llvm.org GIT mirror llvm / release_60 lib / DebugInfo / DWARF / DWARFUnit.cpp
release_60

Tree @release_60 (Download .tar.gz)

DWARFUnit.cpp @release_60raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
//===- DWARFUnit.cpp ------------------------------------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//

#include "llvm/DebugInfo/DWARF/DWARFUnit.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallString.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/DebugInfo/DWARF/DWARFAbbreviationDeclaration.h"
#include "llvm/DebugInfo/DWARF/DWARFContext.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugAbbrev.h"
#include "llvm/DebugInfo/DWARF/DWARFDebugInfoEntry.h"
#include "llvm/DebugInfo/DWARF/DWARFDie.h"
#include "llvm/DebugInfo/DWARF/DWARFFormValue.h"
#include "llvm/Support/DataExtractor.h"
#include "llvm/Support/Path.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstdio>
#include <utility>
#include <vector>

using namespace llvm;
using namespace dwarf;

void DWARFUnitSectionBase::parse(DWARFContext &C, const DWARFSection &Section) {
  const DWARFObject &D = C.getDWARFObj();
  parseImpl(C, Section, C.getDebugAbbrev(), &D.getRangeSection(),
            D.getStringSection(), D.getStringOffsetSection(),
            &D.getAddrSection(), D.getLineSection(), D.isLittleEndian(), false,
            false);
}

void DWARFUnitSectionBase::parseDWO(DWARFContext &C,
                                    const DWARFSection &DWOSection, bool Lazy) {
  const DWARFObject &D = C.getDWARFObj();
  parseImpl(C, DWOSection, C.getDebugAbbrevDWO(), &D.getRangeDWOSection(),
            D.getStringDWOSection(), D.getStringOffsetDWOSection(),
            &D.getAddrSection(), D.getLineDWOSection(), C.isLittleEndian(),
            true, Lazy);
}

DWARFUnit::DWARFUnit(DWARFContext &DC, const DWARFSection &Section,
                     const DWARFDebugAbbrev *DA, const DWARFSection *RS,
                     StringRef SS, const DWARFSection &SOS,
                     const DWARFSection *AOS, const DWARFSection &LS, bool LE,
                     bool IsDWO, const DWARFUnitSectionBase &UnitSection,
                     const DWARFUnitIndex::Entry *IndexEntry)
    : Context(DC), InfoSection(Section), Abbrev(DA), RangeSection(RS),
      LineSection(LS), StringSection(SS), StringOffsetSection(SOS),
      AddrOffsetSection(AOS), isLittleEndian(LE), isDWO(IsDWO),
      UnitSection(UnitSection), IndexEntry(IndexEntry) {
  clear();
}

DWARFUnit::~DWARFUnit() = default;

DWARFDataExtractor DWARFUnit::getDebugInfoExtractor() const {
  return DWARFDataExtractor(Context.getDWARFObj(), InfoSection, isLittleEndian,
                            getAddressByteSize());
}

bool DWARFUnit::getAddrOffsetSectionItem(uint32_t Index,
                                                uint64_t &Result) const {
  uint32_t Offset = AddrOffsetSectionBase + Index * getAddressByteSize();
  if (AddrOffsetSection->Data.size() < Offset + getAddressByteSize())
    return false;
  DWARFDataExtractor DA(Context.getDWARFObj(), *AddrOffsetSection,
                        isLittleEndian, getAddressByteSize());
  Result = DA.getRelocatedAddress(&Offset);
  return true;
}

bool DWARFUnit::getStringOffsetSectionItem(uint32_t Index,
                                           uint64_t &Result) const {
  if (!StringOffsetsTableContribution)
    return false;
  unsigned ItemSize = getDwarfStringOffsetsByteSize();
  uint32_t Offset = getStringOffsetsBase() + Index * ItemSize;
  if (StringOffsetSection.Data.size() < Offset + ItemSize)
    return false;
  DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection,
                        isLittleEndian, 0);
  Result = DA.getRelocatedValue(ItemSize, &Offset);
  return true;
}

bool DWARFUnit::extractImpl(DataExtractor debug_info, uint32_t *offset_ptr) {
  Length = debug_info.getU32(offset_ptr);
  // FIXME: Support DWARF64.
  FormParams.Format = DWARF32;
  FormParams.Version = debug_info.getU16(offset_ptr);
  if (FormParams.Version >= 5) {
    UnitType = debug_info.getU8(offset_ptr);
    FormParams.AddrSize = debug_info.getU8(offset_ptr);
    AbbrOffset = debug_info.getU32(offset_ptr);
  } else {
    AbbrOffset = debug_info.getU32(offset_ptr);
    FormParams.AddrSize = debug_info.getU8(offset_ptr);
  }
  if (IndexEntry) {
    if (AbbrOffset)
      return false;
    auto *UnitContrib = IndexEntry->getOffset();
    if (!UnitContrib || UnitContrib->Length != (Length + 4))
      return false;
    auto *AbbrEntry = IndexEntry->getOffset(DW_SECT_ABBREV);
    if (!AbbrEntry)
      return false;
    AbbrOffset = AbbrEntry->Offset;
  }

  bool LengthOK = debug_info.isValidOffset(getNextUnitOffset() - 1);
  bool VersionOK = DWARFContext::isSupportedVersion(getVersion());
  bool AddrSizeOK = getAddressByteSize() == 4 || getAddressByteSize() == 8;

  if (!LengthOK || !VersionOK || !AddrSizeOK)
    return false;

  // Keep track of the highest DWARF version we encounter across all units.
  Context.setMaxVersionIfGreater(getVersion());
  return true;
}

bool DWARFUnit::extract(DataExtractor debug_info, uint32_t *offset_ptr) {
  clear();

  Offset = *offset_ptr;

  if (debug_info.isValidOffset(*offset_ptr)) {
    if (extractImpl(debug_info, offset_ptr))
      return true;

    // reset the offset to where we tried to parse from if anything went wrong
    *offset_ptr = Offset;
  }

  return false;
}

bool DWARFUnit::extractRangeList(uint32_t RangeListOffset,
                                 DWARFDebugRangeList &RangeList) const {
  // Require that compile unit is extracted.
  assert(!DieArray.empty());
  DWARFDataExtractor RangesData(Context.getDWARFObj(), *RangeSection,
                                isLittleEndian, getAddressByteSize());
  uint32_t ActualRangeListOffset = RangeSectionBase + RangeListOffset;
  return RangeList.extract(RangesData, &ActualRangeListOffset);
}

void DWARFUnit::clear() {
  Offset = 0;
  Length = 0;
  Abbrevs = nullptr;
  FormParams = DWARFFormParams({0, 0, DWARF32});
  BaseAddr.reset();
  RangeSectionBase = 0;
  AddrOffsetSectionBase = 0;
  clearDIEs(false);
  DWO.reset();
}

const char *DWARFUnit::getCompilationDir() {
  return dwarf::toString(getUnitDIE().find(DW_AT_comp_dir), nullptr);
}

Optional<uint64_t> DWARFUnit::getDWOId() {
  return toUnsigned(getUnitDIE().find(DW_AT_GNU_dwo_id));
}

void DWARFUnit::extractDIEsToVector(
    bool AppendCUDie, bool AppendNonCUDies,
    std::vector<DWARFDebugInfoEntry> &Dies) const {
  if (!AppendCUDie && !AppendNonCUDies)
    return;

  // Set the offset to that of the first DIE and calculate the start of the
  // next compilation unit header.
  uint32_t DIEOffset = Offset + getHeaderSize();
  uint32_t NextCUOffset = getNextUnitOffset();
  DWARFDebugInfoEntry DIE;
  DWARFDataExtractor DebugInfoData = getDebugInfoExtractor();
  uint32_t Depth = 0;
  bool IsCUDie = true;

  while (DIE.extractFast(*this, &DIEOffset, DebugInfoData, NextCUOffset,
                         Depth)) {
    if (IsCUDie) {
      if (AppendCUDie)
        Dies.push_back(DIE);
      if (!AppendNonCUDies)
        break;
      // The average bytes per DIE entry has been seen to be
      // around 14-20 so let's pre-reserve the needed memory for
      // our DIE entries accordingly.
      Dies.reserve(Dies.size() + getDebugInfoSize() / 14);
      IsCUDie = false;
    } else {
      Dies.push_back(DIE);
    }

    if (const DWARFAbbreviationDeclaration *AbbrDecl =
            DIE.getAbbreviationDeclarationPtr()) {
      // Normal DIE
      if (AbbrDecl->hasChildren())
        ++Depth;
    } else {
      // NULL DIE.
      if (Depth > 0)
        --Depth;
      if (Depth == 0)
        break;  // We are done with this compile unit!
    }
  }

  // Give a little bit of info if we encounter corrupt DWARF (our offset
  // should always terminate at or before the start of the next compilation
  // unit header).
  if (DIEOffset > NextCUOffset)
    fprintf(stderr, "warning: DWARF compile unit extends beyond its "
                    "bounds cu 0x%8.8x at 0x%8.8x'\n", getOffset(), DIEOffset);
}

size_t DWARFUnit::extractDIEsIfNeeded(bool CUDieOnly) {
  if ((CUDieOnly && !DieArray.empty()) ||
      DieArray.size() > 1)
    return 0; // Already parsed.

  bool HasCUDie = !DieArray.empty();
  extractDIEsToVector(!HasCUDie, !CUDieOnly, DieArray);

  if (DieArray.empty())
    return 0;

  // If CU DIE was just parsed, copy several attribute values from it.
  if (!HasCUDie) {
    DWARFDie UnitDie = getUnitDIE();
    Optional<DWARFFormValue> PC = UnitDie.find({DW_AT_low_pc, DW_AT_entry_pc});
    if (Optional<uint64_t> Addr = toAddress(PC))
        setBaseAddress({*Addr, PC->getSectionIndex()});

    if (!isDWO) {
      assert(AddrOffsetSectionBase == 0);
      assert(RangeSectionBase == 0);
      AddrOffsetSectionBase =
          toSectionOffset(UnitDie.find(DW_AT_GNU_addr_base), 0);
      RangeSectionBase = toSectionOffset(UnitDie.find(DW_AT_rnglists_base), 0);
    }

    // In general, in DWARF v5 and beyond we derive the start of the unit's
    // contribution to the string offsets table from the unit DIE's
    // DW_AT_str_offsets_base attribute. Split DWARF units do not use this
    // attribute, so we assume that there is a contribution to the string
    // offsets table starting at offset 0 of the debug_str_offsets.dwo section.
    // In both cases we need to determine the format of the contribution,
    // which may differ from the unit's format.
    uint64_t StringOffsetsContributionBase =
        isDWO ? 0 : toSectionOffset(UnitDie.find(DW_AT_str_offsets_base), 0);
    if (IndexEntry)
      if (const auto *C = IndexEntry->getOffset(DW_SECT_STR_OFFSETS))
        StringOffsetsContributionBase += C->Offset;

    DWARFDataExtractor DA(Context.getDWARFObj(), StringOffsetSection,
                          isLittleEndian, 0);
    if (isDWO)
      StringOffsetsTableContribution =
          determineStringOffsetsTableContributionDWO(
              DA, StringOffsetsContributionBase);
    else if (getVersion() >= 5)
      StringOffsetsTableContribution = determineStringOffsetsTableContribution(
          DA, StringOffsetsContributionBase);

    // Don't fall back to DW_AT_GNU_ranges_base: it should be ignored for
    // skeleton CU DIE, so that DWARF users not aware of it are not broken.
  }

  return DieArray.size();
}

bool DWARFUnit::parseDWO() {
  if (isDWO)
    return false;
  if (DWO.get())
    return false;
  DWARFDie UnitDie = getUnitDIE();
  if (!UnitDie)
    return false;
  auto DWOFileName = dwarf::toString(UnitDie.find(DW_AT_GNU_dwo_name));
  if (!DWOFileName)
    return false;
  auto CompilationDir = dwarf::toString(UnitDie.find(DW_AT_comp_dir));
  SmallString<16> AbsolutePath;
  if (sys::path::is_relative(*DWOFileName) && CompilationDir &&
      *CompilationDir) {
    sys::path::append(AbsolutePath, *CompilationDir);
  }
  sys::path::append(AbsolutePath, *DWOFileName);
  auto DWOId = getDWOId();
  if (!DWOId)
    return false;
  auto DWOContext = Context.getDWOContext(AbsolutePath);
  if (!DWOContext)
    return false;

  DWARFCompileUnit *DWOCU = DWOContext->getDWOCompileUnitForHash(*DWOId);
  if (!DWOCU)
    return false;
  DWO = std::shared_ptr<DWARFCompileUnit>(std::move(DWOContext), DWOCU);
  // Share .debug_addr and .debug_ranges section with compile unit in .dwo
  DWO->setAddrOffsetSection(AddrOffsetSection, AddrOffsetSectionBase);
  auto DWORangesBase = UnitDie.getRangesBaseAttribute();
  DWO->setRangesSection(RangeSection, DWORangesBase ? *DWORangesBase : 0);
  return true;
}

void DWARFUnit::clearDIEs(bool KeepCUDie) {
  if (DieArray.size() > (unsigned)KeepCUDie) {
    DieArray.resize((unsigned)KeepCUDie);
    DieArray.shrink_to_fit();
  }
}

void DWARFUnit::collectAddressRanges(DWARFAddressRangesVector &CURanges) {
  DWARFDie UnitDie = getUnitDIE();
  if (!UnitDie)
    return;
  // First, check if unit DIE describes address ranges for the whole unit.
  const auto &CUDIERanges = UnitDie.getAddressRanges();
  if (!CUDIERanges.empty()) {
    CURanges.insert(CURanges.end(), CUDIERanges.begin(), CUDIERanges.end());
    return;
  }

  // This function is usually called if there in no .debug_aranges section
  // in order to produce a compile unit level set of address ranges that
  // is accurate. If the DIEs weren't parsed, then we don't want all dies for
  // all compile units to stay loaded when they weren't needed. So we can end
  // up parsing the DWARF and then throwing them all away to keep memory usage
  // down.
  const bool ClearDIEs = extractDIEsIfNeeded(false) > 1;
  getUnitDIE().collectChildrenAddressRanges(CURanges);

  // Collect address ranges from DIEs in .dwo if necessary.
  bool DWOCreated = parseDWO();
  if (DWO)
    DWO->collectAddressRanges(CURanges);
  if (DWOCreated)
    DWO.reset();

  // Keep memory down by clearing DIEs if this generate function
  // caused them to be parsed.
  if (ClearDIEs)
    clearDIEs(true);
}

// Populates a map from PC addresses to subprogram DIEs.
//
// This routine tries to look at the smallest amount of the debug info it can
// to locate the DIEs. This is because many subprograms will never end up being
// read or needed at all. We want to be as lazy as possible.
void DWARFUnit::buildSubprogramDIEAddrMap() {
  assert(SubprogramDIEAddrMap.empty() && "Must only build this map once!");
  SmallVector<DWARFDie, 16> Worklist;
  Worklist.push_back(getUnitDIE());
  do {
    DWARFDie Die = Worklist.pop_back_val();

    // Queue up child DIEs to recurse through.
    // FIXME: This causes us to read a lot more debug info than we really need.
    // We should look at pruning out DIEs which cannot transitively hold
    // separate subprograms.
    for (DWARFDie Child : Die.children())
      Worklist.push_back(Child);

    // If handling a non-subprogram DIE, nothing else to do.
    if (!Die.isSubprogramDIE())
      continue;

    // For subprogram DIEs, store them, and insert relevant markers into the
    // address map. We don't care about overlap at all here as DWARF doesn't
    // meaningfully support that, so we simply will insert a range with no DIE
    // starting from the high PC. In the event there are overlaps, sorting
    // these may truncate things in surprising ways but still will allow
    // lookups to proceed.
    int DIEIndex = SubprogramDIEAddrInfos.size();
    SubprogramDIEAddrInfos.push_back({Die, (uint64_t)-1, {}});
    for (const auto &R : Die.getAddressRanges()) {
      // Ignore 0-sized ranges.
      if (R.LowPC == R.HighPC)
        continue;

      SubprogramDIEAddrMap.push_back({R.LowPC, DIEIndex});
      SubprogramDIEAddrMap.push_back({R.HighPC, -1});

      if (R.LowPC < SubprogramDIEAddrInfos.back().SubprogramBasePC)
        SubprogramDIEAddrInfos.back().SubprogramBasePC = R.LowPC;
    }
  } while (!Worklist.empty());

  if (SubprogramDIEAddrMap.empty()) {
    // If we found no ranges, create a no-op map so that lookups remain simple
    // but never find anything.
    SubprogramDIEAddrMap.push_back({0, -1});
    return;
  }

  // Next, sort the ranges and remove both exact duplicates and runs with the
  // same DIE index. We order the ranges so that non-empty ranges are
  // preferred. Because there may be ties, we also need to use stable sort.
  std::stable_sort(SubprogramDIEAddrMap.begin(), SubprogramDIEAddrMap.end(),
                   [](const std::pair<uint64_t, int64_t> &LHS,
                      const std::pair<uint64_t, int64_t> &RHS) {
                     if (LHS.first < RHS.first)
                       return true;
                     if (LHS.first > RHS.first)
                       return false;

                     // For ranges that start at the same address, keep the one
                     // with a DIE.
                     if (LHS.second != -1 && RHS.second == -1)
                       return true;

                     return false;
                   });
  SubprogramDIEAddrMap.erase(
      std::unique(SubprogramDIEAddrMap.begin(), SubprogramDIEAddrMap.end(),
                  [](const std::pair<uint64_t, int64_t> &LHS,
                     const std::pair<uint64_t, int64_t> &RHS) {
                    // If the start addresses are exactly the same, we can
                    // remove all but the first one as it is the only one that
                    // will be found and used.
                    //
                    // If the DIE indices are the same, we can "merge" the
                    // ranges by eliminating the second.
                    return LHS.first == RHS.first || LHS.second == RHS.second;
                  }),
      SubprogramDIEAddrMap.end());

  assert(SubprogramDIEAddrMap.back().second == -1 &&
         "The last interval must not have a DIE as each DIE's address range is "
         "bounded.");
}

// Build the second level of mapping from PC to DIE, specifically one that maps
// a PC *within* a particular DWARF subprogram into a precise, maximally nested
// inlined subroutine DIE (if any exists). We build a separate map for each
// subprogram because many subprograms will never get queried for an address
// and this allows us to be significantly lazier in reading the DWARF itself.
void DWARFUnit::buildInlinedSubroutineDIEAddrMap(
    SubprogramDIEAddrInfo &SPInfo) {
  auto &AddrMap = SPInfo.InlinedSubroutineDIEAddrMap;
  uint64_t BasePC = SPInfo.SubprogramBasePC;

  auto SubroutineAddrMapSorter = [](const std::pair<int, int> &LHS,
                                    const std::pair<int, int> &RHS) {
    if (LHS.first < RHS.first)
      return true;
    if (LHS.first > RHS.first)
      return false;

    // For ranges that start at the same address, keep the
    // non-empty one.
    if (LHS.second != -1 && RHS.second == -1)
      return true;

    return false;
  };
  auto SubroutineAddrMapUniquer = [](const std::pair<int, int> &LHS,
                                     const std::pair<int, int> &RHS) {
    // If the start addresses are exactly the same, we can
    // remove all but the first one as it is the only one that
    // will be found and used.
    //
    // If the DIE indices are the same, we can "merge" the
    // ranges by eliminating the second.
    return LHS.first == RHS.first || LHS.second == RHS.second;
  };

  struct DieAndParentIntervalRange {
    DWARFDie Die;
    int ParentIntervalsBeginIdx, ParentIntervalsEndIdx;
  };

  SmallVector<DieAndParentIntervalRange, 16> Worklist;
  auto EnqueueChildDIEs = [&](const DWARFDie &Die, int ParentIntervalsBeginIdx,
                              int ParentIntervalsEndIdx) {
    for (DWARFDie Child : Die.children())
      Worklist.push_back(
          {Child, ParentIntervalsBeginIdx, ParentIntervalsEndIdx});
  };
  EnqueueChildDIEs(SPInfo.SubprogramDIE, 0, 0);
  while (!Worklist.empty()) {
    DWARFDie Die = Worklist.back().Die;
    int ParentIntervalsBeginIdx = Worklist.back().ParentIntervalsBeginIdx;
    int ParentIntervalsEndIdx = Worklist.back().ParentIntervalsEndIdx;
    Worklist.pop_back();

    // If we encounter a nested subprogram, simply ignore it. We map to
    // (disjoint) subprograms before arriving here and we don't want to examine
    // any inlined subroutines of an unrelated subpragram.
    if (Die.getTag() == DW_TAG_subprogram)
      continue;

    // For non-subroutines, just recurse to keep searching for inlined
    // subroutines.
    if (Die.getTag() != DW_TAG_inlined_subroutine) {
      EnqueueChildDIEs(Die, ParentIntervalsBeginIdx, ParentIntervalsEndIdx);
      continue;
    }

    // Capture the inlined subroutine DIE that we will reference from the map.
    int DIEIndex = InlinedSubroutineDIEs.size();
    InlinedSubroutineDIEs.push_back(Die);

    int DieIntervalsBeginIdx = AddrMap.size();
    // First collect the PC ranges for this DIE into our subroutine interval
    // map.
    for (auto R : Die.getAddressRanges()) {
      // Clamp the PCs to be above the base.
      R.LowPC = std::max(R.LowPC, BasePC);
      R.HighPC = std::max(R.HighPC, BasePC);
      // Compute relative PCs from the subprogram base and drop down to an
      // unsigned 32-bit int to represent them within the data structure. This
      // lets us cover a 4gb single subprogram. Because subprograms may be
      // partitioned into distant parts of a binary (think hot/cold
      // partitioning) we want to preserve as much as we can here without
      // burning extra memory. Past that, we will simply truncate and lose the
      // ability to map those PCs to a DIE more precise than the subprogram.
      const uint32_t MaxRelativePC = std::numeric_limits<uint32_t>::max();
      uint32_t RelativeLowPC = (R.LowPC - BasePC) > (uint64_t)MaxRelativePC
                                   ? MaxRelativePC
                                   : (uint32_t)(R.LowPC - BasePC);
      uint32_t RelativeHighPC = (R.HighPC - BasePC) > (uint64_t)MaxRelativePC
                                    ? MaxRelativePC
                                    : (uint32_t)(R.HighPC - BasePC);
      // Ignore empty or bogus ranges.
      if (RelativeLowPC >= RelativeHighPC)
        continue;
      AddrMap.push_back({RelativeLowPC, DIEIndex});
      AddrMap.push_back({RelativeHighPC, -1});
    }

    // If there are no address ranges, there is nothing to do to map into them
    // and there cannot be any child subroutine DIEs with address ranges of
    // interest as those would all be required to nest within this DIE's
    // non-existent ranges, so we can immediately continue to the next DIE in
    // the worklist.
    if (DieIntervalsBeginIdx == (int)AddrMap.size())
      continue;

    // The PCs from this DIE should never overlap, so we can easily sort them
    // here.
    std::sort(AddrMap.begin() + DieIntervalsBeginIdx, AddrMap.end(),
              SubroutineAddrMapSorter);
    // Remove any dead ranges. These should only come from "empty" ranges that
    // were clobbered by some other range.
    AddrMap.erase(std::unique(AddrMap.begin() + DieIntervalsBeginIdx,
                              AddrMap.end(), SubroutineAddrMapUniquer),
                  AddrMap.end());

    // Compute the end index of this DIE's addr map intervals.
    int DieIntervalsEndIdx = AddrMap.size();

    assert(DieIntervalsBeginIdx != DieIntervalsEndIdx &&
           "Must not have an empty map for this layer!");
    assert(AddrMap.back().second == -1 && "Must end with an empty range!");
    assert(std::is_sorted(AddrMap.begin() + DieIntervalsBeginIdx, AddrMap.end(),
                          less_first()) &&
           "Failed to sort this DIE's interals!");

    // If we have any parent intervals, walk the newly added ranges and find
    // the parent ranges they were inserted into. Both of these are sorted and
    // neither has any overlaps. We need to append new ranges to split up any
    // parent ranges these new ranges would overlap when we merge them.
    if (ParentIntervalsBeginIdx != ParentIntervalsEndIdx) {
      int ParentIntervalIdx = ParentIntervalsBeginIdx;
      for (int i = DieIntervalsBeginIdx, e = DieIntervalsEndIdx - 1; i < e;
           ++i) {
        const uint32_t IntervalStart = AddrMap[i].first;
        const uint32_t IntervalEnd = AddrMap[i + 1].first;
        const int IntervalDieIdx = AddrMap[i].second;
        if (IntervalDieIdx == -1) {
          // For empty intervals, nothing is required. This is a bit surprising
          // however. If the prior interval overlaps a parent interval and this
          // would be necessary to mark the end, we will synthesize a new end
          // that switches back to the parent DIE below. And this interval will
          // get dropped in favor of one with a DIE attached. However, we'll
          // still include this and so worst-case, it will still end the prior
          // interval.
          continue;
        }

        // We are walking the new ranges in order, so search forward from the
        // last point for a parent range that might overlap.
        auto ParentIntervalsRange =
            make_range(AddrMap.begin() + ParentIntervalIdx,
                       AddrMap.begin() + ParentIntervalsEndIdx);
        assert(std::is_sorted(ParentIntervalsRange.begin(),
                              ParentIntervalsRange.end(), less_first()) &&
               "Unsorted parent intervals can't be searched!");
        auto PI = std::upper_bound(
            ParentIntervalsRange.begin(), ParentIntervalsRange.end(),
            IntervalStart,
            [](uint32_t LHS, const std::pair<uint32_t, int32_t> &RHS) {
              return LHS < RHS.first;
            });
        if (PI == ParentIntervalsRange.begin() ||
            PI == ParentIntervalsRange.end())
          continue;

        ParentIntervalIdx = PI - AddrMap.begin();
        int32_t &ParentIntervalDieIdx = std::prev(PI)->second;
        uint32_t &ParentIntervalStart = std::prev(PI)->first;
        const uint32_t ParentIntervalEnd = PI->first;

        // If the new range starts exactly at the position of the parent range,
        // we need to adjust the parent range. Note that these collisions can
        // only happen with the original parent range because we will merge any
        // adjacent ranges in the child.
        if (IntervalStart == ParentIntervalStart) {
          // If there will be a tail, just shift the start of the parent
          // forward. Note that this cannot change the parent ordering.
          if (IntervalEnd < ParentIntervalEnd) {
            ParentIntervalStart = IntervalEnd;
            continue;
          }
          // Otherwise, mark this as becoming empty so we'll remove it and
          // prefer the child range.
          ParentIntervalDieIdx = -1;
          continue;
        }

        // Finally, if the parent interval will need to remain as a prefix to
        // this one, insert a new interval to cover any tail.
        if (IntervalEnd < ParentIntervalEnd)
          AddrMap.push_back({IntervalEnd, ParentIntervalDieIdx});
      }
    }

    // Note that we don't need to re-sort even this DIE's address map intervals
    // after this. All of the newly added intervals actually fill in *gaps* in
    // this DIE's address map, and we know that children won't need to lookup
    // into those gaps.

    // Recurse through its children, giving them the interval map range of this
    // DIE to use as their parent intervals.
    EnqueueChildDIEs(Die, DieIntervalsBeginIdx, DieIntervalsEndIdx);
  }

  if (AddrMap.empty()) {
    AddrMap.push_back({0, -1});
    return;
  }

  // Now that we've added all of the intervals needed, we need to resort and
  // unique them. Most notably, this will remove all the empty ranges that had
  // a parent range covering, etc. We only expect a single non-empty interval
  // at any given start point, so we just use std::sort. This could potentially
  // produce non-deterministic maps for invalid DWARF.
  std::sort(AddrMap.begin(), AddrMap.end(), SubroutineAddrMapSorter);
  AddrMap.erase(
      std::unique(AddrMap.begin(), AddrMap.end(), SubroutineAddrMapUniquer),
      AddrMap.end());
}

DWARFDie DWARFUnit::getSubroutineForAddress(uint64_t Address) {
  extractDIEsIfNeeded(false);

  // We use a two-level mapping structure to locate subroutines for a given PC
  // address.
  //
  // First, we map the address to a subprogram. This can be done more cheaply
  // because subprograms cannot nest within each other. It also allows us to
  // avoid detailed examination of many subprograms, instead only focusing on
  // the ones which we end up actively querying.
  if (SubprogramDIEAddrMap.empty())
    buildSubprogramDIEAddrMap();

  assert(!SubprogramDIEAddrMap.empty() &&
         "We must always end up with a non-empty map!");

  auto I = std::upper_bound(
      SubprogramDIEAddrMap.begin(), SubprogramDIEAddrMap.end(), Address,
      [](uint64_t LHS, const std::pair<uint64_t, int64_t> &RHS) {
        return LHS < RHS.first;
      });
  // If we find the beginning, then the address is before the first subprogram.
  if (I == SubprogramDIEAddrMap.begin())
    return DWARFDie();
  // Back up to the interval containing the address and see if it
  // has a DIE associated with it.
  --I;
  if (I->second == -1)
    return DWARFDie();

  auto &SPInfo = SubprogramDIEAddrInfos[I->second];

  // Now that we have the subprogram for this address, we do the second level
  // mapping by building a map within a subprogram's PC range to any specific
  // inlined subroutine.
  if (SPInfo.InlinedSubroutineDIEAddrMap.empty())
    buildInlinedSubroutineDIEAddrMap(SPInfo);

  // We lookup within the inlined subroutine using a subprogram-relative
  // address.
  assert(Address >= SPInfo.SubprogramBasePC &&
         "Address isn't above the start of the subprogram!");
  uint32_t RelativeAddr = ((Address - SPInfo.SubprogramBasePC) >
                           (uint64_t)std::numeric_limits<uint32_t>::max())
                              ? std::numeric_limits<uint32_t>::max()
                              : (uint32_t)(Address - SPInfo.SubprogramBasePC);

  auto J =
      std::upper_bound(SPInfo.InlinedSubroutineDIEAddrMap.begin(),
                       SPInfo.InlinedSubroutineDIEAddrMap.end(), RelativeAddr,
                       [](uint32_t LHS, const std::pair<uint32_t, int32_t> &RHS) {
                         return LHS < RHS.first;
                       });
  // If we find the beginning, the address is before any inlined subroutine so
  // return the subprogram DIE.
  if (J == SPInfo.InlinedSubroutineDIEAddrMap.begin())
    return SPInfo.SubprogramDIE;
  // Back up `J` and return the inlined subroutine if we have one or the
  // subprogram if we don't.
  --J;
  return J->second == -1 ? SPInfo.SubprogramDIE
                         : InlinedSubroutineDIEs[J->second];
}

void
DWARFUnit::getInlinedChainForAddress(uint64_t Address,
                                     SmallVectorImpl<DWARFDie> &InlinedChain) {
  assert(InlinedChain.empty());
  // Try to look for subprogram DIEs in the DWO file.
  parseDWO();
  // First, find the subroutine that contains the given address (the leaf
  // of inlined chain).
  DWARFDie SubroutineDIE =
      (DWO ? DWO.get() : this)->getSubroutineForAddress(Address);

  while (SubroutineDIE) {
    if (SubroutineDIE.isSubroutineDIE())
      InlinedChain.push_back(SubroutineDIE);
    SubroutineDIE  = SubroutineDIE.getParent();
  }
}

const DWARFUnitIndex &llvm::getDWARFUnitIndex(DWARFContext &Context,
                                              DWARFSectionKind Kind) {
  if (Kind == DW_SECT_INFO)
    return Context.getCUIndex();
  assert(Kind == DW_SECT_TYPES);
  return Context.getTUIndex();
}

DWARFDie DWARFUnit::getParent(const DWARFDebugInfoEntry *Die) {
  if (!Die)
    return DWARFDie();
  const uint32_t Depth = Die->getDepth();
  // Unit DIEs always have a depth of zero and never have parents.
  if (Depth == 0)
    return DWARFDie();
  // Depth of 1 always means parent is the compile/type unit.
  if (Depth == 1)
    return getUnitDIE();
  // Look for previous DIE with a depth that is one less than the Die's depth.
  const uint32_t ParentDepth = Depth - 1;
  for (uint32_t I = getDIEIndex(Die) - 1; I > 0; --I) {
    if (DieArray[I].getDepth() == ParentDepth)
      return DWARFDie(this, &DieArray[I]);
  }
  return DWARFDie();
}

DWARFDie DWARFUnit::getSibling(const DWARFDebugInfoEntry *Die) {
  if (!Die)
    return DWARFDie();
  uint32_t Depth = Die->getDepth();
  // Unit DIEs always have a depth of zero and never have siblings.
  if (Depth == 0)
    return DWARFDie();
  // NULL DIEs don't have siblings.
  if (Die->getAbbreviationDeclarationPtr() == nullptr)
    return DWARFDie();

  // Find the next DIE whose depth is the same as the Die's depth.
  for (size_t I = getDIEIndex(Die) + 1, EndIdx = DieArray.size(); I < EndIdx;
       ++I) {
    if (DieArray[I].getDepth() == Depth)
      return DWARFDie(this, &DieArray[I]);
  }
  return DWARFDie();
}

DWARFDie DWARFUnit::getFirstChild(const DWARFDebugInfoEntry *Die) {
  if (!Die->hasChildren())
    return DWARFDie();

  // We do not want access out of bounds when parsing corrupted debug data.
  size_t I = getDIEIndex(Die) + 1;
  if (I >= DieArray.size())
    return DWARFDie();
  return DWARFDie(this, &DieArray[I]);
}

const DWARFAbbreviationDeclarationSet *DWARFUnit::getAbbreviations() const {
  if (!Abbrevs)
    Abbrevs = Abbrev->getAbbreviationDeclarationSet(AbbrOffset);
  return Abbrevs;
}

Optional<StrOffsetsContributionDescriptor>
StrOffsetsContributionDescriptor::validateContributionSize(
    DWARFDataExtractor &DA) {
  uint8_t EntrySize = getDwarfOffsetByteSize();
  // In order to ensure that we don't read a partial record at the end of
  // the section we validate for a multiple of the entry size.
  uint64_t ValidationSize = alignTo(Size, EntrySize);
  // Guard against overflow.
  if (ValidationSize >= Size)
    if (DA.isValidOffsetForDataOfSize((uint32_t)Base, ValidationSize))
      return *this;
  return Optional<StrOffsetsContributionDescriptor>();
}

// Look for a DWARF64-formatted contribution to the string offsets table
// starting at a given offset and record it in a descriptor.
static Optional<StrOffsetsContributionDescriptor>
parseDWARF64StringOffsetsTableHeader(DWARFDataExtractor &DA, uint32_t Offset) {
  if (!DA.isValidOffsetForDataOfSize(Offset, 16))
    return Optional<StrOffsetsContributionDescriptor>();

  if (DA.getU32(&Offset) != 0xffffffff)
    return Optional<StrOffsetsContributionDescriptor>();

  uint64_t Size = DA.getU64(&Offset);
  uint8_t Version = DA.getU16(&Offset);
  (void)DA.getU16(&Offset); // padding
  return StrOffsetsContributionDescriptor(Offset, Size, Version, DWARF64);
  //return Optional<StrOffsetsContributionDescriptor>(Descriptor);
}

// Look for a DWARF32-formatted contribution to the string offsets table
// starting at a given offset and record it in a descriptor.
static Optional<StrOffsetsContributionDescriptor>
parseDWARF32StringOffsetsTableHeader(DWARFDataExtractor &DA, uint32_t Offset) {
  if (!DA.isValidOffsetForDataOfSize(Offset, 8))
    return Optional<StrOffsetsContributionDescriptor>();
  uint32_t ContributionSize = DA.getU32(&Offset);
  if (ContributionSize >= 0xfffffff0)
    return Optional<StrOffsetsContributionDescriptor>();
  uint8_t Version = DA.getU16(&Offset);
  (void)DA.getU16(&Offset); // padding
  return StrOffsetsContributionDescriptor(Offset, ContributionSize, Version, DWARF32);
  //return Optional<StrOffsetsContributionDescriptor>(Descriptor);
}

Optional<StrOffsetsContributionDescriptor>
DWARFUnit::determineStringOffsetsTableContribution(DWARFDataExtractor &DA,
                                                   uint64_t Offset) {
  Optional<StrOffsetsContributionDescriptor> Descriptor;
  // Attempt to find a DWARF64 contribution 16 bytes before the base.
  if (Offset >= 16)
    Descriptor =
        parseDWARF64StringOffsetsTableHeader(DA, (uint32_t)Offset - 16);
  // Try to find a DWARF32 contribution 8 bytes before the base.
  if (!Descriptor && Offset >= 8)
    Descriptor = parseDWARF32StringOffsetsTableHeader(DA, (uint32_t)Offset - 8);
  return Descriptor ? Descriptor->validateContributionSize(DA) : Descriptor;
}

Optional<StrOffsetsContributionDescriptor>
DWARFUnit::determineStringOffsetsTableContributionDWO(DWARFDataExtractor &DA,
                                                      uint64_t Offset) {
  if (getVersion() >= 5) {
    // Look for a valid contribution at the given offset.
    auto Descriptor =
        parseDWARF64StringOffsetsTableHeader(DA, (uint32_t)Offset);
    if (!Descriptor)
      Descriptor = parseDWARF32StringOffsetsTableHeader(DA, (uint32_t)Offset);
    return Descriptor ? Descriptor->validateContributionSize(DA) : Descriptor;
  }
  // Prior to DWARF v5, we derive the contribution size from the
  // index table (in a package file). In a .dwo file it is simply
  // the length of the string offsets section.
  uint64_t Size = 0;
  if (!IndexEntry)
    Size = StringOffsetSection.Data.size();
  else if (const auto *C = IndexEntry->getOffset(DW_SECT_STR_OFFSETS))
    Size = C->Length;
  // Return a descriptor with the given offset as base, version 4 and
  // DWARF32 format.
  //return Optional<StrOffsetsContributionDescriptor>(
      //StrOffsetsContributionDescriptor(Offset, Size, 4, DWARF32));
  return StrOffsetsContributionDescriptor(Offset, Size, 4, DWARF32);
}