llvm.org GIT mirror llvm / release_60 lib / Target / ARM / ARMBaseRegisterInfo.cpp
release_60

Tree @release_60 (Download .tar.gz)

ARMBaseRegisterInfo.cpp @release_60raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
//===-- ARMBaseRegisterInfo.cpp - ARM Register Information ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the base ARM implementation of TargetRegisterInfo class.
//
//===----------------------------------------------------------------------===//

#include "ARMBaseRegisterInfo.h"
#include "ARM.h"
#include "ARMBaseInstrInfo.h"
#include "ARMFrameLowering.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMSubtarget.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "MCTargetDesc/ARMBaseInfo.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegisterScavenging.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/MC/MCInstrDesc.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include <cassert>
#include <utility>

#define DEBUG_TYPE "arm-register-info"

#define GET_REGINFO_TARGET_DESC
#include "ARMGenRegisterInfo.inc"

using namespace llvm;

ARMBaseRegisterInfo::ARMBaseRegisterInfo()
    : ARMGenRegisterInfo(ARM::LR, 0, 0, ARM::PC) {}

static unsigned getFramePointerReg(const ARMSubtarget &STI) {
  return STI.useR7AsFramePointer() ? ARM::R7 : ARM::R11;
}

const MCPhysReg*
ARMBaseRegisterInfo::getCalleeSavedRegs(const MachineFunction *MF) const {
  const ARMSubtarget &STI = MF->getSubtarget<ARMSubtarget>();
  bool UseSplitPush = STI.splitFramePushPop(*MF);
  const MCPhysReg *RegList =
      STI.isTargetDarwin()
          ? CSR_iOS_SaveList
          : (UseSplitPush ? CSR_AAPCS_SplitPush_SaveList : CSR_AAPCS_SaveList);

  const Function &F = MF->getFunction();
  if (F.getCallingConv() == CallingConv::GHC) {
    // GHC set of callee saved regs is empty as all those regs are
    // used for passing STG regs around
    return CSR_NoRegs_SaveList;
  } else if (F.hasFnAttribute("interrupt")) {
    if (STI.isMClass()) {
      // M-class CPUs have hardware which saves the registers needed to allow a
      // function conforming to the AAPCS to function as a handler.
      return UseSplitPush ? CSR_AAPCS_SplitPush_SaveList : CSR_AAPCS_SaveList;
    } else if (F.getFnAttribute("interrupt").getValueAsString() == "FIQ") {
      // Fast interrupt mode gives the handler a private copy of R8-R14, so less
      // need to be saved to restore user-mode state.
      return CSR_FIQ_SaveList;
    } else {
      // Generally only R13-R14 (i.e. SP, LR) are automatically preserved by
      // exception handling.
      return CSR_GenericInt_SaveList;
    }
  }

  if (STI.getTargetLowering()->supportSwiftError() &&
      F.getAttributes().hasAttrSomewhere(Attribute::SwiftError)) {
    if (STI.isTargetDarwin())
      return CSR_iOS_SwiftError_SaveList;

    return UseSplitPush ? CSR_AAPCS_SplitPush_SwiftError_SaveList :
      CSR_AAPCS_SwiftError_SaveList;
  }

  if (STI.isTargetDarwin() && F.getCallingConv() == CallingConv::CXX_FAST_TLS)
    return MF->getInfo<ARMFunctionInfo>()->isSplitCSR()
               ? CSR_iOS_CXX_TLS_PE_SaveList
               : CSR_iOS_CXX_TLS_SaveList;
  return RegList;
}

const MCPhysReg *ARMBaseRegisterInfo::getCalleeSavedRegsViaCopy(
    const MachineFunction *MF) const {
  assert(MF && "Invalid MachineFunction pointer.");
  if (MF->getFunction().getCallingConv() == CallingConv::CXX_FAST_TLS &&
      MF->getInfo<ARMFunctionInfo>()->isSplitCSR())
    return CSR_iOS_CXX_TLS_ViaCopy_SaveList;
  return nullptr;
}

const uint32_t *
ARMBaseRegisterInfo::getCallPreservedMask(const MachineFunction &MF,
                                          CallingConv::ID CC) const {
  const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
  if (CC == CallingConv::GHC)
    // This is academic because all GHC calls are (supposed to be) tail calls
    return CSR_NoRegs_RegMask;

  if (STI.getTargetLowering()->supportSwiftError() &&
      MF.getFunction().getAttributes().hasAttrSomewhere(Attribute::SwiftError))
    return STI.isTargetDarwin() ? CSR_iOS_SwiftError_RegMask
                                : CSR_AAPCS_SwiftError_RegMask;

  if (STI.isTargetDarwin() && CC == CallingConv::CXX_FAST_TLS)
    return CSR_iOS_CXX_TLS_RegMask;
  return STI.isTargetDarwin() ? CSR_iOS_RegMask : CSR_AAPCS_RegMask;
}

const uint32_t*
ARMBaseRegisterInfo::getNoPreservedMask() const {
  return CSR_NoRegs_RegMask;
}

const uint32_t *
ARMBaseRegisterInfo::getTLSCallPreservedMask(const MachineFunction &MF) const {
  assert(MF.getSubtarget<ARMSubtarget>().isTargetDarwin() &&
         "only know about special TLS call on Darwin");
  return CSR_iOS_TLSCall_RegMask;
}

const uint32_t *
ARMBaseRegisterInfo::getSjLjDispatchPreservedMask(const MachineFunction &MF) const {
  const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
  if (!STI.useSoftFloat() && STI.hasVFP2() && !STI.isThumb1Only())
    return CSR_NoRegs_RegMask;
  else
    return CSR_FPRegs_RegMask;
}

const uint32_t *
ARMBaseRegisterInfo::getThisReturnPreservedMask(const MachineFunction &MF,
                                                CallingConv::ID CC) const {
  const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
  // This should return a register mask that is the same as that returned by
  // getCallPreservedMask but that additionally preserves the register used for
  // the first i32 argument (which must also be the register used to return a
  // single i32 return value)
  //
  // In case that the calling convention does not use the same register for
  // both or otherwise does not want to enable this optimization, the function
  // should return NULL
  if (CC == CallingConv::GHC)
    // This is academic because all GHC calls are (supposed to be) tail calls
    return nullptr;
  return STI.isTargetDarwin() ? CSR_iOS_ThisReturn_RegMask
                              : CSR_AAPCS_ThisReturn_RegMask;
}

BitVector ARMBaseRegisterInfo::
getReservedRegs(const MachineFunction &MF) const {
  const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
  const ARMFrameLowering *TFI = getFrameLowering(MF);

  // FIXME: avoid re-calculating this every time.
  BitVector Reserved(getNumRegs());
  markSuperRegs(Reserved, ARM::SP);
  markSuperRegs(Reserved, ARM::PC);
  markSuperRegs(Reserved, ARM::FPSCR);
  markSuperRegs(Reserved, ARM::APSR_NZCV);
  if (TFI->hasFP(MF))
    markSuperRegs(Reserved, getFramePointerReg(STI));
  if (hasBasePointer(MF))
    markSuperRegs(Reserved, BasePtr);
  // Some targets reserve R9.
  if (STI.isR9Reserved())
    markSuperRegs(Reserved, ARM::R9);
  // Reserve D16-D31 if the subtarget doesn't support them.
  if (!STI.hasVFP3() || STI.hasD16()) {
    static_assert(ARM::D31 == ARM::D16 + 15, "Register list not consecutive!");
    for (unsigned R = 0; R < 16; ++R)
      markSuperRegs(Reserved, ARM::D16 + R);
  }
  const TargetRegisterClass &RC = ARM::GPRPairRegClass;
  for (unsigned Reg : RC)
    for (MCSubRegIterator SI(Reg, this); SI.isValid(); ++SI)
      if (Reserved.test(*SI))
        markSuperRegs(Reserved, Reg);

  assert(checkAllSuperRegsMarked(Reserved));
  return Reserved;
}

const TargetRegisterClass *
ARMBaseRegisterInfo::getLargestLegalSuperClass(const TargetRegisterClass *RC,
                                               const MachineFunction &) const {
  const TargetRegisterClass *Super = RC;
  TargetRegisterClass::sc_iterator I = RC->getSuperClasses();
  do {
    switch (Super->getID()) {
    case ARM::GPRRegClassID:
    case ARM::SPRRegClassID:
    case ARM::DPRRegClassID:
    case ARM::QPRRegClassID:
    case ARM::QQPRRegClassID:
    case ARM::QQQQPRRegClassID:
    case ARM::GPRPairRegClassID:
      return Super;
    }
    Super = *I++;
  } while (Super);
  return RC;
}

const TargetRegisterClass *
ARMBaseRegisterInfo::getPointerRegClass(const MachineFunction &MF, unsigned Kind)
                                                                         const {
  return &ARM::GPRRegClass;
}

const TargetRegisterClass *
ARMBaseRegisterInfo::getCrossCopyRegClass(const TargetRegisterClass *RC) const {
  if (RC == &ARM::CCRRegClass)
    return &ARM::rGPRRegClass;  // Can't copy CCR registers.
  return RC;
}

unsigned
ARMBaseRegisterInfo::getRegPressureLimit(const TargetRegisterClass *RC,
                                         MachineFunction &MF) const {
  const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
  const ARMFrameLowering *TFI = getFrameLowering(MF);

  switch (RC->getID()) {
  default:
    return 0;
  case ARM::tGPRRegClassID: {
    // hasFP ends up calling getMaxCallFrameComputed() which may not be
    // available when getPressureLimit() is called as part of
    // ScheduleDAGRRList.
    bool HasFP = MF.getFrameInfo().isMaxCallFrameSizeComputed()
                 ? TFI->hasFP(MF) : true;
    return 5 - HasFP;
  }
  case ARM::GPRRegClassID: {
    bool HasFP = MF.getFrameInfo().isMaxCallFrameSizeComputed()
                 ? TFI->hasFP(MF) : true;
    return 10 - HasFP - (STI.isR9Reserved() ? 1 : 0);
  }
  case ARM::SPRRegClassID:  // Currently not used as 'rep' register class.
  case ARM::DPRRegClassID:
    return 32 - 10;
  }
}

// Get the other register in a GPRPair.
static unsigned getPairedGPR(unsigned Reg, bool Odd, const MCRegisterInfo *RI) {
  for (MCSuperRegIterator Supers(Reg, RI); Supers.isValid(); ++Supers)
    if (ARM::GPRPairRegClass.contains(*Supers))
      return RI->getSubReg(*Supers, Odd ? ARM::gsub_1 : ARM::gsub_0);
  return 0;
}

// Resolve the RegPairEven / RegPairOdd register allocator hints.
bool
ARMBaseRegisterInfo::getRegAllocationHints(unsigned VirtReg,
                                           ArrayRef<MCPhysReg> Order,
                                           SmallVectorImpl<MCPhysReg> &Hints,
                                           const MachineFunction &MF,
                                           const VirtRegMap *VRM,
                                           const LiveRegMatrix *Matrix) const {
  const MachineRegisterInfo &MRI = MF.getRegInfo();
  std::pair<unsigned, unsigned> Hint = MRI.getRegAllocationHint(VirtReg);

  unsigned Odd;
  switch (Hint.first) {
  case ARMRI::RegPairEven:
    Odd = 0;
    break;
  case ARMRI::RegPairOdd:
    Odd = 1;
    break;
  default:
    TargetRegisterInfo::getRegAllocationHints(VirtReg, Order, Hints, MF, VRM);
    return false;
  }

  // This register should preferably be even (Odd == 0) or odd (Odd == 1).
  // Check if the other part of the pair has already been assigned, and provide
  // the paired register as the first hint.
  unsigned Paired = Hint.second;
  if (Paired == 0)
    return false;

  unsigned PairedPhys = 0;
  if (TargetRegisterInfo::isPhysicalRegister(Paired)) {
    PairedPhys = Paired;
  } else if (VRM && VRM->hasPhys(Paired)) {
    PairedPhys = getPairedGPR(VRM->getPhys(Paired), Odd, this);
  }

  // First prefer the paired physreg.
  if (PairedPhys && is_contained(Order, PairedPhys))
    Hints.push_back(PairedPhys);

  // Then prefer even or odd registers.
  for (unsigned Reg : Order) {
    if (Reg == PairedPhys || (getEncodingValue(Reg) & 1) != Odd)
      continue;
    // Don't provide hints that are paired to a reserved register.
    unsigned Paired = getPairedGPR(Reg, !Odd, this);
    if (!Paired || MRI.isReserved(Paired))
      continue;
    Hints.push_back(Reg);
  }
  return false;
}

void
ARMBaseRegisterInfo::updateRegAllocHint(unsigned Reg, unsigned NewReg,
                                        MachineFunction &MF) const {
  MachineRegisterInfo *MRI = &MF.getRegInfo();
  std::pair<unsigned, unsigned> Hint = MRI->getRegAllocationHint(Reg);
  if ((Hint.first == (unsigned)ARMRI::RegPairOdd ||
       Hint.first == (unsigned)ARMRI::RegPairEven) &&
      TargetRegisterInfo::isVirtualRegister(Hint.second)) {
    // If 'Reg' is one of the even / odd register pair and it's now changed
    // (e.g. coalesced) into a different register. The other register of the
    // pair allocation hint must be updated to reflect the relationship
    // change.
    unsigned OtherReg = Hint.second;
    Hint = MRI->getRegAllocationHint(OtherReg);
    // Make sure the pair has not already divorced.
    if (Hint.second == Reg) {
      MRI->setRegAllocationHint(OtherReg, Hint.first, NewReg);
      if (TargetRegisterInfo::isVirtualRegister(NewReg))
        MRI->setRegAllocationHint(NewReg,
            Hint.first == (unsigned)ARMRI::RegPairOdd ? ARMRI::RegPairEven
            : ARMRI::RegPairOdd, OtherReg);
    }
  }
}

bool ARMBaseRegisterInfo::hasBasePointer(const MachineFunction &MF) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  const ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
  const ARMFrameLowering *TFI = getFrameLowering(MF);

  // When outgoing call frames are so large that we adjust the stack pointer
  // around the call, we can no longer use the stack pointer to reach the
  // emergency spill slot.
  if (needsStackRealignment(MF) && !TFI->hasReservedCallFrame(MF))
    return true;

  // Thumb has trouble with negative offsets from the FP. Thumb2 has a limited
  // negative range for ldr/str (255), and thumb1 is positive offsets only.
  // It's going to be better to use the SP or Base Pointer instead. When there
  // are variable sized objects, we can't reference off of the SP, so we
  // reserve a Base Pointer.
  if (AFI->isThumbFunction() && MFI.hasVarSizedObjects()) {
    // Conservatively estimate whether the negative offset from the frame
    // pointer will be sufficient to reach. If a function has a smallish
    // frame, it's less likely to have lots of spills and callee saved
    // space, so it's all more likely to be within range of the frame pointer.
    // If it's wrong, the scavenger will still enable access to work, it just
    // won't be optimal.
    if (AFI->isThumb2Function() && MFI.getLocalFrameSize() < 128)
      return false;
    return true;
  }

  return false;
}

bool ARMBaseRegisterInfo::canRealignStack(const MachineFunction &MF) const {
  const MachineRegisterInfo *MRI = &MF.getRegInfo();
  const ARMFrameLowering *TFI = getFrameLowering(MF);
  // We can't realign the stack if:
  // 1. Dynamic stack realignment is explicitly disabled,
  // 2. There are VLAs in the function and the base pointer is disabled.
  if (!TargetRegisterInfo::canRealignStack(MF))
    return false;
  // Stack realignment requires a frame pointer.  If we already started
  // register allocation with frame pointer elimination, it is too late now.
  if (!MRI->canReserveReg(getFramePointerReg(MF.getSubtarget<ARMSubtarget>())))
    return false;
  // We may also need a base pointer if there are dynamic allocas or stack
  // pointer adjustments around calls.
  if (TFI->hasReservedCallFrame(MF))
    return true;
  // A base pointer is required and allowed.  Check that it isn't too late to
  // reserve it.
  return MRI->canReserveReg(BasePtr);
}

bool ARMBaseRegisterInfo::
cannotEliminateFrame(const MachineFunction &MF) const {
  const MachineFrameInfo &MFI = MF.getFrameInfo();
  if (MF.getTarget().Options.DisableFramePointerElim(MF) && MFI.adjustsStack())
    return true;
  return MFI.hasVarSizedObjects() || MFI.isFrameAddressTaken()
    || needsStackRealignment(MF);
}

unsigned
ARMBaseRegisterInfo::getFrameRegister(const MachineFunction &MF) const {
  const ARMSubtarget &STI = MF.getSubtarget<ARMSubtarget>();
  const ARMFrameLowering *TFI = getFrameLowering(MF);

  if (TFI->hasFP(MF))
    return getFramePointerReg(STI);
  return ARM::SP;
}

/// emitLoadConstPool - Emits a load from constpool to materialize the
/// specified immediate.
void ARMBaseRegisterInfo::emitLoadConstPool(
    MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
    const DebugLoc &dl, unsigned DestReg, unsigned SubIdx, int Val,
    ARMCC::CondCodes Pred, unsigned PredReg, unsigned MIFlags) const {
  MachineFunction &MF = *MBB.getParent();
  const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
  MachineConstantPool *ConstantPool = MF.getConstantPool();
  const Constant *C =
        ConstantInt::get(Type::getInt32Ty(MF.getFunction().getContext()), Val);
  unsigned Idx = ConstantPool->getConstantPoolIndex(C, 4);

  BuildMI(MBB, MBBI, dl, TII.get(ARM::LDRcp))
      .addReg(DestReg, getDefRegState(true), SubIdx)
      .addConstantPoolIndex(Idx)
      .addImm(0)
      .add(predOps(Pred, PredReg))
      .setMIFlags(MIFlags);
}

bool ARMBaseRegisterInfo::
requiresRegisterScavenging(const MachineFunction &MF) const {
  return true;
}

bool ARMBaseRegisterInfo::
trackLivenessAfterRegAlloc(const MachineFunction &MF) const {
  return true;
}

bool ARMBaseRegisterInfo::
requiresFrameIndexScavenging(const MachineFunction &MF) const {
  return true;
}

bool ARMBaseRegisterInfo::
requiresVirtualBaseRegisters(const MachineFunction &MF) const {
  return true;
}

int64_t ARMBaseRegisterInfo::
getFrameIndexInstrOffset(const MachineInstr *MI, int Idx) const {
  const MCInstrDesc &Desc = MI->getDesc();
  unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
  int64_t InstrOffs = 0;
  int Scale = 1;
  unsigned ImmIdx = 0;
  switch (AddrMode) {
  case ARMII::AddrModeT2_i8:
  case ARMII::AddrModeT2_i12:
  case ARMII::AddrMode_i12:
    InstrOffs = MI->getOperand(Idx+1).getImm();
    Scale = 1;
    break;
  case ARMII::AddrMode5: {
    // VFP address mode.
    const MachineOperand &OffOp = MI->getOperand(Idx+1);
    InstrOffs = ARM_AM::getAM5Offset(OffOp.getImm());
    if (ARM_AM::getAM5Op(OffOp.getImm()) == ARM_AM::sub)
      InstrOffs = -InstrOffs;
    Scale = 4;
    break;
  }
  case ARMII::AddrMode2:
    ImmIdx = Idx+2;
    InstrOffs = ARM_AM::getAM2Offset(MI->getOperand(ImmIdx).getImm());
    if (ARM_AM::getAM2Op(MI->getOperand(ImmIdx).getImm()) == ARM_AM::sub)
      InstrOffs = -InstrOffs;
    break;
  case ARMII::AddrMode3:
    ImmIdx = Idx+2;
    InstrOffs = ARM_AM::getAM3Offset(MI->getOperand(ImmIdx).getImm());
    if (ARM_AM::getAM3Op(MI->getOperand(ImmIdx).getImm()) == ARM_AM::sub)
      InstrOffs = -InstrOffs;
    break;
  case ARMII::AddrModeT1_s:
    ImmIdx = Idx+1;
    InstrOffs = MI->getOperand(ImmIdx).getImm();
    Scale = 4;
    break;
  default:
    llvm_unreachable("Unsupported addressing mode!");
  }

  return InstrOffs * Scale;
}

/// needsFrameBaseReg - Returns true if the instruction's frame index
/// reference would be better served by a base register other than FP
/// or SP. Used by LocalStackFrameAllocation to determine which frame index
/// references it should create new base registers for.
bool ARMBaseRegisterInfo::
needsFrameBaseReg(MachineInstr *MI, int64_t Offset) const {
  for (unsigned i = 0; !MI->getOperand(i).isFI(); ++i) {
    assert(i < MI->getNumOperands() &&"Instr doesn't have FrameIndex operand!");
  }

  // It's the load/store FI references that cause issues, as it can be difficult
  // to materialize the offset if it won't fit in the literal field. Estimate
  // based on the size of the local frame and some conservative assumptions
  // about the rest of the stack frame (note, this is pre-regalloc, so
  // we don't know everything for certain yet) whether this offset is likely
  // to be out of range of the immediate. Return true if so.

  // We only generate virtual base registers for loads and stores, so
  // return false for everything else.
  unsigned Opc = MI->getOpcode();
  switch (Opc) {
  case ARM::LDRi12: case ARM::LDRH: case ARM::LDRBi12:
  case ARM::STRi12: case ARM::STRH: case ARM::STRBi12:
  case ARM::t2LDRi12: case ARM::t2LDRi8:
  case ARM::t2STRi12: case ARM::t2STRi8:
  case ARM::VLDRS: case ARM::VLDRD:
  case ARM::VSTRS: case ARM::VSTRD:
  case ARM::tSTRspi: case ARM::tLDRspi:
    break;
  default:
    return false;
  }

  // Without a virtual base register, if the function has variable sized
  // objects, all fixed-size local references will be via the frame pointer,
  // Approximate the offset and see if it's legal for the instruction.
  // Note that the incoming offset is based on the SP value at function entry,
  // so it'll be negative.
  MachineFunction &MF = *MI->getParent()->getParent();
  const ARMFrameLowering *TFI = getFrameLowering(MF);
  MachineFrameInfo &MFI = MF.getFrameInfo();
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();

  // Estimate an offset from the frame pointer.
  // Conservatively assume all callee-saved registers get pushed. R4-R6
  // will be earlier than the FP, so we ignore those.
  // R7, LR
  int64_t FPOffset = Offset - 8;
  // ARM and Thumb2 functions also need to consider R8-R11 and D8-D15
  if (!AFI->isThumbFunction() || !AFI->isThumb1OnlyFunction())
    FPOffset -= 80;
  // Estimate an offset from the stack pointer.
  // The incoming offset is relating to the SP at the start of the function,
  // but when we access the local it'll be relative to the SP after local
  // allocation, so adjust our SP-relative offset by that allocation size.
  Offset += MFI.getLocalFrameSize();
  // Assume that we'll have at least some spill slots allocated.
  // FIXME: This is a total SWAG number. We should run some statistics
  //        and pick a real one.
  Offset += 128; // 128 bytes of spill slots

  // If there's a frame pointer and the addressing mode allows it, try using it.
  // The FP is only available if there is no dynamic realignment. We
  // don't know for sure yet whether we'll need that, so we guess based
  // on whether there are any local variables that would trigger it.
  unsigned StackAlign = TFI->getStackAlignment();
  if (TFI->hasFP(MF) && 
      !((MFI.getLocalFrameMaxAlign() > StackAlign) && canRealignStack(MF))) {
    if (isFrameOffsetLegal(MI, getFrameRegister(MF), FPOffset))
      return false;
  }
  // If we can reference via the stack pointer, try that.
  // FIXME: This (and the code that resolves the references) can be improved
  //        to only disallow SP relative references in the live range of
  //        the VLA(s). In practice, it's unclear how much difference that
  //        would make, but it may be worth doing.
  if (!MFI.hasVarSizedObjects() && isFrameOffsetLegal(MI, ARM::SP, Offset))
    return false;

  // The offset likely isn't legal, we want to allocate a virtual base register.
  return true;
}

/// materializeFrameBaseRegister - Insert defining instruction(s) for BaseReg to
/// be a pointer to FrameIdx at the beginning of the basic block.
void ARMBaseRegisterInfo::
materializeFrameBaseRegister(MachineBasicBlock *MBB,
                             unsigned BaseReg, int FrameIdx,
                             int64_t Offset) const {
  ARMFunctionInfo *AFI = MBB->getParent()->getInfo<ARMFunctionInfo>();
  unsigned ADDriOpc = !AFI->isThumbFunction() ? ARM::ADDri :
    (AFI->isThumb1OnlyFunction() ? ARM::tADDframe : ARM::t2ADDri);

  MachineBasicBlock::iterator Ins = MBB->begin();
  DebugLoc DL;                  // Defaults to "unknown"
  if (Ins != MBB->end())
    DL = Ins->getDebugLoc();

  const MachineFunction &MF = *MBB->getParent();
  MachineRegisterInfo &MRI = MBB->getParent()->getRegInfo();
  const TargetInstrInfo &TII = *MF.getSubtarget().getInstrInfo();
  const MCInstrDesc &MCID = TII.get(ADDriOpc);
  MRI.constrainRegClass(BaseReg, TII.getRegClass(MCID, 0, this, MF));

  MachineInstrBuilder MIB = BuildMI(*MBB, Ins, DL, MCID, BaseReg)
    .addFrameIndex(FrameIdx).addImm(Offset);

  if (!AFI->isThumb1OnlyFunction())
    MIB.add(predOps(ARMCC::AL)).add(condCodeOp());
}

void ARMBaseRegisterInfo::resolveFrameIndex(MachineInstr &MI, unsigned BaseReg,
                                            int64_t Offset) const {
  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction &MF = *MBB.getParent();
  const ARMBaseInstrInfo &TII =
      *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
  int Off = Offset; // ARM doesn't need the general 64-bit offsets
  unsigned i = 0;

  assert(!AFI->isThumb1OnlyFunction() &&
         "This resolveFrameIndex does not support Thumb1!");

  while (!MI.getOperand(i).isFI()) {
    ++i;
    assert(i < MI.getNumOperands() && "Instr doesn't have FrameIndex operand!");
  }
  bool Done = false;
  if (!AFI->isThumbFunction())
    Done = rewriteARMFrameIndex(MI, i, BaseReg, Off, TII);
  else {
    assert(AFI->isThumb2Function());
    Done = rewriteT2FrameIndex(MI, i, BaseReg, Off, TII);
  }
  assert(Done && "Unable to resolve frame index!");
  (void)Done;
}

bool ARMBaseRegisterInfo::isFrameOffsetLegal(const MachineInstr *MI, unsigned BaseReg,
                                             int64_t Offset) const {
  const MCInstrDesc &Desc = MI->getDesc();
  unsigned AddrMode = (Desc.TSFlags & ARMII::AddrModeMask);
  unsigned i = 0;
  for (; !MI->getOperand(i).isFI(); ++i)
    assert(i+1 < MI->getNumOperands() && "Instr doesn't have FrameIndex operand!");

  // AddrMode4 and AddrMode6 cannot handle any offset.
  if (AddrMode == ARMII::AddrMode4 || AddrMode == ARMII::AddrMode6)
    return Offset == 0;

  unsigned NumBits = 0;
  unsigned Scale = 1;
  bool isSigned = true;
  switch (AddrMode) {
  case ARMII::AddrModeT2_i8:
  case ARMII::AddrModeT2_i12:
    // i8 supports only negative, and i12 supports only positive, so
    // based on Offset sign, consider the appropriate instruction
    Scale = 1;
    if (Offset < 0) {
      NumBits = 8;
      Offset = -Offset;
    } else {
      NumBits = 12;
    }
    break;
  case ARMII::AddrMode5:
    // VFP address mode.
    NumBits = 8;
    Scale = 4;
    break;
  case ARMII::AddrMode_i12:
  case ARMII::AddrMode2:
    NumBits = 12;
    break;
  case ARMII::AddrMode3:
    NumBits = 8;
    break;
  case ARMII::AddrModeT1_s:
    NumBits = (BaseReg == ARM::SP ? 8 : 5);
    Scale = 4;
    isSigned = false;
    break;
  default:
    llvm_unreachable("Unsupported addressing mode!");
  }

  Offset += getFrameIndexInstrOffset(MI, i);
  // Make sure the offset is encodable for instructions that scale the
  // immediate.
  if ((Offset & (Scale-1)) != 0)
    return false;

  if (isSigned && Offset < 0)
    Offset = -Offset;

  unsigned Mask = (1 << NumBits) - 1;
  if ((unsigned)Offset <= Mask * Scale)
    return true;

  return false;
}

void
ARMBaseRegisterInfo::eliminateFrameIndex(MachineBasicBlock::iterator II,
                                         int SPAdj, unsigned FIOperandNum,
                                         RegScavenger *RS) const {
  MachineInstr &MI = *II;
  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction &MF = *MBB.getParent();
  const ARMBaseInstrInfo &TII =
      *static_cast<const ARMBaseInstrInfo *>(MF.getSubtarget().getInstrInfo());
  const ARMFrameLowering *TFI = getFrameLowering(MF);
  ARMFunctionInfo *AFI = MF.getInfo<ARMFunctionInfo>();
  assert(!AFI->isThumb1OnlyFunction() &&
         "This eliminateFrameIndex does not support Thumb1!");
  int FrameIndex = MI.getOperand(FIOperandNum).getIndex();
  unsigned FrameReg;

  int Offset = TFI->ResolveFrameIndexReference(MF, FrameIndex, FrameReg, SPAdj);

  // PEI::scavengeFrameVirtualRegs() cannot accurately track SPAdj because the
  // call frame setup/destroy instructions have already been eliminated.  That
  // means the stack pointer cannot be used to access the emergency spill slot
  // when !hasReservedCallFrame().
#ifndef NDEBUG
  if (RS && FrameReg == ARM::SP && RS->isScavengingFrameIndex(FrameIndex)){
    assert(TFI->hasReservedCallFrame(MF) &&
           "Cannot use SP to access the emergency spill slot in "
           "functions without a reserved call frame");
    assert(!MF.getFrameInfo().hasVarSizedObjects() &&
           "Cannot use SP to access the emergency spill slot in "
           "functions with variable sized frame objects");
  }
#endif // NDEBUG

  assert(!MI.isDebugValue() && "DBG_VALUEs should be handled in target-independent code");

  // Modify MI as necessary to handle as much of 'Offset' as possible
  bool Done = false;
  if (!AFI->isThumbFunction())
    Done = rewriteARMFrameIndex(MI, FIOperandNum, FrameReg, Offset, TII);
  else {
    assert(AFI->isThumb2Function());
    Done = rewriteT2FrameIndex(MI, FIOperandNum, FrameReg, Offset, TII);
  }
  if (Done)
    return;

  // If we get here, the immediate doesn't fit into the instruction.  We folded
  // as much as possible above, handle the rest, providing a register that is
  // SP+LargeImm.
  assert((Offset ||
          (MI.getDesc().TSFlags & ARMII::AddrModeMask) == ARMII::AddrMode4 ||
          (MI.getDesc().TSFlags & ARMII::AddrModeMask) == ARMII::AddrMode6) &&
         "This code isn't needed if offset already handled!");

  unsigned ScratchReg = 0;
  int PIdx = MI.findFirstPredOperandIdx();
  ARMCC::CondCodes Pred = (PIdx == -1)
    ? ARMCC::AL : (ARMCC::CondCodes)MI.getOperand(PIdx).getImm();
  unsigned PredReg = (PIdx == -1) ? 0 : MI.getOperand(PIdx+1).getReg();
  if (Offset == 0)
    // Must be addrmode4/6.
    MI.getOperand(FIOperandNum).ChangeToRegister(FrameReg, false, false, false);
  else {
    ScratchReg = MF.getRegInfo().createVirtualRegister(&ARM::GPRRegClass);
    if (!AFI->isThumbFunction())
      emitARMRegPlusImmediate(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg,
                              Offset, Pred, PredReg, TII);
    else {
      assert(AFI->isThumb2Function());
      emitT2RegPlusImmediate(MBB, II, MI.getDebugLoc(), ScratchReg, FrameReg,
                             Offset, Pred, PredReg, TII);
    }
    // Update the original instruction to use the scratch register.
    MI.getOperand(FIOperandNum).ChangeToRegister(ScratchReg, false, false,true);
  }
}

bool ARMBaseRegisterInfo::shouldCoalesce(MachineInstr *MI,
                                  const TargetRegisterClass *SrcRC,
                                  unsigned SubReg,
                                  const TargetRegisterClass *DstRC,
                                  unsigned DstSubReg,
                                  const TargetRegisterClass *NewRC,
                                  LiveIntervals &LIS) const {
  auto MBB = MI->getParent();
  auto MF = MBB->getParent();
  const MachineRegisterInfo &MRI = MF->getRegInfo();
  // If not copying into a sub-register this should be ok because we shouldn't
  // need to split the reg.
  if (!DstSubReg)
    return true;
  // Small registers don't frequently cause a problem, so we can coalesce them.
  if (getRegSizeInBits(*NewRC) < 256 && getRegSizeInBits(*DstRC) < 256 &&
      getRegSizeInBits(*SrcRC) < 256)
    return true;

  auto NewRCWeight =
              MRI.getTargetRegisterInfo()->getRegClassWeight(NewRC);
  auto SrcRCWeight =
              MRI.getTargetRegisterInfo()->getRegClassWeight(SrcRC);
  auto DstRCWeight =
              MRI.getTargetRegisterInfo()->getRegClassWeight(DstRC);
  // If the source register class is more expensive than the destination, the
  // coalescing is probably profitable.
  if (SrcRCWeight.RegWeight > NewRCWeight.RegWeight)
    return true;
  if (DstRCWeight.RegWeight > NewRCWeight.RegWeight)
    return true;

  // If the register allocator isn't constrained, we can always allow coalescing
  // unfortunately we don't know yet if we will be constrained.
  // The goal of this heuristic is to restrict how many expensive registers
  // we allow to coalesce in a given basic block.
  auto AFI = MF->getInfo<ARMFunctionInfo>();
  auto It = AFI->getCoalescedWeight(MBB);

  DEBUG(dbgs() << "\tARM::shouldCoalesce - Coalesced Weight: "
    << It->second << "\n");
  DEBUG(dbgs() << "\tARM::shouldCoalesce - Reg Weight: "
    << NewRCWeight.RegWeight << "\n");

  // This number is the largest round number that which meets the criteria:
  //  (1) addresses PR18825
  //  (2) generates better code in some test cases (like vldm-shed-a9.ll)
  //  (3) Doesn't regress any test cases (in-tree, test-suite, and SPEC)
  // In practice the SizeMultiplier will only factor in for straight line code
  // that uses a lot of NEON vectors, which isn't terribly common.
  unsigned SizeMultiplier = MBB->size()/100;
  SizeMultiplier = SizeMultiplier ? SizeMultiplier : 1;
  if (It->second < NewRCWeight.WeightLimit * SizeMultiplier) {
    It->second += NewRCWeight.RegWeight;
    return true;
  }
  return false;
}