
    // Shift them in to place.
    upperVal <<= numBitsFirstVal;

    return lowerVal | upperVal;
  }
}

/// Write a value to memory with a particular endianness, for a location
/// that starts at the given bit offset within the first byte.
template <typename value_type, endianness endian, std::size_t alignment>
inline void writeAtBitAlignment(void *memory, value_type value,
                                uint64_t startBit) {
  assert(startBit < 8);
  if (startBit == 0)
    write<value_type, endian, alignment>(memory, value);
  else {
    // Read two values and shift the result into them.
    value_type val[2];
    memcpy(&val[0],
           LLVM_ASSUME_ALIGNED(
               memory, (detail::PickAlignment<value_type, alignment>::value)),
           sizeof(value_type) * 2);
    val[0] = byte_swap<value_type, endian>(val[0]);
    val[1] = byte_swap<value_type, endian>(val[1]);

    // Mask off any existing bits in the upper part of the lower value that
    // we want to replace.
    val[0] &= ((make_unsigned_t<value_type>)1 << startBit) - 1;
    make_unsigned_t<value_type> numBitsFirstVal =
        (sizeof(value_type) * 8) - startBit;
    make_unsigned_t<value_type> lowerVal = value;
    if (startBit > 0) {
      // Mask off the upper bits in the new value that are not going to go into
      // the lower value. This avoids a left shift of a negative value, which
      // is undefined behavior.
      lowerVal &= (((make_unsigned_t<value_type>)1 << numBitsFirstVal) - 1);
      // Now shift the new bits into place
      lowerVal <<= startBit;
    }
    val[0] |= lowerVal;

    // Mask off any existing bits in the lower part of the upper value that
    // we want to replace.
    val[1] &= ~(((make_unsigned_t<value_type>)1 << startBit) - 1);
    // Next shift the bits that go into the upper value into position.
    make_unsigned_t<value_type> upperVal = value >> numBitsFirstVal;
    // Mask off upper bits after right shift in case of signed type.
    upperVal &= ((make_unsigned_t<value_type>)1 << startBit) - 1;
    val[1] |= upperVal;

    // Finally, rewrite values.
    val[0] = byte_swap<value_type, endian>(val[0]);
    val[1] = byte_swap<value_type, endian>(val[1]);
    memcpy(LLVM_ASSUME_ALIGNED(
               memory, (detail::PickAlignment<value_type, alignment>::value)),
           &val[0], sizeof(value_type) * 2);
  }
}

} // end namespace endian

namespace detail {

template<typename value_type,
         endianness endian,
         std::size_t alignment>
struct packed_endian_specific_integral {
  packed_endian_specific_integral() = default;

  explicit packed_endian_specific_integral(value_type val) { *this = val; }

  operator value_type() const {
    return endian::read<value_type, endian, alignment>(
      (const void*)Value.buffer);
  }

  void operator=(value_type newValue) {
    endian::write<value_type, endian, alignment>(
      (void*)Value.buffer, newValue);
  }

  packed_endian_specific_integral &operator+=(value_type newValue) {
    *this = *this + newValue;
    return *this;
  }

  packed_endian_specific_integral &operator-=(value_type newValue) {
    *this = *this - newValue;
    return *this;
  }

  packed_endian_specific_integral &operator|=(value_type newValue) {
    *this = *this | newValue;
    return *this;
  }

  packed_endian_specific_integral &operator&=(value_type newValue) {
    *this = *this & newValue;
    return *this;
  }

private:
  AlignedCharArray<PickAlignment<value_type, alignment>::value,
                   sizeof(value_type)> Value;

public:
  struct ref {
    explicit ref(void *Ptr) : Ptr(Ptr) {}

    operator value_type() const {
      return endian::read<value_type, endian, alignment>(Ptr);
    }

    void operator=(value_type NewValue) {
      endian::write<value_type, endian, alignment>(Ptr, NewValue);
    }

  private:
    void *Ptr;
  };
};

} // end namespace detail

using ulittle16_t =
    detail::packed_endian_specific_integral<uint16_t, little, unaligned>;
using ulittle32_t =
    detail::packed_endian_specific_integral<uint32_t, little, unaligned>;
using ulittle64_t =
    detail::packed_endian_specific_integral<uint64_t, little, unaligned>;

using little16_t =
    detail::packed_endian_specific_integral<int16_t, little, unaligned>;
using little32_t =
    detail::packed_endian_specific_integral<int32_t, little, unaligned>;
using little64_t =
    detail::packed_endian_specific_integral<int64_t, little, unaligned>;

using aligned_ulittle16_t =
    detail::packed_endian_specific_integral<uint16_t, little, aligned>;
using aligned_ulittle32_t =
    detail::packed_endian_specific_integral<uint32_t, little, aligned>;
using aligned_ulittle64_t =
    detail::packed_endian_specific_integral<uint64_t, little, aligned>;

using aligned_little16_t =
    detail::packed_endian_specific_integral<int16_t, little, aligned>;
using aligned_little32_t =
    detail::packed_endian_specific_integral<int32_t, little, aligned>;
using aligned_little64_t =
    detail::packed_endian_specific_integral<int64_t, little, aligned>;

using ubig16_t =
    detail::packed_endian_specific_integral<uint16_t, big, unaligned>;
using ubig32_t =
    detail::packed_endian_specific_integral<uint32_t, big, unaligned>;
using ubig64_t =
    detail::packed_endian_specific_integral<uint64_t, big, unaligned>;

using big16_t =
    detail::packed_endian_specific_integral<int16_t, big, unaligned>;
using big32_t =
    detail::packed_endian_specific_integral<int32_t, big, unaligned>;
using big64_t =
    detail::packed_endian_specific_integral<int64_t, big, unaligned>;

using aligned_ubig16_t =
    detail::packed_endian_specific_integral<uint16_t, big, aligned>;
using aligned_ubig32_t =
    detail::packed_endian_specific_integral<uint32_t, big, aligned>;
using aligned_ubig64_t =
    detail::packed_endian_specific_integral<uint64_t, big, aligned>;

using aligned_big16_t =
    detail::packed_endian_specific_integral<int16_t, big, aligned>;
using aligned_big32_t =
    detail::packed_endian_specific_integral<int32_t, big, aligned>;
using aligned_big64_t =
    detail::packed_endian_specific_integral<int64_t, big, aligned>;

using unaligned_uint16_t =
    detail::packed_endian_specific_integral<uint16_t, native, unaligned>;
using unaligned_uint32_t =
    detail::packed_endian_specific_integral<uint32_t, native, unaligned>;
using unaligned_uint64_t =
    detail::packed_endian_specific_integral<uint64_t, native, unaligned>;

using unaligned_int16_t =
    detail::packed_endian_specific_integral<int16_t, native, unaligned>;
using unaligned_int32_t =
    detail::packed_endian_specific_integral<int32_t, native, unaligned>;
using unaligned_int64_t =
    detail::packed_endian_specific_integral<int64_t, native, unaligned>;

namespace endian {

template <typename T> inline T read(const void *P, endianness E) {
  return read<T, unaligned>(P, E);
}

template <typename T, endianness E> inline T read(const void *P) {
  return *(const detail::packed_endian_specific_integral<T, E, unaligned> *)P;
}

inline uint16_t read16(const void *P, endianness E) {
  return read<uint16_t>(P, E);
}
inline uint32_t read32(const void *P, endianness E) {
  return read<uint32_t>(P, E);
}
inline uint64_t read64(const void *P, endianness E) {
  return read<uint64_t>(P, E);
}

template <endianness E> inline uint16_t read16(const void *P) {
  return read<uint16_t, E>(P);
}
template <endianness E> inline uint32_t read32(const void *P) {
  return read<uint32_t, E>(P);
}
template <endianness E> inline uint64_t read64(const void *P) {
  return read<uint64_t, E>(P);
}

inline uint16_t read16le(const void *P) { return read16<little>(P); }
inline uint32_t read32le(const void *P) { return read32<little>(P); }
inline uint64_t read64le(const void *P) { return read64<little>(P); }
inline uint16_t read16be(const void *P) { return read16<big>(P); }
inline uint32_t read32be(const void *P) { return read32<big>(P); }
inline uint64_t read64be(const void *P) { return read64<big>(P); }

template <typename T> inline void write(void *P, T V, endianness E) {
  write<T, unaligned>(P, V, E);
}

template <typename T, endianness E> inline void write(void *P, T V) {
  *(detail::packed_endian_specific_integral<T, E, unaligned> *)P = V;
}

inline void write16(void *P, uint16_t V, endianness E) {
  write<uint16_t>(P, V, E);
}
inline void write32(void *P, uint32_t V, endianness E) {
  write<uint32_t>(P, V, E);
}
inline void write64(void *P, uint64_t V, endianness E) {
  write<uint64_t>(P, V, E);
}

template <endianness E> inline void write16(void *P, uint16_t V) {
  write<uint16_t, E>(P, V);
}
template <endianness E> inline void write32(void *P, uint32_t V) {
  write<uint32_t, E>(P, V);
}
template <endianness E> inline void write64(void *P, uint64_t V) {
  write<uint64_t, E>(P, V);
}

inline void write16le(void *P, uint16_t V) { write16<little>(P, V); }
inline void write32le(void *P, uint32_t V) { write32<little>(P, V); }
inline void write64le(void *P, uint64_t V) { write64<little>(P, V); }
inline void write16be(void *P, uint16_t V) { write16<big>(P, V); }
inline void write32be(void *P, uint32_t V) { write32<big>(P, V); }
inline void write64be(void *P, uint64_t V) { write64<big>(P, V); }

} // end namespace endian

} // end namespace support
} // end namespace llvm

#endif // LLVM_SUPPORT_ENDIAN_H