llvm.org GIT mirror llvm / release_60 lib / Analysis / DemandedBits.cpp
release_60

Tree @release_60 (Download .tar.gz)

DemandedBits.cpp @release_60raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
//===- DemandedBits.cpp - Determine demanded bits -------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass implements a demanded bits analysis. A demanded bit is one that
// contributes to a result; bits that are not demanded can be either zero or
// one without affecting control or data flow. For example in this sequence:
//
//   %1 = add i32 %x, %y
//   %2 = trunc i32 %1 to i16
//
// Only the lowest 16 bits of %1 are demanded; the rest are removed by the
// trunc.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/DemandedBits.h"
#include "llvm/ADT/APInt.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/Operator.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Use.h"
#include "llvm/Pass.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/KnownBits.h"
#include "llvm/Support/raw_ostream.h"
#include <algorithm>
#include <cstdint>

using namespace llvm;

#define DEBUG_TYPE "demanded-bits"

char DemandedBitsWrapperPass::ID = 0;

INITIALIZE_PASS_BEGIN(DemandedBitsWrapperPass, "demanded-bits",
                      "Demanded bits analysis", false, false)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_END(DemandedBitsWrapperPass, "demanded-bits",
                    "Demanded bits analysis", false, false)

DemandedBitsWrapperPass::DemandedBitsWrapperPass() : FunctionPass(ID) {
  initializeDemandedBitsWrapperPassPass(*PassRegistry::getPassRegistry());
}

void DemandedBitsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesCFG();
  AU.addRequired<AssumptionCacheTracker>();
  AU.addRequired<DominatorTreeWrapperPass>();
  AU.setPreservesAll();
}

void DemandedBitsWrapperPass::print(raw_ostream &OS, const Module *M) const {
  DB->print(OS);
}

static bool isAlwaysLive(Instruction *I) {
  return isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I) ||
      I->isEHPad() || I->mayHaveSideEffects();
}

void DemandedBits::determineLiveOperandBits(
    const Instruction *UserI, const Instruction *I, unsigned OperandNo,
    const APInt &AOut, APInt &AB, KnownBits &Known, KnownBits &Known2) {
  unsigned BitWidth = AB.getBitWidth();

  // We're called once per operand, but for some instructions, we need to
  // compute known bits of both operands in order to determine the live bits of
  // either (when both operands are instructions themselves). We don't,
  // however, want to do this twice, so we cache the result in APInts that live
  // in the caller. For the two-relevant-operands case, both operand values are
  // provided here.
  auto ComputeKnownBits =
      [&](unsigned BitWidth, const Value *V1, const Value *V2) {
        const DataLayout &DL = I->getModule()->getDataLayout();
        Known = KnownBits(BitWidth);
        computeKnownBits(V1, Known, DL, 0, &AC, UserI, &DT);

        if (V2) {
          Known2 = KnownBits(BitWidth);
          computeKnownBits(V2, Known2, DL, 0, &AC, UserI, &DT);
        }
      };

  switch (UserI->getOpcode()) {
  default: break;
  case Instruction::Call:
  case Instruction::Invoke:
    if (const IntrinsicInst *II = dyn_cast<IntrinsicInst>(UserI))
      switch (II->getIntrinsicID()) {
      default: break;
      case Intrinsic::bswap:
        // The alive bits of the input are the swapped alive bits of
        // the output.
        AB = AOut.byteSwap();
        break;
      case Intrinsic::bitreverse:
        // The alive bits of the input are the reversed alive bits of
        // the output.
        AB = AOut.reverseBits();
        break;
      case Intrinsic::ctlz:
        if (OperandNo == 0) {
          // We need some output bits, so we need all bits of the
          // input to the left of, and including, the leftmost bit
          // known to be one.
          ComputeKnownBits(BitWidth, I, nullptr);
          AB = APInt::getHighBitsSet(BitWidth,
                 std::min(BitWidth, Known.countMaxLeadingZeros()+1));
        }
        break;
      case Intrinsic::cttz:
        if (OperandNo == 0) {
          // We need some output bits, so we need all bits of the
          // input to the right of, and including, the rightmost bit
          // known to be one.
          ComputeKnownBits(BitWidth, I, nullptr);
          AB = APInt::getLowBitsSet(BitWidth,
                 std::min(BitWidth, Known.countMaxTrailingZeros()+1));
        }
        break;
      }
    break;
  case Instruction::Add:
  case Instruction::Sub:
  case Instruction::Mul:
    // Find the highest live output bit. We don't need any more input
    // bits than that (adds, and thus subtracts, ripple only to the
    // left).
    AB = APInt::getLowBitsSet(BitWidth, AOut.getActiveBits());
    break;
  case Instruction::Shl:
    if (OperandNo == 0)
      if (auto *ShiftAmtC = dyn_cast<ConstantInt>(UserI->getOperand(1))) {
        uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
        AB = AOut.lshr(ShiftAmt);

        // If the shift is nuw/nsw, then the high bits are not dead
        // (because we've promised that they *must* be zero).
        const ShlOperator *S = cast<ShlOperator>(UserI);
        if (S->hasNoSignedWrap())
          AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt+1);
        else if (S->hasNoUnsignedWrap())
          AB |= APInt::getHighBitsSet(BitWidth, ShiftAmt);
      }
    break;
  case Instruction::LShr:
    if (OperandNo == 0)
      if (auto *ShiftAmtC = dyn_cast<ConstantInt>(UserI->getOperand(1))) {
        uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
        AB = AOut.shl(ShiftAmt);

        // If the shift is exact, then the low bits are not dead
        // (they must be zero).
        if (cast<LShrOperator>(UserI)->isExact())
          AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
      }
    break;
  case Instruction::AShr:
    if (OperandNo == 0)
      if (auto *ShiftAmtC = dyn_cast<ConstantInt>(UserI->getOperand(1))) {
        uint64_t ShiftAmt = ShiftAmtC->getLimitedValue(BitWidth - 1);
        AB = AOut.shl(ShiftAmt);
        // Because the high input bit is replicated into the
        // high-order bits of the result, if we need any of those
        // bits, then we must keep the highest input bit.
        if ((AOut & APInt::getHighBitsSet(BitWidth, ShiftAmt))
            .getBoolValue())
          AB.setSignBit();

        // If the shift is exact, then the low bits are not dead
        // (they must be zero).
        if (cast<AShrOperator>(UserI)->isExact())
          AB |= APInt::getLowBitsSet(BitWidth, ShiftAmt);
      }
    break;
  case Instruction::And:
    AB = AOut;

    // For bits that are known zero, the corresponding bits in the
    // other operand are dead (unless they're both zero, in which
    // case they can't both be dead, so just mark the LHS bits as
    // dead).
    if (OperandNo == 0) {
      ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
      AB &= ~Known2.Zero;
    } else {
      if (!isa<Instruction>(UserI->getOperand(0)))
        ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
      AB &= ~(Known.Zero & ~Known2.Zero);
    }
    break;
  case Instruction::Or:
    AB = AOut;

    // For bits that are known one, the corresponding bits in the
    // other operand are dead (unless they're both one, in which
    // case they can't both be dead, so just mark the LHS bits as
    // dead).
    if (OperandNo == 0) {
      ComputeKnownBits(BitWidth, I, UserI->getOperand(1));
      AB &= ~Known2.One;
    } else {
      if (!isa<Instruction>(UserI->getOperand(0)))
        ComputeKnownBits(BitWidth, UserI->getOperand(0), I);
      AB &= ~(Known.One & ~Known2.One);
    }
    break;
  case Instruction::Xor:
  case Instruction::PHI:
    AB = AOut;
    break;
  case Instruction::Trunc:
    AB = AOut.zext(BitWidth);
    break;
  case Instruction::ZExt:
    AB = AOut.trunc(BitWidth);
    break;
  case Instruction::SExt:
    AB = AOut.trunc(BitWidth);
    // Because the high input bit is replicated into the
    // high-order bits of the result, if we need any of those
    // bits, then we must keep the highest input bit.
    if ((AOut & APInt::getHighBitsSet(AOut.getBitWidth(),
                                      AOut.getBitWidth() - BitWidth))
        .getBoolValue())
      AB.setSignBit();
    break;
  case Instruction::Select:
    if (OperandNo != 0)
      AB = AOut;
    break;
  }
}

bool DemandedBitsWrapperPass::runOnFunction(Function &F) {
  auto &AC = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
  auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
  DB.emplace(F, AC, DT);
  return false;
}

void DemandedBitsWrapperPass::releaseMemory() {
  DB.reset();
}

void DemandedBits::performAnalysis() {
  if (Analyzed)
    // Analysis already completed for this function.
    return;
  Analyzed = true;
  
  Visited.clear();
  AliveBits.clear();

  SmallVector<Instruction*, 128> Worklist;

  // Collect the set of "root" instructions that are known live.
  for (Instruction &I : instructions(F)) {
    if (!isAlwaysLive(&I))
      continue;

    DEBUG(dbgs() << "DemandedBits: Root: " << I << "\n");
    // For integer-valued instructions, set up an initial empty set of alive
    // bits and add the instruction to the work list. For other instructions
    // add their operands to the work list (for integer values operands, mark
    // all bits as live).
    if (IntegerType *IT = dyn_cast<IntegerType>(I.getType())) {
      if (AliveBits.try_emplace(&I, IT->getBitWidth(), 0).second)
        Worklist.push_back(&I);

      continue;
    }

    // Non-integer-typed instructions...
    for (Use &OI : I.operands()) {
      if (Instruction *J = dyn_cast<Instruction>(OI)) {
        if (IntegerType *IT = dyn_cast<IntegerType>(J->getType()))
          AliveBits[J] = APInt::getAllOnesValue(IT->getBitWidth());
        Worklist.push_back(J);
      }
    }
    // To save memory, we don't add I to the Visited set here. Instead, we
    // check isAlwaysLive on every instruction when searching for dead
    // instructions later (we need to check isAlwaysLive for the
    // integer-typed instructions anyway).
  }

  // Propagate liveness backwards to operands.
  while (!Worklist.empty()) {
    Instruction *UserI = Worklist.pop_back_val();

    DEBUG(dbgs() << "DemandedBits: Visiting: " << *UserI);
    APInt AOut;
    if (UserI->getType()->isIntegerTy()) {
      AOut = AliveBits[UserI];
      DEBUG(dbgs() << " Alive Out: " << AOut);
    }
    DEBUG(dbgs() << "\n");

    if (!UserI->getType()->isIntegerTy())
      Visited.insert(UserI);

    KnownBits Known, Known2;
    // Compute the set of alive bits for each operand. These are anded into the
    // existing set, if any, and if that changes the set of alive bits, the
    // operand is added to the work-list.
    for (Use &OI : UserI->operands()) {
      if (Instruction *I = dyn_cast<Instruction>(OI)) {
        if (IntegerType *IT = dyn_cast<IntegerType>(I->getType())) {
          unsigned BitWidth = IT->getBitWidth();
          APInt AB = APInt::getAllOnesValue(BitWidth);
          if (UserI->getType()->isIntegerTy() && !AOut &&
              !isAlwaysLive(UserI)) {
            AB = APInt(BitWidth, 0);
          } else {
            // If all bits of the output are dead, then all bits of the input
            // Bits of each operand that are used to compute alive bits of the
            // output are alive, all others are dead.
            determineLiveOperandBits(UserI, I, OI.getOperandNo(), AOut, AB,
                                     Known, Known2);
          }

          // If we've added to the set of alive bits (or the operand has not
          // been previously visited), then re-queue the operand to be visited
          // again.
          APInt ABPrev(BitWidth, 0);
          auto ABI = AliveBits.find(I);
          if (ABI != AliveBits.end())
            ABPrev = ABI->second;

          APInt ABNew = AB | ABPrev;
          if (ABNew != ABPrev || ABI == AliveBits.end()) {
            AliveBits[I] = std::move(ABNew);
            Worklist.push_back(I);
          }
        } else if (!Visited.count(I)) {
          Worklist.push_back(I);
        }
      }
    }
  }
}

APInt DemandedBits::getDemandedBits(Instruction *I) {
  performAnalysis();
  
  const DataLayout &DL = I->getModule()->getDataLayout();
  auto Found = AliveBits.find(I);
  if (Found != AliveBits.end())
    return Found->second;
  return APInt::getAllOnesValue(DL.getTypeSizeInBits(I->getType()));
}

bool DemandedBits::isInstructionDead(Instruction *I) {
  performAnalysis();

  return !Visited.count(I) && AliveBits.find(I) == AliveBits.end() &&
    !isAlwaysLive(I);
}

void DemandedBits::print(raw_ostream &OS) {
  performAnalysis();
  for (auto &KV : AliveBits) {
    OS << "DemandedBits: 0x" << Twine::utohexstr(KV.second.getLimitedValue())
       << " for " << *KV.first << '\n';
  }
}

FunctionPass *llvm::createDemandedBitsWrapperPass() {
  return new DemandedBitsWrapperPass();
}

AnalysisKey DemandedBitsAnalysis::Key;

DemandedBits DemandedBitsAnalysis::run(Function &F,
                                             FunctionAnalysisManager &AM) {
  auto &AC = AM.getResult<AssumptionAnalysis>(F);
  auto &DT = AM.getResult<DominatorTreeAnalysis>(F);
  return DemandedBits(F, AC, DT);
}

PreservedAnalyses DemandedBitsPrinterPass::run(Function &F,
                                               FunctionAnalysisManager &AM) {
  AM.getResult<DemandedBitsAnalysis>(F).print(OS);
  return PreservedAnalyses::all();
}