llvm.org GIT mirror llvm / release_60 lib / Target / AMDGPU / SIInsertWaitcnts.cpp
release_60

Tree @release_60 (Download .tar.gz)

SIInsertWaitcnts.cpp @release_60raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
//===- SIInsertWaitcnts.cpp - Insert Wait Instructions --------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief Insert wait instructions for memory reads and writes.
///
/// Memory reads and writes are issued asynchronously, so we need to insert
/// S_WAITCNT instructions when we want to access any of their results or
/// overwrite any register that's used asynchronously.
//
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIDefines.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/DenseSet.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cassert>
#include <cstdint>
#include <cstring>
#include <memory>
#include <utility>
#include <vector>

#define DEBUG_TYPE "si-insert-waitcnts"

using namespace llvm;

namespace {

// Class of object that encapsulates latest instruction counter score
// associated with the operand.  Used for determining whether
// s_waitcnt instruction needs to be emited.

#define CNT_MASK(t) (1u << (t))

enum InstCounterType { VM_CNT = 0, LGKM_CNT, EXP_CNT, NUM_INST_CNTS };

using RegInterval = std::pair<signed, signed>;

struct {
  int32_t VmcntMax;
  int32_t ExpcntMax;
  int32_t LgkmcntMax;
  int32_t NumVGPRsMax;
  int32_t NumSGPRsMax;
} HardwareLimits;

struct {
  unsigned VGPR0;
  unsigned VGPRL;
  unsigned SGPR0;
  unsigned SGPRL;
} RegisterEncoding;

enum WaitEventType {
  VMEM_ACCESS,      // vector-memory read & write
  LDS_ACCESS,       // lds read & write
  GDS_ACCESS,       // gds read & write
  SQ_MESSAGE,       // send message
  SMEM_ACCESS,      // scalar-memory read & write
  EXP_GPR_LOCK,     // export holding on its data src
  GDS_GPR_LOCK,     // GDS holding on its data and addr src
  EXP_POS_ACCESS,   // write to export position
  EXP_PARAM_ACCESS, // write to export parameter
  VMW_GPR_LOCK,     // vector-memory write holding on its data src
  NUM_WAIT_EVENTS,
};

// The mapping is:
//  0                .. SQ_MAX_PGM_VGPRS-1               real VGPRs
//  SQ_MAX_PGM_VGPRS .. NUM_ALL_VGPRS-1                  extra VGPR-like slots
//  NUM_ALL_VGPRS    .. NUM_ALL_VGPRS+SQ_MAX_PGM_SGPRS-1 real SGPRs
// We reserve a fixed number of VGPR slots in the scoring tables for
// special tokens like SCMEM_LDS (needed for buffer load to LDS).
enum RegisterMapping {
  SQ_MAX_PGM_VGPRS = 256, // Maximum programmable VGPRs across all targets.
  SQ_MAX_PGM_SGPRS = 256, // Maximum programmable SGPRs across all targets.
  NUM_EXTRA_VGPRS = 1,    // A reserved slot for DS.
  EXTRA_VGPR_LDS = 0,     // This is a placeholder the Shader algorithm uses.
  NUM_ALL_VGPRS = SQ_MAX_PGM_VGPRS + NUM_EXTRA_VGPRS, // Where SGPR starts.
};

#define ForAllWaitEventType(w)                                                 \
  for (enum WaitEventType w = (enum WaitEventType)0;                           \
       (w) < (enum WaitEventType)NUM_WAIT_EVENTS;                              \
       (w) = (enum WaitEventType)((w) + 1))

// This is a per-basic-block object that maintains current score brackets
// of each wait-counter, and a per-register scoreboard for each wait-couner.
// We also maintain the latest score for every event type that can change the
// waitcnt in order to know if there are multiple types of events within
// the brackets. When multiple types of event happen in the bracket,
// wait-count may get decreased out of order, therefore we need to put in
// "s_waitcnt 0" before use.
class BlockWaitcntBrackets {
public:
  BlockWaitcntBrackets() {
    for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
         T = (enum InstCounterType)(T + 1)) {
      memset(VgprScores[T], 0, sizeof(VgprScores[T]));
    }
  }

  ~BlockWaitcntBrackets() = default;

  static int32_t getWaitCountMax(InstCounterType T) {
    switch (T) {
    case VM_CNT:
      return HardwareLimits.VmcntMax;
    case LGKM_CNT:
      return HardwareLimits.LgkmcntMax;
    case EXP_CNT:
      return HardwareLimits.ExpcntMax;
    default:
      break;
    }
    return 0;
  }

  void setScoreLB(InstCounterType T, int32_t Val) {
    assert(T < NUM_INST_CNTS);
    if (T >= NUM_INST_CNTS)
      return;
    ScoreLBs[T] = Val;
  }

  void setScoreUB(InstCounterType T, int32_t Val) {
    assert(T < NUM_INST_CNTS);
    if (T >= NUM_INST_CNTS)
      return;
    ScoreUBs[T] = Val;
    if (T == EXP_CNT) {
      int32_t UB = (int)(ScoreUBs[T] - getWaitCountMax(EXP_CNT));
      if (ScoreLBs[T] < UB)
        ScoreLBs[T] = UB;
    }
  }

  int32_t getScoreLB(InstCounterType T) {
    assert(T < NUM_INST_CNTS);
    if (T >= NUM_INST_CNTS)
      return 0;
    return ScoreLBs[T];
  }

  int32_t getScoreUB(InstCounterType T) {
    assert(T < NUM_INST_CNTS);
    if (T >= NUM_INST_CNTS)
      return 0;
    return ScoreUBs[T];
  }

  // Mapping from event to counter.
  InstCounterType eventCounter(WaitEventType E) {
    switch (E) {
    case VMEM_ACCESS:
      return VM_CNT;
    case LDS_ACCESS:
    case GDS_ACCESS:
    case SQ_MESSAGE:
    case SMEM_ACCESS:
      return LGKM_CNT;
    case EXP_GPR_LOCK:
    case GDS_GPR_LOCK:
    case VMW_GPR_LOCK:
    case EXP_POS_ACCESS:
    case EXP_PARAM_ACCESS:
      return EXP_CNT;
    default:
      llvm_unreachable("unhandled event type");
    }
    return NUM_INST_CNTS;
  }

  void setRegScore(int GprNo, InstCounterType T, int32_t Val) {
    if (GprNo < NUM_ALL_VGPRS) {
      if (GprNo > VgprUB) {
        VgprUB = GprNo;
      }
      VgprScores[T][GprNo] = Val;
    } else {
      assert(T == LGKM_CNT);
      if (GprNo - NUM_ALL_VGPRS > SgprUB) {
        SgprUB = GprNo - NUM_ALL_VGPRS;
      }
      SgprScores[GprNo - NUM_ALL_VGPRS] = Val;
    }
  }

  int32_t getRegScore(int GprNo, InstCounterType T) {
    if (GprNo < NUM_ALL_VGPRS) {
      return VgprScores[T][GprNo];
    }
    return SgprScores[GprNo - NUM_ALL_VGPRS];
  }

  void clear() {
    memset(ScoreLBs, 0, sizeof(ScoreLBs));
    memset(ScoreUBs, 0, sizeof(ScoreUBs));
    memset(EventUBs, 0, sizeof(EventUBs));
    for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
         T = (enum InstCounterType)(T + 1)) {
      memset(VgprScores[T], 0, sizeof(VgprScores[T]));
    }
    memset(SgprScores, 0, sizeof(SgprScores));
  }

  RegInterval getRegInterval(const MachineInstr *MI, const SIInstrInfo *TII,
                             const MachineRegisterInfo *MRI,
                             const SIRegisterInfo *TRI, unsigned OpNo,
                             bool Def) const;

  void setExpScore(const MachineInstr *MI, const SIInstrInfo *TII,
                   const SIRegisterInfo *TRI, const MachineRegisterInfo *MRI,
                   unsigned OpNo, int32_t Val);

  void setWaitAtBeginning() { WaitAtBeginning = true; }
  void clearWaitAtBeginning() { WaitAtBeginning = false; }
  bool getWaitAtBeginning() const { return WaitAtBeginning; }
  void setEventUB(enum WaitEventType W, int32_t Val) { EventUBs[W] = Val; }
  int32_t getMaxVGPR() const { return VgprUB; }
  int32_t getMaxSGPR() const { return SgprUB; }

  int32_t getEventUB(enum WaitEventType W) const {
    assert(W < NUM_WAIT_EVENTS);
    return EventUBs[W];
  }

  bool counterOutOfOrder(InstCounterType T);
  unsigned int updateByWait(InstCounterType T, int ScoreToWait);
  void updateByEvent(const SIInstrInfo *TII, const SIRegisterInfo *TRI,
                     const MachineRegisterInfo *MRI, WaitEventType E,
                     MachineInstr &MI);

  bool hasPendingSMEM() const {
    return (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] &&
            EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]);
  }

  bool hasPendingFlat() const {
    return ((LastFlat[LGKM_CNT] > ScoreLBs[LGKM_CNT] &&
             LastFlat[LGKM_CNT] <= ScoreUBs[LGKM_CNT]) ||
            (LastFlat[VM_CNT] > ScoreLBs[VM_CNT] &&
             LastFlat[VM_CNT] <= ScoreUBs[VM_CNT]));
  }

  void setPendingFlat() {
    LastFlat[VM_CNT] = ScoreUBs[VM_CNT];
    LastFlat[LGKM_CNT] = ScoreUBs[LGKM_CNT];
  }

  int pendingFlat(InstCounterType Ct) const { return LastFlat[Ct]; }

  void setLastFlat(InstCounterType Ct, int Val) { LastFlat[Ct] = Val; }

  bool getRevisitLoop() const { return RevisitLoop; }
  void setRevisitLoop(bool RevisitLoopIn) { RevisitLoop = RevisitLoopIn; }

  void setPostOrder(int32_t PostOrderIn) { PostOrder = PostOrderIn; }
  int32_t getPostOrder() const { return PostOrder; }

  void setWaitcnt(MachineInstr *WaitcntIn) { Waitcnt = WaitcntIn; }
  void clearWaitcnt() { Waitcnt = nullptr; }
  MachineInstr *getWaitcnt() const { return Waitcnt; }

  bool mixedExpTypes() const { return MixedExpTypes; }
  void setMixedExpTypes(bool MixedExpTypesIn) {
    MixedExpTypes = MixedExpTypesIn;
  }

  void print(raw_ostream &);
  void dump() { print(dbgs()); }

private:
  bool WaitAtBeginning = false;
  bool RevisitLoop = false;
  bool MixedExpTypes = false;
  int32_t PostOrder = 0;
  MachineInstr *Waitcnt = nullptr;
  int32_t ScoreLBs[NUM_INST_CNTS] = {0};
  int32_t ScoreUBs[NUM_INST_CNTS] = {0};
  int32_t EventUBs[NUM_WAIT_EVENTS] = {0};
  // Remember the last flat memory operation.
  int32_t LastFlat[NUM_INST_CNTS] = {0};
  // wait_cnt scores for every vgpr.
  // Keep track of the VgprUB and SgprUB to make merge at join efficient.
  int32_t VgprUB = 0;
  int32_t SgprUB = 0;
  int32_t VgprScores[NUM_INST_CNTS][NUM_ALL_VGPRS];
  // Wait cnt scores for every sgpr, only lgkmcnt is relevant.
  int32_t SgprScores[SQ_MAX_PGM_SGPRS] = {0};
};

// This is a per-loop-region object that records waitcnt status at the end of
// loop footer from the previous iteration. We also maintain an iteration
// count to track the number of times the loop has been visited. When it
// doesn't converge naturally, we force convergence by inserting s_waitcnt 0
// at the end of the loop footer.
class LoopWaitcntData {
public:
  LoopWaitcntData() = default;
  ~LoopWaitcntData() = default;

  void incIterCnt() { IterCnt++; }
  void resetIterCnt() { IterCnt = 0; }
  int32_t getIterCnt() { return IterCnt; }

  void setWaitcnt(MachineInstr *WaitcntIn) { LfWaitcnt = WaitcntIn; }
  MachineInstr *getWaitcnt() const { return LfWaitcnt; }

  void print() {
    DEBUG(dbgs() << "  iteration " << IterCnt << '\n';);
  }

private:
  // s_waitcnt added at the end of loop footer to stablize wait scores
  // at the end of the loop footer.
  MachineInstr *LfWaitcnt = nullptr;
  // Number of iterations the loop has been visited, not including the initial
  // walk over.
  int32_t IterCnt = 0;
};

class SIInsertWaitcnts : public MachineFunctionPass {
private:
  const SISubtarget *ST = nullptr;
  const SIInstrInfo *TII = nullptr;
  const SIRegisterInfo *TRI = nullptr;
  const MachineRegisterInfo *MRI = nullptr;
  const MachineLoopInfo *MLI = nullptr;
  AMDGPU::IsaInfo::IsaVersion IV;
  AMDGPUAS AMDGPUASI;

  DenseSet<MachineBasicBlock *> BlockVisitedSet;
  DenseSet<MachineInstr *> CompilerGeneratedWaitcntSet;
  DenseSet<MachineInstr *> VCCZBugHandledSet;

  DenseMap<MachineBasicBlock *, std::unique_ptr<BlockWaitcntBrackets>>
      BlockWaitcntBracketsMap;

  DenseSet<MachineBasicBlock *> BlockWaitcntProcessedSet;

  DenseMap<MachineLoop *, std::unique_ptr<LoopWaitcntData>> LoopWaitcntDataMap;

  std::vector<std::unique_ptr<BlockWaitcntBrackets>> KillWaitBrackets;

public:
  static char ID;

  SIInsertWaitcnts() : MachineFunctionPass(ID) {}

  bool runOnMachineFunction(MachineFunction &MF) override;

  StringRef getPassName() const override {
    return "SI insert wait instructions";
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    AU.addRequired<MachineLoopInfo>();
    MachineFunctionPass::getAnalysisUsage(AU);
  }

  void addKillWaitBracket(BlockWaitcntBrackets *Bracket) {
    // The waitcnt information is copied because it changes as the block is
    // traversed.
    KillWaitBrackets.push_back(
        llvm::make_unique<BlockWaitcntBrackets>(*Bracket));
  }

  bool mayAccessLDSThroughFlat(const MachineInstr &MI) const;
  MachineInstr *generateSWaitCntInstBefore(MachineInstr &MI,
                                           BlockWaitcntBrackets *ScoreBrackets);
  void updateEventWaitCntAfter(MachineInstr &Inst,
                               BlockWaitcntBrackets *ScoreBrackets);
  void mergeInputScoreBrackets(MachineBasicBlock &Block);
  MachineBasicBlock *loopBottom(const MachineLoop *Loop);
  void insertWaitcntInBlock(MachineFunction &MF, MachineBasicBlock &Block);
  void insertWaitcntBeforeCF(MachineBasicBlock &Block, MachineInstr *Inst);
};

} // end anonymous namespace

RegInterval BlockWaitcntBrackets::getRegInterval(const MachineInstr *MI,
                                                 const SIInstrInfo *TII,
                                                 const MachineRegisterInfo *MRI,
                                                 const SIRegisterInfo *TRI,
                                                 unsigned OpNo,
                                                 bool Def) const {
  const MachineOperand &Op = MI->getOperand(OpNo);
  if (!Op.isReg() || !TRI->isInAllocatableClass(Op.getReg()) ||
      (Def && !Op.isDef()))
    return {-1, -1};

  // A use via a PW operand does not need a waitcnt.
  // A partial write is not a WAW.
  assert(!Op.getSubReg() || !Op.isUndef());

  RegInterval Result;
  const MachineRegisterInfo &MRIA = *MRI;

  unsigned Reg = TRI->getEncodingValue(Op.getReg());

  if (TRI->isVGPR(MRIA, Op.getReg())) {
    assert(Reg >= RegisterEncoding.VGPR0 && Reg <= RegisterEncoding.VGPRL);
    Result.first = Reg - RegisterEncoding.VGPR0;
    assert(Result.first >= 0 && Result.first < SQ_MAX_PGM_VGPRS);
  } else if (TRI->isSGPRReg(MRIA, Op.getReg())) {
    assert(Reg >= RegisterEncoding.SGPR0 && Reg < SQ_MAX_PGM_SGPRS);
    Result.first = Reg - RegisterEncoding.SGPR0 + NUM_ALL_VGPRS;
    assert(Result.first >= NUM_ALL_VGPRS &&
           Result.first < SQ_MAX_PGM_SGPRS + NUM_ALL_VGPRS);
  }
  // TODO: Handle TTMP
  // else if (TRI->isTTMP(MRIA, Reg.getReg())) ...
  else
    return {-1, -1};

  const MachineInstr &MIA = *MI;
  const TargetRegisterClass *RC = TII->getOpRegClass(MIA, OpNo);
  unsigned Size = TRI->getRegSizeInBits(*RC);
  Result.second = Result.first + (Size / 32);

  return Result;
}

void BlockWaitcntBrackets::setExpScore(const MachineInstr *MI,
                                       const SIInstrInfo *TII,
                                       const SIRegisterInfo *TRI,
                                       const MachineRegisterInfo *MRI,
                                       unsigned OpNo, int32_t Val) {
  RegInterval Interval = getRegInterval(MI, TII, MRI, TRI, OpNo, false);
  DEBUG({
    const MachineOperand &Opnd = MI->getOperand(OpNo);
    assert(TRI->isVGPR(*MRI, Opnd.getReg()));
  });
  for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
    setRegScore(RegNo, EXP_CNT, Val);
  }
}

void BlockWaitcntBrackets::updateByEvent(const SIInstrInfo *TII,
                                         const SIRegisterInfo *TRI,
                                         const MachineRegisterInfo *MRI,
                                         WaitEventType E, MachineInstr &Inst) {
  const MachineRegisterInfo &MRIA = *MRI;
  InstCounterType T = eventCounter(E);
  int32_t CurrScore = getScoreUB(T) + 1;
  // EventUB and ScoreUB need to be update regardless if this event changes
  // the score of a register or not.
  // Examples including vm_cnt when buffer-store or lgkm_cnt when send-message.
  EventUBs[E] = CurrScore;
  setScoreUB(T, CurrScore);

  if (T == EXP_CNT) {
    // Check for mixed export types. If they are mixed, then a waitcnt exp(0)
    // is required.
    if (!MixedExpTypes) {
      MixedExpTypes = counterOutOfOrder(EXP_CNT);
    }

    // Put score on the source vgprs. If this is a store, just use those
    // specific register(s).
    if (TII->isDS(Inst) && (Inst.mayStore() || Inst.mayLoad())) {
      // All GDS operations must protect their address register (same as
      // export.)
      if (Inst.getOpcode() != AMDGPU::DS_APPEND &&
          Inst.getOpcode() != AMDGPU::DS_CONSUME) {
        setExpScore(
            &Inst, TII, TRI, MRI,
            AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::addr),
            CurrScore);
      }
      if (Inst.mayStore()) {
        setExpScore(
            &Inst, TII, TRI, MRI,
            AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data0),
            CurrScore);
        if (AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
                                       AMDGPU::OpName::data1) != -1) {
          setExpScore(&Inst, TII, TRI, MRI,
                      AMDGPU::getNamedOperandIdx(Inst.getOpcode(),
                                                 AMDGPU::OpName::data1),
                      CurrScore);
        }
      } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1 &&
                 Inst.getOpcode() != AMDGPU::DS_GWS_INIT &&
                 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_V &&
                 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_BR &&
                 Inst.getOpcode() != AMDGPU::DS_GWS_SEMA_P &&
                 Inst.getOpcode() != AMDGPU::DS_GWS_BARRIER &&
                 Inst.getOpcode() != AMDGPU::DS_APPEND &&
                 Inst.getOpcode() != AMDGPU::DS_CONSUME &&
                 Inst.getOpcode() != AMDGPU::DS_ORDERED_COUNT) {
        for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
          const MachineOperand &Op = Inst.getOperand(I);
          if (Op.isReg() && !Op.isDef() && TRI->isVGPR(MRIA, Op.getReg())) {
            setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
          }
        }
      }
    } else if (TII->isFLAT(Inst)) {
      if (Inst.mayStore()) {
        setExpScore(
            &Inst, TII, TRI, MRI,
            AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
            CurrScore);
      } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
        setExpScore(
            &Inst, TII, TRI, MRI,
            AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
            CurrScore);
      }
    } else if (TII->isMIMG(Inst)) {
      if (Inst.mayStore()) {
        setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
      } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
        setExpScore(
            &Inst, TII, TRI, MRI,
            AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
            CurrScore);
      }
    } else if (TII->isMTBUF(Inst)) {
      if (Inst.mayStore()) {
        setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
      }
    } else if (TII->isMUBUF(Inst)) {
      if (Inst.mayStore()) {
        setExpScore(&Inst, TII, TRI, MRI, 0, CurrScore);
      } else if (AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1) {
        setExpScore(
            &Inst, TII, TRI, MRI,
            AMDGPU::getNamedOperandIdx(Inst.getOpcode(), AMDGPU::OpName::data),
            CurrScore);
      }
    } else {
      if (TII->isEXP(Inst)) {
        // For export the destination registers are really temps that
        // can be used as the actual source after export patching, so
        // we need to treat them like sources and set the EXP_CNT
        // score.
        for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
          MachineOperand &DefMO = Inst.getOperand(I);
          if (DefMO.isReg() && DefMO.isDef() &&
              TRI->isVGPR(MRIA, DefMO.getReg())) {
            setRegScore(TRI->getEncodingValue(DefMO.getReg()), EXP_CNT,
                        CurrScore);
          }
        }
      }
      for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
        MachineOperand &MO = Inst.getOperand(I);
        if (MO.isReg() && !MO.isDef() && TRI->isVGPR(MRIA, MO.getReg())) {
          setExpScore(&Inst, TII, TRI, MRI, I, CurrScore);
        }
      }
    }
#if 0 // TODO: check if this is handled by MUBUF code above.
  } else if (Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORD ||
       Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX2 ||
       Inst.getOpcode() == AMDGPU::BUFFER_STORE_DWORDX4) {
    MachineOperand *MO = TII->getNamedOperand(Inst, AMDGPU::OpName::data);
    unsigned OpNo;//TODO: find the OpNo for this operand;
    RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, OpNo, false);
    for (signed RegNo = Interval.first; RegNo < Interval.second;
    ++RegNo) {
      setRegScore(RegNo + NUM_ALL_VGPRS, t, CurrScore);
    }
#endif
  } else {
    // Match the score to the destination registers.
    for (unsigned I = 0, E = Inst.getNumOperands(); I != E; ++I) {
      RegInterval Interval = getRegInterval(&Inst, TII, MRI, TRI, I, true);
      if (T == VM_CNT && Interval.first >= NUM_ALL_VGPRS)
        continue;
      for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
        setRegScore(RegNo, T, CurrScore);
      }
    }
    if (TII->isDS(Inst) && Inst.mayStore()) {
      setRegScore(SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS, T, CurrScore);
    }
  }
}

void BlockWaitcntBrackets::print(raw_ostream &OS) {
  OS << '\n';
  for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
       T = (enum InstCounterType)(T + 1)) {
    int LB = getScoreLB(T);
    int UB = getScoreUB(T);

    switch (T) {
    case VM_CNT:
      OS << "    VM_CNT(" << UB - LB << "): ";
      break;
    case LGKM_CNT:
      OS << "    LGKM_CNT(" << UB - LB << "): ";
      break;
    case EXP_CNT:
      OS << "    EXP_CNT(" << UB - LB << "): ";
      break;
    default:
      OS << "    UNKNOWN(" << UB - LB << "): ";
      break;
    }

    if (LB < UB) {
      // Print vgpr scores.
      for (int J = 0; J <= getMaxVGPR(); J++) {
        int RegScore = getRegScore(J, T);
        if (RegScore <= LB)
          continue;
        int RelScore = RegScore - LB - 1;
        if (J < SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS) {
          OS << RelScore << ":v" << J << " ";
        } else {
          OS << RelScore << ":ds ";
        }
      }
      // Also need to print sgpr scores for lgkm_cnt.
      if (T == LGKM_CNT) {
        for (int J = 0; J <= getMaxSGPR(); J++) {
          int RegScore = getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
          if (RegScore <= LB)
            continue;
          int RelScore = RegScore - LB - 1;
          OS << RelScore << ":s" << J << " ";
        }
      }
    }
    OS << '\n';
  }
  OS << '\n';
}

unsigned int BlockWaitcntBrackets::updateByWait(InstCounterType T,
                                                int ScoreToWait) {
  unsigned int NeedWait = 0;
  if (ScoreToWait == -1) {
    // The score to wait is unknown. This implies that it was not encountered
    // during the path of the CFG walk done during the current traversal but
    // may be seen on a different path. Emit an s_wait counter with a
    // conservative value of 0 for the counter.
    NeedWait = CNT_MASK(T);
    setScoreLB(T, getScoreUB(T));
    return NeedWait;
  }

  // If the score of src_operand falls within the bracket, we need an
  // s_waitcnt instruction.
  const int32_t LB = getScoreLB(T);
  const int32_t UB = getScoreUB(T);
  if ((UB >= ScoreToWait) && (ScoreToWait > LB)) {
    if (T == VM_CNT && hasPendingFlat()) {
      // If there is a pending FLAT operation, and this is a VM waitcnt,
      // then we need to force a waitcnt 0 for VM.
      NeedWait = CNT_MASK(T);
      setScoreLB(T, getScoreUB(T));
    } else if (counterOutOfOrder(T)) {
      // Counter can get decremented out-of-order when there
      // are multiple types event in the brack. Also emit an s_wait counter
      // with a conservative value of 0 for the counter.
      NeedWait = CNT_MASK(T);
      setScoreLB(T, getScoreUB(T));
    } else {
      NeedWait = CNT_MASK(T);
      setScoreLB(T, ScoreToWait);
    }
  }

  return NeedWait;
}

// Where there are multiple types of event in the bracket of a counter,
// the decrement may go out of order.
bool BlockWaitcntBrackets::counterOutOfOrder(InstCounterType T) {
  switch (T) {
  case VM_CNT:
    return false;
  case LGKM_CNT: {
    if (EventUBs[SMEM_ACCESS] > ScoreLBs[LGKM_CNT] &&
        EventUBs[SMEM_ACCESS] <= ScoreUBs[LGKM_CNT]) {
      // Scalar memory read always can go out of order.
      return true;
    }
    int NumEventTypes = 0;
    if (EventUBs[LDS_ACCESS] > ScoreLBs[LGKM_CNT] &&
        EventUBs[LDS_ACCESS] <= ScoreUBs[LGKM_CNT]) {
      NumEventTypes++;
    }
    if (EventUBs[GDS_ACCESS] > ScoreLBs[LGKM_CNT] &&
        EventUBs[GDS_ACCESS] <= ScoreUBs[LGKM_CNT]) {
      NumEventTypes++;
    }
    if (EventUBs[SQ_MESSAGE] > ScoreLBs[LGKM_CNT] &&
        EventUBs[SQ_MESSAGE] <= ScoreUBs[LGKM_CNT]) {
      NumEventTypes++;
    }
    if (NumEventTypes <= 1) {
      return false;
    }
    break;
  }
  case EXP_CNT: {
    // If there has been a mixture of export types, then a waitcnt exp(0) is
    // required.
    if (MixedExpTypes)
      return true;
    int NumEventTypes = 0;
    if (EventUBs[EXP_GPR_LOCK] > ScoreLBs[EXP_CNT] &&
        EventUBs[EXP_GPR_LOCK] <= ScoreUBs[EXP_CNT]) {
      NumEventTypes++;
    }
    if (EventUBs[GDS_GPR_LOCK] > ScoreLBs[EXP_CNT] &&
        EventUBs[GDS_GPR_LOCK] <= ScoreUBs[EXP_CNT]) {
      NumEventTypes++;
    }
    if (EventUBs[VMW_GPR_LOCK] > ScoreLBs[EXP_CNT] &&
        EventUBs[VMW_GPR_LOCK] <= ScoreUBs[EXP_CNT]) {
      NumEventTypes++;
    }
    if (EventUBs[EXP_PARAM_ACCESS] > ScoreLBs[EXP_CNT] &&
        EventUBs[EXP_PARAM_ACCESS] <= ScoreUBs[EXP_CNT]) {
      NumEventTypes++;
    }

    if (EventUBs[EXP_POS_ACCESS] > ScoreLBs[EXP_CNT] &&
        EventUBs[EXP_POS_ACCESS] <= ScoreUBs[EXP_CNT]) {
      NumEventTypes++;
    }

    if (NumEventTypes <= 1) {
      return false;
    }
    break;
  }
  default:
    break;
  }
  return true;
}

INITIALIZE_PASS_BEGIN(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
                      false)
INITIALIZE_PASS_END(SIInsertWaitcnts, DEBUG_TYPE, "SI Insert Waitcnts", false,
                    false)

char SIInsertWaitcnts::ID = 0;

char &llvm::SIInsertWaitcntsID = SIInsertWaitcnts::ID;

FunctionPass *llvm::createSIInsertWaitcntsPass() {
  return new SIInsertWaitcnts();
}

static bool readsVCCZ(const MachineInstr &MI) {
  unsigned Opc = MI.getOpcode();
  return (Opc == AMDGPU::S_CBRANCH_VCCNZ || Opc == AMDGPU::S_CBRANCH_VCCZ) &&
         !MI.getOperand(1).isUndef();
}

///  \brief Generate s_waitcnt instruction to be placed before cur_Inst.
///  Instructions of a given type are returned in order,
///  but instructions of different types can complete out of order.
///  We rely on this in-order completion
///  and simply assign a score to the memory access instructions.
///  We keep track of the active "score bracket" to determine
///  if an access of a memory read requires an s_waitcnt
///  and if so what the value of each counter is.
///  The "score bracket" is bound by the lower bound and upper bound
///  scores (*_score_LB and *_score_ub respectively).
MachineInstr *SIInsertWaitcnts::generateSWaitCntInstBefore(
    MachineInstr &MI, BlockWaitcntBrackets *ScoreBrackets) {
  // To emit, or not to emit - that's the question!
  // Start with an assumption that there is no need to emit.
  unsigned int EmitSwaitcnt = 0;
  // s_waitcnt instruction to return; default is NULL.
  MachineInstr *SWaitInst = nullptr;
  // No need to wait before phi. If a phi-move exists, then the wait should
  // has been inserted before the move. If a phi-move does not exist, then
  // wait should be inserted before the real use. The same is true for
  // sc-merge. It is not a coincident that all these cases correspond to the
  // instructions that are skipped in the assembling loop.
  bool NeedLineMapping = false; // TODO: Check on this.
  if (MI.isDebugValue() &&
      // TODO: any other opcode?
      !NeedLineMapping) {
    return SWaitInst;
  }

  // See if an s_waitcnt is forced at block entry, or is needed at
  // program end.
  if (ScoreBrackets->getWaitAtBeginning()) {
    // Note that we have already cleared the state, so we don't need to update
    // it.
    ScoreBrackets->clearWaitAtBeginning();
    for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
         T = (enum InstCounterType)(T + 1)) {
      EmitSwaitcnt |= CNT_MASK(T);
      ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T));
    }
  }

  // See if this instruction has a forced S_WAITCNT VM.
  // TODO: Handle other cases of NeedsWaitcntVmBefore()
  else if (MI.getOpcode() == AMDGPU::BUFFER_WBINVL1 ||
           MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_SC ||
           MI.getOpcode() == AMDGPU::BUFFER_WBINVL1_VOL) {
    EmitSwaitcnt |=
        ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT));
  }

  // All waits must be resolved at call return.
  // NOTE: this could be improved with knowledge of all call sites or
  //   with knowledge of the called routines.
  if (MI.getOpcode() == AMDGPU::RETURN ||
      MI.getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG ||
      MI.getOpcode() == AMDGPU::S_SETPC_B64_return) {
    for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
         T = (enum InstCounterType)(T + 1)) {
      if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) {
        ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T));
        EmitSwaitcnt |= CNT_MASK(T);
      }
    }
  }
  // Resolve vm waits before gs-done.
  else if ((MI.getOpcode() == AMDGPU::S_SENDMSG ||
            MI.getOpcode() == AMDGPU::S_SENDMSGHALT) &&
           ((MI.getOperand(0).getImm() & AMDGPU::SendMsg::ID_MASK_) ==
            AMDGPU::SendMsg::ID_GS_DONE)) {
    if (ScoreBrackets->getScoreUB(VM_CNT) > ScoreBrackets->getScoreLB(VM_CNT)) {
      ScoreBrackets->setScoreLB(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT));
      EmitSwaitcnt |= CNT_MASK(VM_CNT);
    }
  }
#if 0 // TODO: the following blocks of logic when we have fence.
  else if (MI.getOpcode() == SC_FENCE) {
    const unsigned int group_size =
      context->shader_info->GetMaxThreadGroupSize();
    // group_size == 0 means thread group size is unknown at compile time
    const bool group_is_multi_wave =
      (group_size == 0 || group_size > target_info->GetWaveFrontSize());
    const bool fence_is_global = !((SCInstInternalMisc*)Inst)->IsGroupFence();

    for (unsigned int i = 0; i < Inst->NumSrcOperands(); i++) {
      SCRegType src_type = Inst->GetSrcType(i);
      switch (src_type) {
        case SCMEM_LDS:
          if (group_is_multi_wave ||
            context->OptFlagIsOn(OPT_R1100_LDSMEM_FENCE_CHICKEN_BIT)) {
            EmitSwaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
                               ScoreBrackets->getScoreUB(LGKM_CNT));
            // LDS may have to wait for VM_CNT after buffer load to LDS
            if (target_info->HasBufferLoadToLDS()) {
              EmitSwaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
                                 ScoreBrackets->getScoreUB(VM_CNT));
            }
          }
          break;

        case SCMEM_GDS:
          if (group_is_multi_wave || fence_is_global) {
            EmitSwaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
              ScoreBrackets->getScoreUB(EXP_CNT));
            EmitSwaitcnt |= ScoreBrackets->updateByWait(LGKM_CNT,
              ScoreBrackets->getScoreUB(LGKM_CNT));
          }
          break;

        case SCMEM_UAV:
        case SCMEM_TFBUF:
        case SCMEM_RING:
        case SCMEM_SCATTER:
          if (group_is_multi_wave || fence_is_global) {
            EmitSwaitcnt |= ScoreBrackets->updateByWait(EXP_CNT,
              ScoreBrackets->getScoreUB(EXP_CNT));
            EmitSwaitcnt |= ScoreBrackets->updateByWait(VM_CNT,
              ScoreBrackets->getScoreUB(VM_CNT));
          }
          break;

        case SCMEM_SCRATCH:
        default:
          break;
      }
    }
  }
#endif

  // Export & GDS instructions do not read the EXEC mask until after the export
  // is granted (which can occur well after the instruction is issued).
  // The shader program must flush all EXP operations on the export-count
  // before overwriting the EXEC mask.
  else {
    if (MI.modifiesRegister(AMDGPU::EXEC, TRI)) {
      // Export and GDS are tracked individually, either may trigger a waitcnt
      // for EXEC.
      EmitSwaitcnt |= ScoreBrackets->updateByWait(
          EXP_CNT, ScoreBrackets->getEventUB(EXP_GPR_LOCK));
      EmitSwaitcnt |= ScoreBrackets->updateByWait(
          EXP_CNT, ScoreBrackets->getEventUB(EXP_PARAM_ACCESS));
      EmitSwaitcnt |= ScoreBrackets->updateByWait(
          EXP_CNT, ScoreBrackets->getEventUB(EXP_POS_ACCESS));
      EmitSwaitcnt |= ScoreBrackets->updateByWait(
          EXP_CNT, ScoreBrackets->getEventUB(GDS_GPR_LOCK));
    }

#if 0 // TODO: the following code to handle CALL.
    // The argument passing for CALLs should suffice for VM_CNT and LGKM_CNT.
    // However, there is a problem with EXP_CNT, because the call cannot
    // easily tell if a register is used in the function, and if it did, then
    // the referring instruction would have to have an S_WAITCNT, which is
    // dependent on all call sites. So Instead, force S_WAITCNT for EXP_CNTs
    // before the call.
    if (MI.getOpcode() == SC_CALL) {
      if (ScoreBrackets->getScoreUB(EXP_CNT) >
        ScoreBrackets->getScoreLB(EXP_CNT)) {
        ScoreBrackets->setScoreLB(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT));
        EmitSwaitcnt |= CNT_MASK(EXP_CNT);
      }
    }
#endif

    // FIXME: Should not be relying on memoperands.
    // Look at the source operands of every instruction to see if
    // any of them results from a previous memory operation that affects
    // its current usage. If so, an s_waitcnt instruction needs to be
    // emitted.
    // If the source operand was defined by a load, add the s_waitcnt
    // instruction.
    for (const MachineMemOperand *Memop : MI.memoperands()) {
      unsigned AS = Memop->getAddrSpace();
      if (AS != AMDGPUASI.LOCAL_ADDRESS)
        continue;
      unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
      // VM_CNT is only relevant to vgpr or LDS.
      EmitSwaitcnt |= ScoreBrackets->updateByWait(
          VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT));
    }

    for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
      const MachineOperand &Op = MI.getOperand(I);
      const MachineRegisterInfo &MRIA = *MRI;
      RegInterval Interval =
          ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, false);
      for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
        if (TRI->isVGPR(MRIA, Op.getReg())) {
          // VM_CNT is only relevant to vgpr or LDS.
          EmitSwaitcnt |= ScoreBrackets->updateByWait(
              VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT));
        }
        EmitSwaitcnt |= ScoreBrackets->updateByWait(
            LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT));
      }
    }
    // End of for loop that looks at all source operands to decide vm_wait_cnt
    // and lgk_wait_cnt.

    // Two cases are handled for destination operands:
    // 1) If the destination operand was defined by a load, add the s_waitcnt
    // instruction to guarantee the right WAW order.
    // 2) If a destination operand that was used by a recent export/store ins,
    // add s_waitcnt on exp_cnt to guarantee the WAR order.
    if (MI.mayStore()) {
      // FIXME: Should not be relying on memoperands.
      for (const MachineMemOperand *Memop : MI.memoperands()) {
        unsigned AS = Memop->getAddrSpace();
        if (AS != AMDGPUASI.LOCAL_ADDRESS)
          continue;
        unsigned RegNo = SQ_MAX_PGM_VGPRS + EXTRA_VGPR_LDS;
        EmitSwaitcnt |= ScoreBrackets->updateByWait(
            VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT));
        EmitSwaitcnt |= ScoreBrackets->updateByWait(
            EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT));
      }
    }
    for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
      MachineOperand &Def = MI.getOperand(I);
      const MachineRegisterInfo &MRIA = *MRI;
      RegInterval Interval =
          ScoreBrackets->getRegInterval(&MI, TII, MRI, TRI, I, true);
      for (signed RegNo = Interval.first; RegNo < Interval.second; ++RegNo) {
        if (TRI->isVGPR(MRIA, Def.getReg())) {
          EmitSwaitcnt |= ScoreBrackets->updateByWait(
              VM_CNT, ScoreBrackets->getRegScore(RegNo, VM_CNT));
          EmitSwaitcnt |= ScoreBrackets->updateByWait(
              EXP_CNT, ScoreBrackets->getRegScore(RegNo, EXP_CNT));
        }
        EmitSwaitcnt |= ScoreBrackets->updateByWait(
            LGKM_CNT, ScoreBrackets->getRegScore(RegNo, LGKM_CNT));
      }
    } // End of for loop that looks at all dest operands.
  }

  // TODO: Tie force zero to a compiler triage option.
  bool ForceZero = false;

  // Check to see if this is an S_BARRIER, and if an implicit S_WAITCNT 0
  // occurs before the instruction. Doing it here prevents any additional
  // S_WAITCNTs from being emitted if the instruction was marked as
  // requiring a WAITCNT beforehand.
  if (MI.getOpcode() == AMDGPU::S_BARRIER &&
      !ST->hasAutoWaitcntBeforeBarrier()) {
    EmitSwaitcnt |=
        ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT));
    EmitSwaitcnt |= ScoreBrackets->updateByWait(
        EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT));
    EmitSwaitcnt |= ScoreBrackets->updateByWait(
        LGKM_CNT, ScoreBrackets->getScoreUB(LGKM_CNT));
  }

  // TODO: Remove this work-around, enable the assert for Bug 457939
  //       after fixing the scheduler. Also, the Shader Compiler code is
  //       independent of target.
  if (readsVCCZ(MI) && ST->getGeneration() <= SISubtarget::SEA_ISLANDS) {
    if (ScoreBrackets->getScoreLB(LGKM_CNT) <
            ScoreBrackets->getScoreUB(LGKM_CNT) &&
        ScoreBrackets->hasPendingSMEM()) {
      // Wait on everything, not just LGKM.  vccz reads usually come from
      // terminators, and we always wait on everything at the end of the
      // block, so if we only wait on LGKM here, we might end up with
      // another s_waitcnt inserted right after this if there are non-LGKM
      // instructions still outstanding.
      ForceZero = true;
      EmitSwaitcnt = true;
    }
  }

  // Does this operand processing indicate s_wait counter update?
  if (EmitSwaitcnt) {
    int CntVal[NUM_INST_CNTS];

    bool UseDefaultWaitcntStrategy = true;
    if (ForceZero) {
      // Force all waitcnts to 0.
      for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
           T = (enum InstCounterType)(T + 1)) {
        ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T));
      }
      CntVal[VM_CNT] = 0;
      CntVal[EXP_CNT] = 0;
      CntVal[LGKM_CNT] = 0;
      UseDefaultWaitcntStrategy = false;
    }

    if (UseDefaultWaitcntStrategy) {
      for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
           T = (enum InstCounterType)(T + 1)) {
        if (EmitSwaitcnt & CNT_MASK(T)) {
          int Delta =
              ScoreBrackets->getScoreUB(T) - ScoreBrackets->getScoreLB(T);
          int MaxDelta = ScoreBrackets->getWaitCountMax(T);
          if (Delta >= MaxDelta) {
            Delta = -1;
            if (T != EXP_CNT) {
              ScoreBrackets->setScoreLB(
                  T, ScoreBrackets->getScoreUB(T) - MaxDelta);
            }
            EmitSwaitcnt &= ~CNT_MASK(T);
          }
          CntVal[T] = Delta;
        } else {
          // If we are not waiting for a particular counter then encode
          // it as -1 which means "don't care."
          CntVal[T] = -1;
        }
      }
    }

    // If we are not waiting on any counter we can skip the wait altogether.
    if (EmitSwaitcnt != 0) {
      MachineInstr *OldWaitcnt = ScoreBrackets->getWaitcnt();
      int Imm = (!OldWaitcnt) ? 0 : OldWaitcnt->getOperand(0).getImm();
      if (!OldWaitcnt || (AMDGPU::decodeVmcnt(IV, Imm) !=
                          (CntVal[VM_CNT] & AMDGPU::getVmcntBitMask(IV))) ||
          (AMDGPU::decodeExpcnt(IV, Imm) !=
           (CntVal[EXP_CNT] & AMDGPU::getExpcntBitMask(IV))) ||
          (AMDGPU::decodeLgkmcnt(IV, Imm) !=
           (CntVal[LGKM_CNT] & AMDGPU::getLgkmcntBitMask(IV)))) {
        MachineLoop *ContainingLoop = MLI->getLoopFor(MI.getParent());
        if (ContainingLoop) {
          MachineBasicBlock *TBB = ContainingLoop->getHeader();
          BlockWaitcntBrackets *ScoreBracket =
              BlockWaitcntBracketsMap[TBB].get();
          if (!ScoreBracket) {
            assert(BlockVisitedSet.find(TBB) == BlockVisitedSet.end());
            BlockWaitcntBracketsMap[TBB] =
                llvm::make_unique<BlockWaitcntBrackets>();
            ScoreBracket = BlockWaitcntBracketsMap[TBB].get();
          }
          ScoreBracket->setRevisitLoop(true);
          DEBUG(dbgs() << "set-revisit: block"
                       << ContainingLoop->getHeader()->getNumber() << '\n';);
        }
      }

      // Update an existing waitcount, or make a new one.
      MachineFunction &MF = *MI.getParent()->getParent();
      if (OldWaitcnt && OldWaitcnt->getOpcode() != AMDGPU::S_WAITCNT) {
        SWaitInst = OldWaitcnt;
      } else {
        SWaitInst = MF.CreateMachineInstr(TII->get(AMDGPU::S_WAITCNT),
                                          MI.getDebugLoc());
        CompilerGeneratedWaitcntSet.insert(SWaitInst);
      }

      const MachineOperand &Op =
          MachineOperand::CreateImm(AMDGPU::encodeWaitcnt(
              IV, CntVal[VM_CNT], CntVal[EXP_CNT], CntVal[LGKM_CNT]));
      SWaitInst->addOperand(MF, Op);

      if (CntVal[EXP_CNT] == 0) {
        ScoreBrackets->setMixedExpTypes(false);
      }
    }
  }

  return SWaitInst;
}

void SIInsertWaitcnts::insertWaitcntBeforeCF(MachineBasicBlock &MBB,
                                             MachineInstr *Waitcnt) {
  if (MBB.empty()) {
    MBB.push_back(Waitcnt);
    return;
  }

  MachineBasicBlock::iterator It = MBB.end();
  MachineInstr *MI = &*(--It);
  if (MI->isBranch()) {
    MBB.insert(It, Waitcnt);
  } else {
    MBB.push_back(Waitcnt);
  }
}

// This is a flat memory operation. Check to see if it has memory
// tokens for both LDS and Memory, and if so mark it as a flat.
bool SIInsertWaitcnts::mayAccessLDSThroughFlat(const MachineInstr &MI) const {
  if (MI.memoperands_empty())
    return true;

  for (const MachineMemOperand *Memop : MI.memoperands()) {
    unsigned AS = Memop->getAddrSpace();
    if (AS == AMDGPUASI.LOCAL_ADDRESS || AS == AMDGPUASI.FLAT_ADDRESS)
      return true;
  }

  return false;
}

void SIInsertWaitcnts::updateEventWaitCntAfter(
    MachineInstr &Inst, BlockWaitcntBrackets *ScoreBrackets) {
  // Now look at the instruction opcode. If it is a memory access
  // instruction, update the upper-bound of the appropriate counter's
  // bracket and the destination operand scores.
  // TODO: Use the (TSFlags & SIInstrFlags::LGKM_CNT) property everywhere.
  if (TII->isDS(Inst) && TII->usesLGKM_CNT(Inst)) {
    if (TII->hasModifiersSet(Inst, AMDGPU::OpName::gds)) {
      ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_ACCESS, Inst);
      ScoreBrackets->updateByEvent(TII, TRI, MRI, GDS_GPR_LOCK, Inst);
    } else {
      ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);
    }
  } else if (TII->isFLAT(Inst)) {
    assert(Inst.mayLoad() || Inst.mayStore());

    if (TII->usesVM_CNT(Inst))
      ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);

    if (TII->usesLGKM_CNT(Inst)) {
      ScoreBrackets->updateByEvent(TII, TRI, MRI, LDS_ACCESS, Inst);

      // This is a flat memory operation, so note it - it will require
      // that both the VM and LGKM be flushed to zero if it is pending when
      // a VM or LGKM dependency occurs.
      if (mayAccessLDSThroughFlat(Inst))
        ScoreBrackets->setPendingFlat();
    }
  } else if (SIInstrInfo::isVMEM(Inst) &&
             // TODO: get a better carve out.
             Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1 &&
             Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_SC &&
             Inst.getOpcode() != AMDGPU::BUFFER_WBINVL1_VOL) {
    ScoreBrackets->updateByEvent(TII, TRI, MRI, VMEM_ACCESS, Inst);
    if ( // TODO: assumed yes -- target_info->MemWriteNeedsExpWait() &&
        (Inst.mayStore() || AMDGPU::getAtomicNoRetOp(Inst.getOpcode()) != -1)) {
      ScoreBrackets->updateByEvent(TII, TRI, MRI, VMW_GPR_LOCK, Inst);
    }
  } else if (TII->isSMRD(Inst)) {
    ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
  } else {
    switch (Inst.getOpcode()) {
    case AMDGPU::S_SENDMSG:
    case AMDGPU::S_SENDMSGHALT:
      ScoreBrackets->updateByEvent(TII, TRI, MRI, SQ_MESSAGE, Inst);
      break;
    case AMDGPU::EXP:
    case AMDGPU::EXP_DONE: {
      int Imm = TII->getNamedOperand(Inst, AMDGPU::OpName::tgt)->getImm();
      if (Imm >= 32 && Imm <= 63)
        ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_PARAM_ACCESS, Inst);
      else if (Imm >= 12 && Imm <= 15)
        ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_POS_ACCESS, Inst);
      else
        ScoreBrackets->updateByEvent(TII, TRI, MRI, EXP_GPR_LOCK, Inst);
      break;
    }
    case AMDGPU::S_MEMTIME:
    case AMDGPU::S_MEMREALTIME:
      ScoreBrackets->updateByEvent(TII, TRI, MRI, SMEM_ACCESS, Inst);
      break;
    default:
      break;
    }
  }
}

void SIInsertWaitcnts::mergeInputScoreBrackets(MachineBasicBlock &Block) {
  BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get();
  int32_t MaxPending[NUM_INST_CNTS] = {0};
  int32_t MaxFlat[NUM_INST_CNTS] = {0};
  bool MixedExpTypes = false;

  // Clear the score bracket state.
  ScoreBrackets->clear();

  // Compute the number of pending elements on block entry.

  // IMPORTANT NOTE: If iterative handling of loops is added, the code will
  // need to handle single BBs with backedges to themselves. This means that
  // they will need to retain and not clear their initial state.

  // See if there are any uninitialized predecessors. If so, emit an
  // s_waitcnt 0 at the beginning of the block.
  for (MachineBasicBlock *pred : Block.predecessors()) {
    BlockWaitcntBrackets *PredScoreBrackets =
        BlockWaitcntBracketsMap[pred].get();
    bool Visited = BlockVisitedSet.find(pred) != BlockVisitedSet.end();
    if (!Visited || PredScoreBrackets->getWaitAtBeginning()) {
      continue;
    }
    for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
         T = (enum InstCounterType)(T + 1)) {
      int span =
          PredScoreBrackets->getScoreUB(T) - PredScoreBrackets->getScoreLB(T);
      MaxPending[T] = std::max(MaxPending[T], span);
      span =
          PredScoreBrackets->pendingFlat(T) - PredScoreBrackets->getScoreLB(T);
      MaxFlat[T] = std::max(MaxFlat[T], span);
    }

    MixedExpTypes |= PredScoreBrackets->mixedExpTypes();
  }

  // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()?
  // Also handle kills for exit block.
  if (Block.succ_empty() && !KillWaitBrackets.empty()) {
    for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) {
      for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
           T = (enum InstCounterType)(T + 1)) {
        int Span = KillWaitBrackets[I]->getScoreUB(T) -
                   KillWaitBrackets[I]->getScoreLB(T);
        MaxPending[T] = std::max(MaxPending[T], Span);
        Span = KillWaitBrackets[I]->pendingFlat(T) -
               KillWaitBrackets[I]->getScoreLB(T);
        MaxFlat[T] = std::max(MaxFlat[T], Span);
      }

      MixedExpTypes |= KillWaitBrackets[I]->mixedExpTypes();
    }
  }

  // Special handling for GDS_GPR_LOCK and EXP_GPR_LOCK.
  for (MachineBasicBlock *Pred : Block.predecessors()) {
    BlockWaitcntBrackets *PredScoreBrackets =
        BlockWaitcntBracketsMap[Pred].get();
    bool Visited = BlockVisitedSet.find(Pred) != BlockVisitedSet.end();
    if (!Visited || PredScoreBrackets->getWaitAtBeginning()) {
      continue;
    }

    int GDSSpan = PredScoreBrackets->getEventUB(GDS_GPR_LOCK) -
                  PredScoreBrackets->getScoreLB(EXP_CNT);
    MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan);
    int EXPSpan = PredScoreBrackets->getEventUB(EXP_GPR_LOCK) -
                  PredScoreBrackets->getScoreLB(EXP_CNT);
    MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan);
  }

  // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()?
  if (Block.succ_empty() && !KillWaitBrackets.empty()) {
    for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) {
      int GDSSpan = KillWaitBrackets[I]->getEventUB(GDS_GPR_LOCK) -
                    KillWaitBrackets[I]->getScoreLB(EXP_CNT);
      MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], GDSSpan);
      int EXPSpan = KillWaitBrackets[I]->getEventUB(EXP_GPR_LOCK) -
                    KillWaitBrackets[I]->getScoreLB(EXP_CNT);
      MaxPending[EXP_CNT] = std::max(MaxPending[EXP_CNT], EXPSpan);
    }
  }

#if 0
  // LC does not (unlike) add a waitcnt at beginning. Leaving it as marker.
  // TODO: how does LC distinguish between function entry and main entry?
  // If this is the entry to a function, force a wait.
  MachineBasicBlock &Entry = Block.getParent()->front();
  if (Entry.getNumber() == Block.getNumber()) {
    ScoreBrackets->setWaitAtBeginning();
    return;
  }
#endif

  // Now set the current Block's brackets to the largest ending bracket.
  for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
       T = (enum InstCounterType)(T + 1)) {
    ScoreBrackets->setScoreUB(T, MaxPending[T]);
    ScoreBrackets->setScoreLB(T, 0);
    ScoreBrackets->setLastFlat(T, MaxFlat[T]);
  }

  ScoreBrackets->setMixedExpTypes(MixedExpTypes);

  // Set the register scoreboard.
  for (MachineBasicBlock *Pred : Block.predecessors()) {
    if (BlockVisitedSet.find(Pred) == BlockVisitedSet.end()) {
      continue;
    }

    BlockWaitcntBrackets *PredScoreBrackets =
        BlockWaitcntBracketsMap[Pred].get();

    // Now merge the gpr_reg_score information
    for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
         T = (enum InstCounterType)(T + 1)) {
      int PredLB = PredScoreBrackets->getScoreLB(T);
      int PredUB = PredScoreBrackets->getScoreUB(T);
      if (PredLB < PredUB) {
        int PredScale = MaxPending[T] - PredUB;
        // Merge vgpr scores.
        for (int J = 0; J <= PredScoreBrackets->getMaxVGPR(); J++) {
          int PredRegScore = PredScoreBrackets->getRegScore(J, T);
          if (PredRegScore <= PredLB)
            continue;
          int NewRegScore = PredScale + PredRegScore;
          ScoreBrackets->setRegScore(
              J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore));
        }
        // Also need to merge sgpr scores for lgkm_cnt.
        if (T == LGKM_CNT) {
          for (int J = 0; J <= PredScoreBrackets->getMaxSGPR(); J++) {
            int PredRegScore =
                PredScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
            if (PredRegScore <= PredLB)
              continue;
            int NewRegScore = PredScale + PredRegScore;
            ScoreBrackets->setRegScore(
                J + NUM_ALL_VGPRS, LGKM_CNT,
                std::max(
                    ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT),
                    NewRegScore));
          }
        }
      }
    }

    // Also merge the WaitEvent information.
    ForAllWaitEventType(W) {
      enum InstCounterType T = PredScoreBrackets->eventCounter(W);
      int PredEventUB = PredScoreBrackets->getEventUB(W);
      if (PredEventUB > PredScoreBrackets->getScoreLB(T)) {
        int NewEventUB =
            MaxPending[T] + PredEventUB - PredScoreBrackets->getScoreUB(T);
        if (NewEventUB > 0) {
          ScoreBrackets->setEventUB(
              W, std::max(ScoreBrackets->getEventUB(W), NewEventUB));
        }
      }
    }
  }

  // TODO: Is SC Block->IsMainExit() same as Block.succ_empty()?
  // Set the register scoreboard.
  if (Block.succ_empty() && !KillWaitBrackets.empty()) {
    for (unsigned int I = 0; I < KillWaitBrackets.size(); I++) {
      // Now merge the gpr_reg_score information.
      for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
           T = (enum InstCounterType)(T + 1)) {
        int PredLB = KillWaitBrackets[I]->getScoreLB(T);
        int PredUB = KillWaitBrackets[I]->getScoreUB(T);
        if (PredLB < PredUB) {
          int PredScale = MaxPending[T] - PredUB;
          // Merge vgpr scores.
          for (int J = 0; J <= KillWaitBrackets[I]->getMaxVGPR(); J++) {
            int PredRegScore = KillWaitBrackets[I]->getRegScore(J, T);
            if (PredRegScore <= PredLB)
              continue;
            int NewRegScore = PredScale + PredRegScore;
            ScoreBrackets->setRegScore(
                J, T, std::max(ScoreBrackets->getRegScore(J, T), NewRegScore));
          }
          // Also need to merge sgpr scores for lgkm_cnt.
          if (T == LGKM_CNT) {
            for (int J = 0; J <= KillWaitBrackets[I]->getMaxSGPR(); J++) {
              int PredRegScore =
                  KillWaitBrackets[I]->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT);
              if (PredRegScore <= PredLB)
                continue;
              int NewRegScore = PredScale + PredRegScore;
              ScoreBrackets->setRegScore(
                  J + NUM_ALL_VGPRS, LGKM_CNT,
                  std::max(
                      ScoreBrackets->getRegScore(J + NUM_ALL_VGPRS, LGKM_CNT),
                      NewRegScore));
            }
          }
        }
      }

      // Also merge the WaitEvent information.
      ForAllWaitEventType(W) {
        enum InstCounterType T = KillWaitBrackets[I]->eventCounter(W);
        int PredEventUB = KillWaitBrackets[I]->getEventUB(W);
        if (PredEventUB > KillWaitBrackets[I]->getScoreLB(T)) {
          int NewEventUB =
              MaxPending[T] + PredEventUB - KillWaitBrackets[I]->getScoreUB(T);
          if (NewEventUB > 0) {
            ScoreBrackets->setEventUB(
                W, std::max(ScoreBrackets->getEventUB(W), NewEventUB));
          }
        }
      }
    }
  }

  // Special case handling of GDS_GPR_LOCK and EXP_GPR_LOCK. Merge this for the
  // sequencing predecessors, because changes to EXEC require waitcnts due to
  // the delayed nature of these operations.
  for (MachineBasicBlock *Pred : Block.predecessors()) {
    if (BlockVisitedSet.find(Pred) == BlockVisitedSet.end()) {
      continue;
    }

    BlockWaitcntBrackets *PredScoreBrackets =
        BlockWaitcntBracketsMap[Pred].get();

    int pred_gds_ub = PredScoreBrackets->getEventUB(GDS_GPR_LOCK);
    if (pred_gds_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) {
      int new_gds_ub = MaxPending[EXP_CNT] + pred_gds_ub -
                       PredScoreBrackets->getScoreUB(EXP_CNT);
      if (new_gds_ub > 0) {
        ScoreBrackets->setEventUB(
            GDS_GPR_LOCK,
            std::max(ScoreBrackets->getEventUB(GDS_GPR_LOCK), new_gds_ub));
      }
    }
    int pred_exp_ub = PredScoreBrackets->getEventUB(EXP_GPR_LOCK);
    if (pred_exp_ub > PredScoreBrackets->getScoreLB(EXP_CNT)) {
      int new_exp_ub = MaxPending[EXP_CNT] + pred_exp_ub -
                       PredScoreBrackets->getScoreUB(EXP_CNT);
      if (new_exp_ub > 0) {
        ScoreBrackets->setEventUB(
            EXP_GPR_LOCK,
            std::max(ScoreBrackets->getEventUB(EXP_GPR_LOCK), new_exp_ub));
      }
    }
  }
}

/// Return the "bottom" block of a loop. This differs from
/// MachineLoop::getBottomBlock in that it works even if the loop is
/// discontiguous.
MachineBasicBlock *SIInsertWaitcnts::loopBottom(const MachineLoop *Loop) {
  MachineBasicBlock *Bottom = Loop->getHeader();
  for (MachineBasicBlock *MBB : Loop->blocks())
    if (MBB->getNumber() > Bottom->getNumber())
      Bottom = MBB;
  return Bottom;
}

// Generate s_waitcnt instructions where needed.
void SIInsertWaitcnts::insertWaitcntInBlock(MachineFunction &MF,
                                            MachineBasicBlock &Block) {
  // Initialize the state information.
  mergeInputScoreBrackets(Block);

  BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&Block].get();

  DEBUG({
    dbgs() << "Block" << Block.getNumber();
    ScoreBrackets->dump();
  });

  // Walk over the instructions.
  for (MachineBasicBlock::iterator Iter = Block.begin(), E = Block.end();
       Iter != E;) {
    MachineInstr &Inst = *Iter;
    // Remove any previously existing waitcnts.
    if (Inst.getOpcode() == AMDGPU::S_WAITCNT) {
      // TODO: Register the old waitcnt and optimize the following waitcnts.
      // Leaving the previously existing waitcnts is conservatively correct.
      if (CompilerGeneratedWaitcntSet.find(&Inst) ==
          CompilerGeneratedWaitcntSet.end())
        ++Iter;
      else {
        ScoreBrackets->setWaitcnt(&Inst);
        ++Iter;
        Inst.removeFromParent();
      }
      continue;
    }

    // Kill instructions generate a conditional branch to the endmain block.
    // Merge the current waitcnt state into the endmain block information.
    // TODO: Are there other flavors of KILL instruction?
    if (Inst.getOpcode() == AMDGPU::KILL) {
      addKillWaitBracket(ScoreBrackets);
    }

    bool VCCZBugWorkAround = false;
    if (readsVCCZ(Inst) &&
        (VCCZBugHandledSet.find(&Inst) == VCCZBugHandledSet.end())) {
      if (ScoreBrackets->getScoreLB(LGKM_CNT) <
              ScoreBrackets->getScoreUB(LGKM_CNT) &&
          ScoreBrackets->hasPendingSMEM()) {
        if (ST->getGeneration() <= SISubtarget::SEA_ISLANDS)
          VCCZBugWorkAround = true;
      }
    }

    // Generate an s_waitcnt instruction to be placed before
    // cur_Inst, if needed.
    MachineInstr *SWaitInst = generateSWaitCntInstBefore(Inst, ScoreBrackets);

    if (SWaitInst) {
      Block.insert(Inst, SWaitInst);
      if (ScoreBrackets->getWaitcnt() != SWaitInst) {
        DEBUG(dbgs() << "insertWaitcntInBlock\n"
                     << "Old Instr: " << Inst << '\n'
                     << "New Instr: " << *SWaitInst << '\n';);
      }
    }

    updateEventWaitCntAfter(Inst, ScoreBrackets);

#if 0 // TODO: implement resource type check controlled by options with ub = LB.
    // If this instruction generates a S_SETVSKIP because it is an
    // indexed resource, and we are on Tahiti, then it will also force
    // an S_WAITCNT vmcnt(0)
    if (RequireCheckResourceType(Inst, context)) {
      // Force the score to as if an S_WAITCNT vmcnt(0) is emitted.
      ScoreBrackets->setScoreLB(VM_CNT,
      ScoreBrackets->getScoreUB(VM_CNT));
    }
#endif

    ScoreBrackets->clearWaitcnt();

    if (SWaitInst) {
      DEBUG({ SWaitInst->print(dbgs() << '\n'); });
    }
    DEBUG({
      Inst.print(dbgs());
      ScoreBrackets->dump();
    });

    // Check to see if this is a GWS instruction. If so, and if this is CI or
    // VI, then the generated code sequence will include an S_WAITCNT 0.
    // TODO: Are these the only GWS instructions?
    if (Inst.getOpcode() == AMDGPU::DS_GWS_INIT ||
        Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_V ||
        Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_BR ||
        Inst.getOpcode() == AMDGPU::DS_GWS_SEMA_P ||
        Inst.getOpcode() == AMDGPU::DS_GWS_BARRIER) {
      // TODO: && context->target_info->GwsRequiresMemViolTest() ) {
      ScoreBrackets->updateByWait(VM_CNT, ScoreBrackets->getScoreUB(VM_CNT));
      ScoreBrackets->updateByWait(EXP_CNT, ScoreBrackets->getScoreUB(EXP_CNT));
      ScoreBrackets->updateByWait(LGKM_CNT,
                                  ScoreBrackets->getScoreUB(LGKM_CNT));
    }

    // TODO: Remove this work-around after fixing the scheduler and enable the
    // assert above.
    if (VCCZBugWorkAround) {
      // Restore the vccz bit.  Any time a value is written to vcc, the vcc
      // bit is updated, so we can restore the bit by reading the value of
      // vcc and then writing it back to the register.
      BuildMI(Block, Inst, Inst.getDebugLoc(), TII->get(AMDGPU::S_MOV_B64),
              AMDGPU::VCC)
          .addReg(AMDGPU::VCC);
      VCCZBugHandledSet.insert(&Inst);
    }

    ++Iter;
  }

  // Check if we need to force convergence at loop footer.
  MachineLoop *ContainingLoop = MLI->getLoopFor(&Block);
  if (ContainingLoop && loopBottom(ContainingLoop) == &Block) {
    LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get();
    WaitcntData->print();
    DEBUG(dbgs() << '\n';);

    // The iterative waitcnt insertion algorithm aims for optimal waitcnt
    // placement and doesn't always guarantee convergence for a loop. Each
    // loop should take at most 2 iterations for it to converge naturally.
    // When this max is reached and result doesn't converge, we force
    // convergence by inserting a s_waitcnt at the end of loop footer.
    if (WaitcntData->getIterCnt() > 2) {
      // To ensure convergence, need to make wait events at loop footer be no
      // more than those from the previous iteration.
      // As a simplification, Instead of tracking individual scores and
      // generate the precise wait count, just wait on 0.
      bool HasPending = false;
      MachineInstr *SWaitInst = WaitcntData->getWaitcnt();
      for (enum InstCounterType T = VM_CNT; T < NUM_INST_CNTS;
           T = (enum InstCounterType)(T + 1)) {
        if (ScoreBrackets->getScoreUB(T) > ScoreBrackets->getScoreLB(T)) {
          ScoreBrackets->setScoreLB(T, ScoreBrackets->getScoreUB(T));
          HasPending = true;
        }
      }

      if (HasPending) {
        if (!SWaitInst) {
          SWaitInst = Block.getParent()->CreateMachineInstr(
              TII->get(AMDGPU::S_WAITCNT), DebugLoc());
          CompilerGeneratedWaitcntSet.insert(SWaitInst);
          const MachineOperand &Op = MachineOperand::CreateImm(0);
          SWaitInst->addOperand(MF, Op);
#if 0 // TODO: Format the debug output
          OutputTransformBanner("insertWaitcntInBlock",0,"Create:",context);
          OutputTransformAdd(SWaitInst, context);
#endif
        }
#if 0 // TODO: ??
        _DEV( REPORTED_STATS->force_waitcnt_converge = 1; )
#endif
      }

      if (SWaitInst) {
        DEBUG({
          SWaitInst->print(dbgs());
          dbgs() << "\nAdjusted score board:";
          ScoreBrackets->dump();
        });

        // Add this waitcnt to the block. It is either newly created or
        // created in previous iterations and added back since block traversal
        // always remove waitcnt.
        insertWaitcntBeforeCF(Block, SWaitInst);
        WaitcntData->setWaitcnt(SWaitInst);
      }
    }
  }
}

bool SIInsertWaitcnts::runOnMachineFunction(MachineFunction &MF) {
  ST = &MF.getSubtarget<SISubtarget>();
  TII = ST->getInstrInfo();
  TRI = &TII->getRegisterInfo();
  MRI = &MF.getRegInfo();
  MLI = &getAnalysis<MachineLoopInfo>();
  IV = AMDGPU::IsaInfo::getIsaVersion(ST->getFeatureBits());
  const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
  AMDGPUASI = ST->getAMDGPUAS();

  HardwareLimits.VmcntMax = AMDGPU::getVmcntBitMask(IV);
  HardwareLimits.ExpcntMax = AMDGPU::getExpcntBitMask(IV);
  HardwareLimits.LgkmcntMax = AMDGPU::getLgkmcntBitMask(IV);

  HardwareLimits.NumVGPRsMax = ST->getAddressableNumVGPRs();
  HardwareLimits.NumSGPRsMax = ST->getAddressableNumSGPRs();
  assert(HardwareLimits.NumVGPRsMax <= SQ_MAX_PGM_VGPRS);
  assert(HardwareLimits.NumSGPRsMax <= SQ_MAX_PGM_SGPRS);

  RegisterEncoding.VGPR0 = TRI->getEncodingValue(AMDGPU::VGPR0);
  RegisterEncoding.VGPRL =
      RegisterEncoding.VGPR0 + HardwareLimits.NumVGPRsMax - 1;
  RegisterEncoding.SGPR0 = TRI->getEncodingValue(AMDGPU::SGPR0);
  RegisterEncoding.SGPRL =
      RegisterEncoding.SGPR0 + HardwareLimits.NumSGPRsMax - 1;

  // Walk over the blocks in reverse post-dominator order, inserting
  // s_waitcnt where needed.
  ReversePostOrderTraversal<MachineFunction *> RPOT(&MF);
  bool Modified = false;
  for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator
           I = RPOT.begin(),
           E = RPOT.end(), J = RPOT.begin();
       I != E;) {
    MachineBasicBlock &MBB = **I;

    BlockVisitedSet.insert(&MBB);

    BlockWaitcntBrackets *ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get();
    if (!ScoreBrackets) {
      BlockWaitcntBracketsMap[&MBB] = llvm::make_unique<BlockWaitcntBrackets>();
      ScoreBrackets = BlockWaitcntBracketsMap[&MBB].get();
    }
    ScoreBrackets->setPostOrder(MBB.getNumber());
    MachineLoop *ContainingLoop = MLI->getLoopFor(&MBB);
    if (ContainingLoop && LoopWaitcntDataMap[ContainingLoop] == nullptr)
      LoopWaitcntDataMap[ContainingLoop] = llvm::make_unique<LoopWaitcntData>();

    // If we are walking into the block from before the loop, then guarantee
    // at least 1 re-walk over the loop to propagate the information, even if
    // no S_WAITCNT instructions were generated.
    if (ContainingLoop && ContainingLoop->getHeader() == &MBB && J < I &&
        (BlockWaitcntProcessedSet.find(&MBB) ==
         BlockWaitcntProcessedSet.end())) {
      BlockWaitcntBracketsMap[&MBB]->setRevisitLoop(true);
      DEBUG(dbgs() << "set-revisit: block"
                   << ContainingLoop->getHeader()->getNumber() << '\n';);
    }

    // Walk over the instructions.
    insertWaitcntInBlock(MF, MBB);

    // Flag that waitcnts have been processed at least once.
    BlockWaitcntProcessedSet.insert(&MBB);

    // See if we want to revisit the loop.
    if (ContainingLoop && loopBottom(ContainingLoop) == &MBB) {
      MachineBasicBlock *EntryBB = ContainingLoop->getHeader();
      BlockWaitcntBrackets *EntrySB = BlockWaitcntBracketsMap[EntryBB].get();
      if (EntrySB && EntrySB->getRevisitLoop()) {
        EntrySB->setRevisitLoop(false);
        J = I;
        int32_t PostOrder = EntrySB->getPostOrder();
        // TODO: Avoid this loop. Find another way to set I.
        for (ReversePostOrderTraversal<MachineFunction *>::rpo_iterator
                 X = RPOT.begin(),
                 Y = RPOT.end();
             X != Y; ++X) {
          MachineBasicBlock &MBBX = **X;
          if (MBBX.getNumber() == PostOrder) {
            I = X;
            break;
          }
        }
        LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get();
        WaitcntData->incIterCnt();
        DEBUG(dbgs() << "revisit: block" << EntryBB->getNumber() << '\n';);
        continue;
      } else {
        LoopWaitcntData *WaitcntData = LoopWaitcntDataMap[ContainingLoop].get();
        // Loop converged, reset iteration count. If this loop gets revisited,
        // it must be from an outer loop, the counter will restart, this will
        // ensure we don't force convergence on such revisits.
        WaitcntData->resetIterCnt();
      }
    }

    J = I;
    ++I;
  }

  SmallVector<MachineBasicBlock *, 4> EndPgmBlocks;

  bool HaveScalarStores = false;

  for (MachineFunction::iterator BI = MF.begin(), BE = MF.end(); BI != BE;
       ++BI) {
    MachineBasicBlock &MBB = *BI;

    for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end(); I != E;
         ++I) {
      if (!HaveScalarStores && TII->isScalarStore(*I))
        HaveScalarStores = true;

      if (I->getOpcode() == AMDGPU::S_ENDPGM ||
          I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG)
        EndPgmBlocks.push_back(&MBB);
    }
  }

  if (HaveScalarStores) {
    // If scalar writes are used, the cache must be flushed or else the next
    // wave to reuse the same scratch memory can be clobbered.
    //
    // Insert s_dcache_wb at wave termination points if there were any scalar
    // stores, and only if the cache hasn't already been flushed. This could be
    // improved by looking across blocks for flushes in postdominating blocks
    // from the stores but an explicitly requested flush is probably very rare.
    for (MachineBasicBlock *MBB : EndPgmBlocks) {
      bool SeenDCacheWB = false;

      for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
           ++I) {
        if (I->getOpcode() == AMDGPU::S_DCACHE_WB)
          SeenDCacheWB = true;
        else if (TII->isScalarStore(*I))
          SeenDCacheWB = false;

        // FIXME: It would be better to insert this before a waitcnt if any.
        if ((I->getOpcode() == AMDGPU::S_ENDPGM ||
             I->getOpcode() == AMDGPU::SI_RETURN_TO_EPILOG) &&
            !SeenDCacheWB) {
          Modified = true;
          BuildMI(*MBB, I, I->getDebugLoc(), TII->get(AMDGPU::S_DCACHE_WB));
        }
      }
    }
  }

  if (!MFI->isEntryFunction()) {
    // Wait for any outstanding memory operations that the input registers may
    // depend on. We can't track them and it's better to to the wait after the
    // costly call sequence.

    // TODO: Could insert earlier and schedule more liberally with operations
    // that only use caller preserved registers.
    MachineBasicBlock &EntryBB = MF.front();
    BuildMI(EntryBB, EntryBB.getFirstNonPHI(), DebugLoc(), TII->get(AMDGPU::S_WAITCNT))
      .addImm(0);

    Modified = true;
  }

  return Modified;
}