llvm.org GIT mirror llvm / release_60 lib / Analysis / BranchProbabilityInfo.cpp
release_60

Tree @release_60 (Download .tar.gz)

BranchProbabilityInfo.cpp @release_60raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
//===- BranchProbabilityInfo.cpp - Branch Probability Analysis ------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Loops should be simplified before this analysis.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/ADT/PostOrderIterator.h"
#include "llvm/ADT/SCCIterator.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/PassManager.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Value.h"
#include "llvm/Pass.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include <cassert>
#include <cstdint>
#include <iterator>
#include <utility>

using namespace llvm;

#define DEBUG_TYPE "branch-prob"

static cl::opt<bool> PrintBranchProb(
    "print-bpi", cl::init(false), cl::Hidden,
    cl::desc("Print the branch probability info."));

cl::opt<std::string> PrintBranchProbFuncName(
    "print-bpi-func-name", cl::Hidden,
    cl::desc("The option to specify the name of the function "
             "whose branch probability info is printed."));

INITIALIZE_PASS_BEGIN(BranchProbabilityInfoWrapperPass, "branch-prob",
                      "Branch Probability Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(BranchProbabilityInfoWrapperPass, "branch-prob",
                    "Branch Probability Analysis", false, true)

char BranchProbabilityInfoWrapperPass::ID = 0;

// Weights are for internal use only. They are used by heuristics to help to
// estimate edges' probability. Example:
//
// Using "Loop Branch Heuristics" we predict weights of edges for the
// block BB2.
//         ...
//          |
//          V
//         BB1<-+
//          |   |
//          |   | (Weight = 124)
//          V   |
//         BB2--+
//          |
//          | (Weight = 4)
//          V
//         BB3
//
// Probability of the edge BB2->BB1 = 124 / (124 + 4) = 0.96875
// Probability of the edge BB2->BB3 = 4 / (124 + 4) = 0.03125
static const uint32_t LBH_TAKEN_WEIGHT = 124;
static const uint32_t LBH_NONTAKEN_WEIGHT = 4;

/// \brief Unreachable-terminating branch taken probability.
///
/// This is the probability for a branch being taken to a block that terminates
/// (eventually) in unreachable. These are predicted as unlikely as possible.
/// All reachable probability will equally share the remaining part.
static const BranchProbability UR_TAKEN_PROB = BranchProbability::getRaw(1);

/// \brief Weight for a branch taken going into a cold block.
///
/// This is the weight for a branch taken toward a block marked
/// cold.  A block is marked cold if it's postdominated by a
/// block containing a call to a cold function.  Cold functions
/// are those marked with attribute 'cold'.
static const uint32_t CC_TAKEN_WEIGHT = 4;

/// \brief Weight for a branch not-taken into a cold block.
///
/// This is the weight for a branch not taken toward a block marked
/// cold.
static const uint32_t CC_NONTAKEN_WEIGHT = 64;

static const uint32_t PH_TAKEN_WEIGHT = 20;
static const uint32_t PH_NONTAKEN_WEIGHT = 12;

static const uint32_t ZH_TAKEN_WEIGHT = 20;
static const uint32_t ZH_NONTAKEN_WEIGHT = 12;

static const uint32_t FPH_TAKEN_WEIGHT = 20;
static const uint32_t FPH_NONTAKEN_WEIGHT = 12;

/// \brief Invoke-terminating normal branch taken weight
///
/// This is the weight for branching to the normal destination of an invoke
/// instruction. We expect this to happen most of the time. Set the weight to an
/// absurdly high value so that nested loops subsume it.
static const uint32_t IH_TAKEN_WEIGHT = 1024 * 1024 - 1;

/// \brief Invoke-terminating normal branch not-taken weight.
///
/// This is the weight for branching to the unwind destination of an invoke
/// instruction. This is essentially never taken.
static const uint32_t IH_NONTAKEN_WEIGHT = 1;

/// \brief Add \p BB to PostDominatedByUnreachable set if applicable.
void
BranchProbabilityInfo::updatePostDominatedByUnreachable(const BasicBlock *BB) {
  const TerminatorInst *TI = BB->getTerminator();
  if (TI->getNumSuccessors() == 0) {
    if (isa<UnreachableInst>(TI) ||
        // If this block is terminated by a call to
        // @llvm.experimental.deoptimize then treat it like an unreachable since
        // the @llvm.experimental.deoptimize call is expected to practically
        // never execute.
        BB->getTerminatingDeoptimizeCall())
      PostDominatedByUnreachable.insert(BB);
    return;
  }

  // If the terminator is an InvokeInst, check only the normal destination block
  // as the unwind edge of InvokeInst is also very unlikely taken.
  if (auto *II = dyn_cast<InvokeInst>(TI)) {
    if (PostDominatedByUnreachable.count(II->getNormalDest()))
      PostDominatedByUnreachable.insert(BB);
    return;
  }

  for (auto *I : successors(BB))
    // If any of successor is not post dominated then BB is also not.
    if (!PostDominatedByUnreachable.count(I))
      return;

  PostDominatedByUnreachable.insert(BB);
}

/// \brief Add \p BB to PostDominatedByColdCall set if applicable.
void
BranchProbabilityInfo::updatePostDominatedByColdCall(const BasicBlock *BB) {
  assert(!PostDominatedByColdCall.count(BB));
  const TerminatorInst *TI = BB->getTerminator();
  if (TI->getNumSuccessors() == 0)
    return;

  // If all of successor are post dominated then BB is also done.
  if (llvm::all_of(successors(BB), [&](const BasicBlock *SuccBB) {
        return PostDominatedByColdCall.count(SuccBB);
      })) {
    PostDominatedByColdCall.insert(BB);
    return;
  }

  // If the terminator is an InvokeInst, check only the normal destination
  // block as the unwind edge of InvokeInst is also very unlikely taken.
  if (auto *II = dyn_cast<InvokeInst>(TI))
    if (PostDominatedByColdCall.count(II->getNormalDest())) {
      PostDominatedByColdCall.insert(BB);
      return;
    }

  // Otherwise, if the block itself contains a cold function, add it to the
  // set of blocks post-dominated by a cold call.
  for (auto &I : *BB)
    if (const CallInst *CI = dyn_cast<CallInst>(&I))
      if (CI->hasFnAttr(Attribute::Cold)) {
        PostDominatedByColdCall.insert(BB);
        return;
      }
}

/// \brief Calculate edge weights for successors lead to unreachable.
///
/// Predict that a successor which leads necessarily to an
/// unreachable-terminated block as extremely unlikely.
bool BranchProbabilityInfo::calcUnreachableHeuristics(const BasicBlock *BB) {
  const TerminatorInst *TI = BB->getTerminator();
  assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");

  // Return false here so that edge weights for InvokeInst could be decided
  // in calcInvokeHeuristics().
  if (isa<InvokeInst>(TI))
    return false;

  SmallVector<unsigned, 4> UnreachableEdges;
  SmallVector<unsigned, 4> ReachableEdges;

  for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
    if (PostDominatedByUnreachable.count(*I))
      UnreachableEdges.push_back(I.getSuccessorIndex());
    else
      ReachableEdges.push_back(I.getSuccessorIndex());

  // Skip probabilities if all were reachable.
  if (UnreachableEdges.empty())
    return false;

  if (ReachableEdges.empty()) {
    BranchProbability Prob(1, UnreachableEdges.size());
    for (unsigned SuccIdx : UnreachableEdges)
      setEdgeProbability(BB, SuccIdx, Prob);
    return true;
  }

  auto UnreachableProb = UR_TAKEN_PROB;
  auto ReachableProb =
      (BranchProbability::getOne() - UR_TAKEN_PROB * UnreachableEdges.size()) /
      ReachableEdges.size();

  for (unsigned SuccIdx : UnreachableEdges)
    setEdgeProbability(BB, SuccIdx, UnreachableProb);
  for (unsigned SuccIdx : ReachableEdges)
    setEdgeProbability(BB, SuccIdx, ReachableProb);

  return true;
}

// Propagate existing explicit probabilities from either profile data or
// 'expect' intrinsic processing. Examine metadata against unreachable
// heuristic. The probability of the edge coming to unreachable block is
// set to min of metadata and unreachable heuristic.
bool BranchProbabilityInfo::calcMetadataWeights(const BasicBlock *BB) {
  const TerminatorInst *TI = BB->getTerminator();
  assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");
  if (!(isa<BranchInst>(TI) || isa<SwitchInst>(TI) || isa<IndirectBrInst>(TI)))
    return false;

  MDNode *WeightsNode = TI->getMetadata(LLVMContext::MD_prof);
  if (!WeightsNode)
    return false;

  // Check that the number of successors is manageable.
  assert(TI->getNumSuccessors() < UINT32_MAX && "Too many successors");

  // Ensure there are weights for all of the successors. Note that the first
  // operand to the metadata node is a name, not a weight.
  if (WeightsNode->getNumOperands() != TI->getNumSuccessors() + 1)
    return false;

  // Build up the final weights that will be used in a temporary buffer.
  // Compute the sum of all weights to later decide whether they need to
  // be scaled to fit in 32 bits.
  uint64_t WeightSum = 0;
  SmallVector<uint32_t, 2> Weights;
  SmallVector<unsigned, 2> UnreachableIdxs;
  SmallVector<unsigned, 2> ReachableIdxs;
  Weights.reserve(TI->getNumSuccessors());
  for (unsigned i = 1, e = WeightsNode->getNumOperands(); i != e; ++i) {
    ConstantInt *Weight =
        mdconst::dyn_extract<ConstantInt>(WeightsNode->getOperand(i));
    if (!Weight)
      return false;
    assert(Weight->getValue().getActiveBits() <= 32 &&
           "Too many bits for uint32_t");
    Weights.push_back(Weight->getZExtValue());
    WeightSum += Weights.back();
    if (PostDominatedByUnreachable.count(TI->getSuccessor(i - 1)))
      UnreachableIdxs.push_back(i - 1);
    else
      ReachableIdxs.push_back(i - 1);
  }
  assert(Weights.size() == TI->getNumSuccessors() && "Checked above");

  // If the sum of weights does not fit in 32 bits, scale every weight down
  // accordingly.
  uint64_t ScalingFactor =
      (WeightSum > UINT32_MAX) ? WeightSum / UINT32_MAX + 1 : 1;

  if (ScalingFactor > 1) {
    WeightSum = 0;
    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i) {
      Weights[i] /= ScalingFactor;
      WeightSum += Weights[i];
    }
  }
  assert(WeightSum <= UINT32_MAX &&
         "Expected weights to scale down to 32 bits");

  if (WeightSum == 0 || ReachableIdxs.size() == 0) {
    for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
      Weights[i] = 1;
    WeightSum = TI->getNumSuccessors();
  }

  // Set the probability.
  SmallVector<BranchProbability, 2> BP;
  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    BP.push_back({ Weights[i], static_cast<uint32_t>(WeightSum) });

  // Examine the metadata against unreachable heuristic.
  // If the unreachable heuristic is more strong then we use it for this edge.
  if (UnreachableIdxs.size() > 0 && ReachableIdxs.size() > 0) {
    auto ToDistribute = BranchProbability::getZero();
    auto UnreachableProb = UR_TAKEN_PROB;
    for (auto i : UnreachableIdxs)
      if (UnreachableProb < BP[i]) {
        ToDistribute += BP[i] - UnreachableProb;
        BP[i] = UnreachableProb;
      }

    // If we modified the probability of some edges then we must distribute
    // the difference between reachable blocks.
    if (ToDistribute > BranchProbability::getZero()) {
      BranchProbability PerEdge = ToDistribute / ReachableIdxs.size();
      for (auto i : ReachableIdxs)
        BP[i] += PerEdge;
    }
  }

  for (unsigned i = 0, e = TI->getNumSuccessors(); i != e; ++i)
    setEdgeProbability(BB, i, BP[i]);

  return true;
}

/// \brief Calculate edge weights for edges leading to cold blocks.
///
/// A cold block is one post-dominated by  a block with a call to a
/// cold function.  Those edges are unlikely to be taken, so we give
/// them relatively low weight.
///
/// Return true if we could compute the weights for cold edges.
/// Return false, otherwise.
bool BranchProbabilityInfo::calcColdCallHeuristics(const BasicBlock *BB) {
  const TerminatorInst *TI = BB->getTerminator();
  assert(TI->getNumSuccessors() > 1 && "expected more than one successor!");

  // Return false here so that edge weights for InvokeInst could be decided
  // in calcInvokeHeuristics().
  if (isa<InvokeInst>(TI))
    return false;

  // Determine which successors are post-dominated by a cold block.
  SmallVector<unsigned, 4> ColdEdges;
  SmallVector<unsigned, 4> NormalEdges;
  for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I)
    if (PostDominatedByColdCall.count(*I))
      ColdEdges.push_back(I.getSuccessorIndex());
    else
      NormalEdges.push_back(I.getSuccessorIndex());

  // Skip probabilities if no cold edges.
  if (ColdEdges.empty())
    return false;

  if (NormalEdges.empty()) {
    BranchProbability Prob(1, ColdEdges.size());
    for (unsigned SuccIdx : ColdEdges)
      setEdgeProbability(BB, SuccIdx, Prob);
    return true;
  }

  auto ColdProb = BranchProbability::getBranchProbability(
      CC_TAKEN_WEIGHT,
      (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(ColdEdges.size()));
  auto NormalProb = BranchProbability::getBranchProbability(
      CC_NONTAKEN_WEIGHT,
      (CC_TAKEN_WEIGHT + CC_NONTAKEN_WEIGHT) * uint64_t(NormalEdges.size()));

  for (unsigned SuccIdx : ColdEdges)
    setEdgeProbability(BB, SuccIdx, ColdProb);
  for (unsigned SuccIdx : NormalEdges)
    setEdgeProbability(BB, SuccIdx, NormalProb);

  return true;
}

// Calculate Edge Weights using "Pointer Heuristics". Predict a comparsion
// between two pointer or pointer and NULL will fail.
bool BranchProbabilityInfo::calcPointerHeuristics(const BasicBlock *BB) {
  const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
  if (!BI || !BI->isConditional())
    return false;

  Value *Cond = BI->getCondition();
  ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
  if (!CI || !CI->isEquality())
    return false;

  Value *LHS = CI->getOperand(0);

  if (!LHS->getType()->isPointerTy())
    return false;

  assert(CI->getOperand(1)->getType()->isPointerTy());

  // p != 0   ->   isProb = true
  // p == 0   ->   isProb = false
  // p != q   ->   isProb = true
  // p == q   ->   isProb = false;
  unsigned TakenIdx = 0, NonTakenIdx = 1;
  bool isProb = CI->getPredicate() == ICmpInst::ICMP_NE;
  if (!isProb)
    std::swap(TakenIdx, NonTakenIdx);

  BranchProbability TakenProb(PH_TAKEN_WEIGHT,
                              PH_TAKEN_WEIGHT + PH_NONTAKEN_WEIGHT);
  setEdgeProbability(BB, TakenIdx, TakenProb);
  setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
  return true;
}

static int getSCCNum(const BasicBlock *BB,
                     const BranchProbabilityInfo::SccInfo &SccI) {
  auto SccIt = SccI.SccNums.find(BB);
  if (SccIt == SccI.SccNums.end())
    return -1;
  return SccIt->second;
}

// Consider any block that is an entry point to the SCC as a header.
static bool isSCCHeader(const BasicBlock *BB, int SccNum,
                        BranchProbabilityInfo::SccInfo &SccI) {
  assert(getSCCNum(BB, SccI) == SccNum);

  // Lazily compute the set of headers for a given SCC and cache the results
  // in the SccHeaderMap.
  if (SccI.SccHeaders.size() <= static_cast<unsigned>(SccNum))
    SccI.SccHeaders.resize(SccNum + 1);
  auto &HeaderMap = SccI.SccHeaders[SccNum];
  bool Inserted;
  BranchProbabilityInfo::SccHeaderMap::iterator HeaderMapIt;
  std::tie(HeaderMapIt, Inserted) = HeaderMap.insert(std::make_pair(BB, false));
  if (Inserted) {
    bool IsHeader = llvm::any_of(make_range(pred_begin(BB), pred_end(BB)),
                                 [&](const BasicBlock *Pred) {
                                   return getSCCNum(Pred, SccI) != SccNum;
                                 });
    HeaderMapIt->second = IsHeader;
    return IsHeader;
  } else
    return HeaderMapIt->second;
}

// Calculate Edge Weights using "Loop Branch Heuristics". Predict backedges
// as taken, exiting edges as not-taken.
bool BranchProbabilityInfo::calcLoopBranchHeuristics(const BasicBlock *BB,
                                                     const LoopInfo &LI,
                                                     SccInfo &SccI) {
  int SccNum;
  Loop *L = LI.getLoopFor(BB);
  if (!L) {
    SccNum = getSCCNum(BB, SccI);
    if (SccNum < 0)
      return false;
  }

  SmallVector<unsigned, 8> BackEdges;
  SmallVector<unsigned, 8> ExitingEdges;
  SmallVector<unsigned, 8> InEdges; // Edges from header to the loop.

  for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
    // Use LoopInfo if we have it, otherwise fall-back to SCC info to catch
    // irreducible loops.
    if (L) {
      if (!L->contains(*I))
        ExitingEdges.push_back(I.getSuccessorIndex());
      else if (L->getHeader() == *I)
        BackEdges.push_back(I.getSuccessorIndex());
      else
        InEdges.push_back(I.getSuccessorIndex());
    } else {
      if (getSCCNum(*I, SccI) != SccNum)
        ExitingEdges.push_back(I.getSuccessorIndex());
      else if (isSCCHeader(*I, SccNum, SccI))
        BackEdges.push_back(I.getSuccessorIndex());
      else
        InEdges.push_back(I.getSuccessorIndex());
    }
  }

  if (BackEdges.empty() && ExitingEdges.empty())
    return false;

  // Collect the sum of probabilities of back-edges/in-edges/exiting-edges, and
  // normalize them so that they sum up to one.
  BranchProbability Probs[] = {BranchProbability::getZero(),
                               BranchProbability::getZero(),
                               BranchProbability::getZero()};
  unsigned Denom = (BackEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) +
                   (InEdges.empty() ? 0 : LBH_TAKEN_WEIGHT) +
                   (ExitingEdges.empty() ? 0 : LBH_NONTAKEN_WEIGHT);
  if (!BackEdges.empty())
    Probs[0] = BranchProbability(LBH_TAKEN_WEIGHT, Denom);
  if (!InEdges.empty())
    Probs[1] = BranchProbability(LBH_TAKEN_WEIGHT, Denom);
  if (!ExitingEdges.empty())
    Probs[2] = BranchProbability(LBH_NONTAKEN_WEIGHT, Denom);

  if (uint32_t numBackEdges = BackEdges.size()) {
    auto Prob = Probs[0] / numBackEdges;
    for (unsigned SuccIdx : BackEdges)
      setEdgeProbability(BB, SuccIdx, Prob);
  }

  if (uint32_t numInEdges = InEdges.size()) {
    auto Prob = Probs[1] / numInEdges;
    for (unsigned SuccIdx : InEdges)
      setEdgeProbability(BB, SuccIdx, Prob);
  }

  if (uint32_t numExitingEdges = ExitingEdges.size()) {
    auto Prob = Probs[2] / numExitingEdges;
    for (unsigned SuccIdx : ExitingEdges)
      setEdgeProbability(BB, SuccIdx, Prob);
  }

  return true;
}

bool BranchProbabilityInfo::calcZeroHeuristics(const BasicBlock *BB,
                                               const TargetLibraryInfo *TLI) {
  const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
  if (!BI || !BI->isConditional())
    return false;

  Value *Cond = BI->getCondition();
  ICmpInst *CI = dyn_cast<ICmpInst>(Cond);
  if (!CI)
    return false;

  Value *RHS = CI->getOperand(1);
  ConstantInt *CV = dyn_cast<ConstantInt>(RHS);
  if (!CV)
    return false;

  // If the LHS is the result of AND'ing a value with a single bit bitmask,
  // we don't have information about probabilities.
  if (Instruction *LHS = dyn_cast<Instruction>(CI->getOperand(0)))
    if (LHS->getOpcode() == Instruction::And)
      if (ConstantInt *AndRHS = dyn_cast<ConstantInt>(LHS->getOperand(1)))
        if (AndRHS->getValue().isPowerOf2())
          return false;

  // Check if the LHS is the return value of a library function
  LibFunc Func = NumLibFuncs;
  if (TLI)
    if (CallInst *Call = dyn_cast<CallInst>(CI->getOperand(0)))
      if (Function *CalledFn = Call->getCalledFunction())
        TLI->getLibFunc(*CalledFn, Func);

  bool isProb;
  if (Func == LibFunc_strcasecmp ||
      Func == LibFunc_strcmp ||
      Func == LibFunc_strncasecmp ||
      Func == LibFunc_strncmp ||
      Func == LibFunc_memcmp) {
    // strcmp and similar functions return zero, negative, or positive, if the
    // first string is equal, less, or greater than the second. We consider it
    // likely that the strings are not equal, so a comparison with zero is
    // probably false, but also a comparison with any other number is also
    // probably false given that what exactly is returned for nonzero values is
    // not specified. Any kind of comparison other than equality we know
    // nothing about.
    switch (CI->getPredicate()) {
    case CmpInst::ICMP_EQ:
      isProb = false;
      break;
    case CmpInst::ICMP_NE:
      isProb = true;
      break;
    default:
      return false;
    }
  } else if (CV->isZero()) {
    switch (CI->getPredicate()) {
    case CmpInst::ICMP_EQ:
      // X == 0   ->  Unlikely
      isProb = false;
      break;
    case CmpInst::ICMP_NE:
      // X != 0   ->  Likely
      isProb = true;
      break;
    case CmpInst::ICMP_SLT:
      // X < 0   ->  Unlikely
      isProb = false;
      break;
    case CmpInst::ICMP_SGT:
      // X > 0   ->  Likely
      isProb = true;
      break;
    default:
      return false;
    }
  } else if (CV->isOne() && CI->getPredicate() == CmpInst::ICMP_SLT) {
    // InstCombine canonicalizes X <= 0 into X < 1.
    // X <= 0   ->  Unlikely
    isProb = false;
  } else if (CV->isMinusOne()) {
    switch (CI->getPredicate()) {
    case CmpInst::ICMP_EQ:
      // X == -1  ->  Unlikely
      isProb = false;
      break;
    case CmpInst::ICMP_NE:
      // X != -1  ->  Likely
      isProb = true;
      break;
    case CmpInst::ICMP_SGT:
      // InstCombine canonicalizes X >= 0 into X > -1.
      // X >= 0   ->  Likely
      isProb = true;
      break;
    default:
      return false;
    }
  } else {
    return false;
  }

  unsigned TakenIdx = 0, NonTakenIdx = 1;

  if (!isProb)
    std::swap(TakenIdx, NonTakenIdx);

  BranchProbability TakenProb(ZH_TAKEN_WEIGHT,
                              ZH_TAKEN_WEIGHT + ZH_NONTAKEN_WEIGHT);
  setEdgeProbability(BB, TakenIdx, TakenProb);
  setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
  return true;
}

bool BranchProbabilityInfo::calcFloatingPointHeuristics(const BasicBlock *BB) {
  const BranchInst *BI = dyn_cast<BranchInst>(BB->getTerminator());
  if (!BI || !BI->isConditional())
    return false;

  Value *Cond = BI->getCondition();
  FCmpInst *FCmp = dyn_cast<FCmpInst>(Cond);
  if (!FCmp)
    return false;

  bool isProb;
  if (FCmp->isEquality()) {
    // f1 == f2 -> Unlikely
    // f1 != f2 -> Likely
    isProb = !FCmp->isTrueWhenEqual();
  } else if (FCmp->getPredicate() == FCmpInst::FCMP_ORD) {
    // !isnan -> Likely
    isProb = true;
  } else if (FCmp->getPredicate() == FCmpInst::FCMP_UNO) {
    // isnan -> Unlikely
    isProb = false;
  } else {
    return false;
  }

  unsigned TakenIdx = 0, NonTakenIdx = 1;

  if (!isProb)
    std::swap(TakenIdx, NonTakenIdx);

  BranchProbability TakenProb(FPH_TAKEN_WEIGHT,
                              FPH_TAKEN_WEIGHT + FPH_NONTAKEN_WEIGHT);
  setEdgeProbability(BB, TakenIdx, TakenProb);
  setEdgeProbability(BB, NonTakenIdx, TakenProb.getCompl());
  return true;
}

bool BranchProbabilityInfo::calcInvokeHeuristics(const BasicBlock *BB) {
  const InvokeInst *II = dyn_cast<InvokeInst>(BB->getTerminator());
  if (!II)
    return false;

  BranchProbability TakenProb(IH_TAKEN_WEIGHT,
                              IH_TAKEN_WEIGHT + IH_NONTAKEN_WEIGHT);
  setEdgeProbability(BB, 0 /*Index for Normal*/, TakenProb);
  setEdgeProbability(BB, 1 /*Index for Unwind*/, TakenProb.getCompl());
  return true;
}

void BranchProbabilityInfo::releaseMemory() {
  Probs.clear();
}

void BranchProbabilityInfo::print(raw_ostream &OS) const {
  OS << "---- Branch Probabilities ----\n";
  // We print the probabilities from the last function the analysis ran over,
  // or the function it is currently running over.
  assert(LastF && "Cannot print prior to running over a function");
  for (const auto &BI : *LastF) {
    for (succ_const_iterator SI = succ_begin(&BI), SE = succ_end(&BI); SI != SE;
         ++SI) {
      printEdgeProbability(OS << "  ", &BI, *SI);
    }
  }
}

bool BranchProbabilityInfo::
isEdgeHot(const BasicBlock *Src, const BasicBlock *Dst) const {
  // Hot probability is at least 4/5 = 80%
  // FIXME: Compare against a static "hot" BranchProbability.
  return getEdgeProbability(Src, Dst) > BranchProbability(4, 5);
}

const BasicBlock *
BranchProbabilityInfo::getHotSucc(const BasicBlock *BB) const {
  auto MaxProb = BranchProbability::getZero();
  const BasicBlock *MaxSucc = nullptr;

  for (succ_const_iterator I = succ_begin(BB), E = succ_end(BB); I != E; ++I) {
    const BasicBlock *Succ = *I;
    auto Prob = getEdgeProbability(BB, Succ);
    if (Prob > MaxProb) {
      MaxProb = Prob;
      MaxSucc = Succ;
    }
  }

  // Hot probability is at least 4/5 = 80%
  if (MaxProb > BranchProbability(4, 5))
    return MaxSucc;

  return nullptr;
}

/// Get the raw edge probability for the edge. If can't find it, return a
/// default probability 1/N where N is the number of successors. Here an edge is
/// specified using PredBlock and an
/// index to the successors.
BranchProbability
BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
                                          unsigned IndexInSuccessors) const {
  auto I = Probs.find(std::make_pair(Src, IndexInSuccessors));

  if (I != Probs.end())
    return I->second;

  return {1,
          static_cast<uint32_t>(std::distance(succ_begin(Src), succ_end(Src)))};
}

BranchProbability
BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
                                          succ_const_iterator Dst) const {
  return getEdgeProbability(Src, Dst.getSuccessorIndex());
}

/// Get the raw edge probability calculated for the block pair. This returns the
/// sum of all raw edge probabilities from Src to Dst.
BranchProbability
BranchProbabilityInfo::getEdgeProbability(const BasicBlock *Src,
                                          const BasicBlock *Dst) const {
  auto Prob = BranchProbability::getZero();
  bool FoundProb = false;
  for (succ_const_iterator I = succ_begin(Src), E = succ_end(Src); I != E; ++I)
    if (*I == Dst) {
      auto MapI = Probs.find(std::make_pair(Src, I.getSuccessorIndex()));
      if (MapI != Probs.end()) {
        FoundProb = true;
        Prob += MapI->second;
      }
    }
  uint32_t succ_num = std::distance(succ_begin(Src), succ_end(Src));
  return FoundProb ? Prob : BranchProbability(1, succ_num);
}

/// Set the edge probability for a given edge specified by PredBlock and an
/// index to the successors.
void BranchProbabilityInfo::setEdgeProbability(const BasicBlock *Src,
                                               unsigned IndexInSuccessors,
                                               BranchProbability Prob) {
  Probs[std::make_pair(Src, IndexInSuccessors)] = Prob;
  Handles.insert(BasicBlockCallbackVH(Src, this));
  DEBUG(dbgs() << "set edge " << Src->getName() << " -> " << IndexInSuccessors
               << " successor probability to " << Prob << "\n");
}

raw_ostream &
BranchProbabilityInfo::printEdgeProbability(raw_ostream &OS,
                                            const BasicBlock *Src,
                                            const BasicBlock *Dst) const {
  const BranchProbability Prob = getEdgeProbability(Src, Dst);
  OS << "edge " << Src->getName() << " -> " << Dst->getName()
     << " probability is " << Prob
     << (isEdgeHot(Src, Dst) ? " [HOT edge]\n" : "\n");

  return OS;
}

void BranchProbabilityInfo::eraseBlock(const BasicBlock *BB) {
  for (auto I = Probs.begin(), E = Probs.end(); I != E; ++I) {
    auto Key = I->first;
    if (Key.first == BB)
      Probs.erase(Key);
  }
}

void BranchProbabilityInfo::calculate(const Function &F, const LoopInfo &LI,
                                      const TargetLibraryInfo *TLI) {
  DEBUG(dbgs() << "---- Branch Probability Info : " << F.getName()
               << " ----\n\n");
  LastF = &F; // Store the last function we ran on for printing.
  assert(PostDominatedByUnreachable.empty());
  assert(PostDominatedByColdCall.empty());

  // Record SCC numbers of blocks in the CFG to identify irreducible loops.
  // FIXME: We could only calculate this if the CFG is known to be irreducible
  // (perhaps cache this info in LoopInfo if we can easily calculate it there?).
  int SccNum = 0;
  SccInfo SccI;
  for (scc_iterator<const Function *> It = scc_begin(&F); !It.isAtEnd();
       ++It, ++SccNum) {
    // Ignore single-block SCCs since they either aren't loops or LoopInfo will
    // catch them.
    const std::vector<const BasicBlock *> &Scc = *It;
    if (Scc.size() == 1)
      continue;

    DEBUG(dbgs() << "BPI: SCC " << SccNum << ":");
    for (auto *BB : Scc) {
      DEBUG(dbgs() << " " << BB->getName());
      SccI.SccNums[BB] = SccNum;
    }
    DEBUG(dbgs() << "\n");
  }

  // Walk the basic blocks in post-order so that we can build up state about
  // the successors of a block iteratively.
  for (auto BB : post_order(&F.getEntryBlock())) {
    DEBUG(dbgs() << "Computing probabilities for " << BB->getName() << "\n");
    updatePostDominatedByUnreachable(BB);
    updatePostDominatedByColdCall(BB);
    // If there is no at least two successors, no sense to set probability.
    if (BB->getTerminator()->getNumSuccessors() < 2)
      continue;
    if (calcMetadataWeights(BB))
      continue;
    if (calcUnreachableHeuristics(BB))
      continue;
    if (calcColdCallHeuristics(BB))
      continue;
    if (calcLoopBranchHeuristics(BB, LI, SccI))
      continue;
    if (calcPointerHeuristics(BB))
      continue;
    if (calcZeroHeuristics(BB, TLI))
      continue;
    if (calcFloatingPointHeuristics(BB))
      continue;
    calcInvokeHeuristics(BB);
  }

  PostDominatedByUnreachable.clear();
  PostDominatedByColdCall.clear();

  if (PrintBranchProb &&
      (PrintBranchProbFuncName.empty() ||
       F.getName().equals(PrintBranchProbFuncName))) {
    print(dbgs());
  }
}

void BranchProbabilityInfoWrapperPass::getAnalysisUsage(
    AnalysisUsage &AU) const {
  AU.addRequired<LoopInfoWrapperPass>();
  AU.addRequired<TargetLibraryInfoWrapperPass>();
  AU.setPreservesAll();
}

bool BranchProbabilityInfoWrapperPass::runOnFunction(Function &F) {
  const LoopInfo &LI = getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
  const TargetLibraryInfo &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI();
  BPI.calculate(F, LI, &TLI);
  return false;
}

void BranchProbabilityInfoWrapperPass::releaseMemory() { BPI.releaseMemory(); }

void BranchProbabilityInfoWrapperPass::print(raw_ostream &OS,
                                             const Module *) const {
  BPI.print(OS);
}

AnalysisKey BranchProbabilityAnalysis::Key;
BranchProbabilityInfo
BranchProbabilityAnalysis::run(Function &F, FunctionAnalysisManager &AM) {
  BranchProbabilityInfo BPI;
  BPI.calculate(F, AM.getResult<LoopAnalysis>(F), &AM.getResult<TargetLibraryAnalysis>(F));
  return BPI;
}

PreservedAnalyses
BranchProbabilityPrinterPass::run(Function &F, FunctionAnalysisManager &AM) {
  OS << "Printing analysis results of BPI for function "
     << "'" << F.getName() << "':"
     << "\n";
  AM.getResult<BranchProbabilityAnalysis>(F).print(OS);
  return PreservedAnalyses::all();
}