llvm.org GIT mirror llvm / release_50 lib / Target / X86 / X86Subtarget.cpp
release_50

Tree @release_50 (Download .tar.gz)

X86Subtarget.cpp @release_50raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
//===-- X86Subtarget.cpp - X86 Subtarget Information ----------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the X86 specific subclass of TargetSubtargetInfo.
//
//===----------------------------------------------------------------------===//

#include "X86.h"

#ifdef LLVM_BUILD_GLOBAL_ISEL
#include "X86CallLowering.h"
#include "X86LegalizerInfo.h"
#include "X86RegisterBankInfo.h"
#endif
#include "X86Subtarget.h"
#include "MCTargetDesc/X86BaseInfo.h"
#include "X86TargetMachine.h"
#include "llvm/ADT/Triple.h"
#ifdef LLVM_BUILD_GLOBAL_ISEL
#include "llvm/CodeGen/GlobalISel/CallLowering.h"
#include "llvm/CodeGen/GlobalISel/InstructionSelect.h"
#include "llvm/CodeGen/GlobalISel/Legalizer.h"
#include "llvm/CodeGen/GlobalISel/RegBankSelect.h"
#endif
#include "llvm/IR/Attributes.h"
#include "llvm/IR/ConstantRange.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CodeGen.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"
#include <cassert>
#include <string>

#if defined(_MSC_VER)
#include <intrin.h>
#endif

using namespace llvm;

#define DEBUG_TYPE "subtarget"

#define GET_SUBTARGETINFO_TARGET_DESC
#define GET_SUBTARGETINFO_CTOR
#include "X86GenSubtargetInfo.inc"

// Temporary option to control early if-conversion for x86 while adding machine
// models.
static cl::opt<bool>
X86EarlyIfConv("x86-early-ifcvt", cl::Hidden,
               cl::desc("Enable early if-conversion on X86"));


/// Classify a blockaddress reference for the current subtarget according to how
/// we should reference it in a non-pcrel context.
unsigned char X86Subtarget::classifyBlockAddressReference() const {
  return classifyLocalReference(nullptr);
}

/// Classify a global variable reference for the current subtarget according to
/// how we should reference it in a non-pcrel context.
unsigned char
X86Subtarget::classifyGlobalReference(const GlobalValue *GV) const {
  return classifyGlobalReference(GV, *GV->getParent());
}

unsigned char
X86Subtarget::classifyLocalReference(const GlobalValue *GV) const {
  // 64 bits can use %rip addressing for anything local.
  if (is64Bit())
    return X86II::MO_NO_FLAG;

  // If this is for a position dependent executable, the static linker can
  // figure it out.
  if (!isPositionIndependent())
    return X86II::MO_NO_FLAG;

  // The COFF dynamic linker just patches the executable sections.
  if (isTargetCOFF())
    return X86II::MO_NO_FLAG;

  if (isTargetDarwin()) {
    // 32 bit macho has no relocation for a-b if a is undefined, even if
    // b is in the section that is being relocated.
    // This means we have to use o load even for GVs that are known to be
    // local to the dso.
    if (GV && (GV->isDeclarationForLinker() || GV->hasCommonLinkage()))
      return X86II::MO_DARWIN_NONLAZY_PIC_BASE;

    return X86II::MO_PIC_BASE_OFFSET;
  }

  return X86II::MO_GOTOFF;
}

unsigned char X86Subtarget::classifyGlobalReference(const GlobalValue *GV,
                                                    const Module &M) const {
  // Large model never uses stubs.
  if (TM.getCodeModel() == CodeModel::Large)
    return X86II::MO_NO_FLAG;

  // Absolute symbols can be referenced directly.
  if (GV) {
    if (Optional<ConstantRange> CR = GV->getAbsoluteSymbolRange()) {
      // See if we can use the 8-bit immediate form. Note that some instructions
      // will sign extend the immediate operand, so to be conservative we only
      // accept the range [0,128).
      if (CR->getUnsignedMax().ult(128))
        return X86II::MO_ABS8;
      else
        return X86II::MO_NO_FLAG;
    }
  }

  if (TM.shouldAssumeDSOLocal(M, GV))
    return classifyLocalReference(GV);

  if (isTargetCOFF())
    return X86II::MO_DLLIMPORT;

  if (is64Bit())
    return X86II::MO_GOTPCREL;

  if (isTargetDarwin()) {
    if (!isPositionIndependent())
      return X86II::MO_DARWIN_NONLAZY;
    return X86II::MO_DARWIN_NONLAZY_PIC_BASE;
  }

  return X86II::MO_GOT;
}

unsigned char
X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV) const {
  return classifyGlobalFunctionReference(GV, *GV->getParent());
}

unsigned char
X86Subtarget::classifyGlobalFunctionReference(const GlobalValue *GV,
                                              const Module &M) const {
  if (TM.shouldAssumeDSOLocal(M, GV))
    return X86II::MO_NO_FLAG;

  assert(!isTargetCOFF());
  const Function *F = dyn_cast_or_null<Function>(GV);

  if (isTargetELF()) {
    if (is64Bit() && F && (CallingConv::X86_RegCall == F->getCallingConv()))
      // According to psABI, PLT stub clobbers XMM8-XMM15.
      // In Regcall calling convention those registers are used for passing
      // parameters. Thus we need to prevent lazy binding in Regcall.
      return X86II::MO_GOTPCREL;
    return X86II::MO_PLT;
  }

  if (is64Bit()) {
    if (F && F->hasFnAttribute(Attribute::NonLazyBind))
      // If the function is marked as non-lazy, generate an indirect call
      // which loads from the GOT directly. This avoids runtime overhead
      // at the cost of eager binding (and one extra byte of encoding).
      return X86II::MO_GOTPCREL;
    return X86II::MO_NO_FLAG;
  }

  return X86II::MO_NO_FLAG;
}

/// This function returns the name of a function which has an interface like
/// the non-standard bzero function, if such a function exists on the
/// current subtarget and it is considered preferable over memset with zero
/// passed as the second argument. Otherwise it returns null.
const char *X86Subtarget::getBZeroEntry() const {
  // Darwin 10 has a __bzero entry point for this purpose.
  if (getTargetTriple().isMacOSX() &&
      !getTargetTriple().isMacOSXVersionLT(10, 6))
    return "__bzero";

  return nullptr;
}

bool X86Subtarget::hasSinCos() const {
  return getTargetTriple().isMacOSX() &&
    !getTargetTriple().isMacOSXVersionLT(10, 9) &&
    is64Bit();
}

/// Return true if the subtarget allows calls to immediate address.
bool X86Subtarget::isLegalToCallImmediateAddr() const {
  // FIXME: I386 PE/COFF supports PC relative calls using IMAGE_REL_I386_REL32
  // but WinCOFFObjectWriter::RecordRelocation cannot emit them.  Once it does,
  // the following check for Win32 should be removed.
  if (In64BitMode || isTargetWin32())
    return false;
  return isTargetELF() || TM.getRelocationModel() == Reloc::Static;
}

void X86Subtarget::initSubtargetFeatures(StringRef CPU, StringRef FS) {
  std::string CPUName = CPU;
  if (CPUName.empty())
    CPUName = "generic";

  // Make sure 64-bit features are available in 64-bit mode. (But make sure
  // SSE2 can be turned off explicitly.)
  std::string FullFS = FS;
  if (In64BitMode) {
    if (!FullFS.empty())
      FullFS = "+64bit,+sse2," + FullFS;
    else
      FullFS = "+64bit,+sse2";
  }

  // LAHF/SAHF are always supported in non-64-bit mode.
  if (!In64BitMode) {
    if (!FullFS.empty())
      FullFS = "+sahf," + FullFS;
    else
      FullFS = "+sahf";
  }

  // Parse features string and set the CPU.
  ParseSubtargetFeatures(CPUName, FullFS);

  // All CPUs that implement SSE4.2 or SSE4A support unaligned accesses of
  // 16-bytes and under that are reasonably fast. These features were
  // introduced with Intel's Nehalem/Silvermont and AMD's Family10h
  // micro-architectures respectively.
  if (hasSSE42() || hasSSE4A())
    IsUAMem16Slow = false;
  
  InstrItins = getInstrItineraryForCPU(CPUName);

  // It's important to keep the MCSubtargetInfo feature bits in sync with
  // target data structure which is shared with MC code emitter, etc.
  if (In64BitMode)
    ToggleFeature(X86::Mode64Bit);
  else if (In32BitMode)
    ToggleFeature(X86::Mode32Bit);
  else if (In16BitMode)
    ToggleFeature(X86::Mode16Bit);
  else
    llvm_unreachable("Not 16-bit, 32-bit or 64-bit mode!");

  DEBUG(dbgs() << "Subtarget features: SSELevel " << X86SSELevel
               << ", 3DNowLevel " << X863DNowLevel
               << ", 64bit " << HasX86_64 << "\n");
  assert((!In64BitMode || HasX86_64) &&
         "64-bit code requested on a subtarget that doesn't support it!");

  // Stack alignment is 16 bytes on Darwin, Linux, kFreeBSD and Solaris (both
  // 32 and 64 bit) and for all 64-bit targets.
  if (StackAlignOverride)
    stackAlignment = StackAlignOverride;
  else if (isTargetDarwin() || isTargetLinux() || isTargetSolaris() ||
           isTargetKFreeBSD() || In64BitMode)
    stackAlignment = 16;
}

void X86Subtarget::initializeEnvironment() {
  X86SSELevel = NoSSE;
  X863DNowLevel = NoThreeDNow;
  HasX87 = false;
  HasCMov = false;
  HasX86_64 = false;
  HasPOPCNT = false;
  HasSSE4A = false;
  HasAES = false;
  HasFXSR = false;
  HasXSAVE = false;
  HasXSAVEOPT = false;
  HasXSAVEC = false;
  HasXSAVES = false;
  HasPCLMUL = false;
  HasFMA = false;
  HasFMA4 = false;
  HasXOP = false;
  HasTBM = false;
  HasLWP = false;
  HasMOVBE = false;
  HasRDRAND = false;
  HasF16C = false;
  HasFSGSBase = false;
  HasLZCNT = false;
  HasBMI = false;
  HasBMI2 = false;
  HasVBMI = false;
  HasIFMA = false;
  HasRTM = false;
  HasERI = false;
  HasCDI = false;
  HasPFI = false;
  HasDQI = false;
  HasVPOPCNTDQ = false;
  HasBWI = false;
  HasVLX = false;
  HasADX = false;
  HasPKU = false;
  HasSHA = false;
  HasPRFCHW = false;
  HasRDSEED = false;
  HasLAHFSAHF = false;
  HasMWAITX = false;
  HasCLZERO = false;
  HasMPX = false;
  HasSGX = false;
  HasCLFLUSHOPT = false;
  HasCLWB = false;
  IsBTMemSlow = false;
  UseRetpoline = false;
  UseRetpolineExternalThunk = false;
  IsPMULLDSlow = false;
  IsSHLDSlow = false;
  IsUAMem16Slow = false;
  IsUAMem32Slow = false;
  HasSSEUnalignedMem = false;
  HasCmpxchg16b = false;
  UseLeaForSP = false;
  HasFastPartialYMMorZMMWrite = false;
  HasFastScalarFSQRT = false;
  HasFastVectorFSQRT = false;
  HasFastLZCNT = false;
  HasFastSHLDRotate = false;
  HasERMSB = false;
  HasSlowDivide32 = false;
  HasSlowDivide64 = false;
  PadShortFunctions = false;
  CallRegIndirect = false;
  LEAUsesAG = false;
  SlowLEA = false;
  Slow3OpsLEA = false;
  SlowIncDec = false;
  stackAlignment = 4;
  // FIXME: this is a known good value for Yonah. How about others?
  MaxInlineSizeThreshold = 128;
  UseSoftFloat = false;
}

X86Subtarget &X86Subtarget::initializeSubtargetDependencies(StringRef CPU,
                                                            StringRef FS) {
  initializeEnvironment();
  initSubtargetFeatures(CPU, FS);
  return *this;
}

#ifdef LLVM_BUILD_GLOBAL_ISEL
namespace {

struct X86GISelActualAccessor : public GISelAccessor {
  std::unique_ptr<CallLowering> CallLoweringInfo;
  std::unique_ptr<LegalizerInfo> Legalizer;
  std::unique_ptr<RegisterBankInfo> RegBankInfo;
  std::unique_ptr<InstructionSelector> InstSelector;

  const CallLowering *getCallLowering() const override {
    return CallLoweringInfo.get();
  }

  const InstructionSelector *getInstructionSelector() const override {
    return InstSelector.get();
  }

  const LegalizerInfo *getLegalizerInfo() const override {
    return Legalizer.get();
  }

  const RegisterBankInfo *getRegBankInfo() const override {
    return RegBankInfo.get();
  }
};

} // end anonymous namespace
#endif

X86Subtarget::X86Subtarget(const Triple &TT, StringRef CPU, StringRef FS,
                           const X86TargetMachine &TM,
                           unsigned StackAlignOverride)
    : X86GenSubtargetInfo(TT, CPU, FS), X86ProcFamily(Others),
      PICStyle(PICStyles::None), TM(TM), TargetTriple(TT),
      StackAlignOverride(StackAlignOverride),
      In64BitMode(TargetTriple.getArch() == Triple::x86_64),
      In32BitMode(TargetTriple.getArch() == Triple::x86 &&
                  TargetTriple.getEnvironment() != Triple::CODE16),
      In16BitMode(TargetTriple.getArch() == Triple::x86 &&
                  TargetTriple.getEnvironment() == Triple::CODE16),
      InstrInfo(initializeSubtargetDependencies(CPU, FS)), TLInfo(TM, *this),
      FrameLowering(*this, getStackAlignment()) {
  // Determine the PICStyle based on the target selected.
  if (!isPositionIndependent())
    setPICStyle(PICStyles::None);
  else if (is64Bit())
    setPICStyle(PICStyles::RIPRel);
  else if (isTargetCOFF())
    setPICStyle(PICStyles::None);
  else if (isTargetDarwin())
    setPICStyle(PICStyles::StubPIC);
  else if (isTargetELF())
    setPICStyle(PICStyles::GOT);
#ifndef LLVM_BUILD_GLOBAL_ISEL
  GISelAccessor *GISel = new GISelAccessor();
#else
  X86GISelActualAccessor *GISel = new X86GISelActualAccessor();

  GISel->CallLoweringInfo.reset(new X86CallLowering(*getTargetLowering()));
  GISel->Legalizer.reset(new X86LegalizerInfo(*this, TM));

  auto *RBI = new X86RegisterBankInfo(*getRegisterInfo());
  GISel->RegBankInfo.reset(RBI);
  GISel->InstSelector.reset(createX86InstructionSelector(TM, *this, *RBI));
#endif
  setGISelAccessor(*GISel);
}

const CallLowering *X86Subtarget::getCallLowering() const {
  assert(GISel && "Access to GlobalISel APIs not set");
  return GISel->getCallLowering();
}

const InstructionSelector *X86Subtarget::getInstructionSelector() const {
  assert(GISel && "Access to GlobalISel APIs not set");
  return GISel->getInstructionSelector();
}

const LegalizerInfo *X86Subtarget::getLegalizerInfo() const {
  assert(GISel && "Access to GlobalISel APIs not set");
  return GISel->getLegalizerInfo();
}

const RegisterBankInfo *X86Subtarget::getRegBankInfo() const {
  assert(GISel && "Access to GlobalISel APIs not set");
  return GISel->getRegBankInfo();
}

bool X86Subtarget::enableEarlyIfConversion() const {
  return hasCMov() && X86EarlyIfConv;
}