llvm.org GIT mirror llvm / release_50 lib / Support / FoldingSet.cpp
release_50

Tree @release_50 (Download .tar.gz)

FoldingSet.cpp @release_50raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
//===-- Support/FoldingSet.cpp - Uniquing Hash Set --------------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements a hash set that can be used to remove duplication of
// nodes in a graph.
//
//===----------------------------------------------------------------------===//

#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/Hashing.h"
#include "llvm/Support/Allocator.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Host.h"
#include "llvm/Support/MathExtras.h"
#include <cassert>
#include <cstring>
using namespace llvm;

//===----------------------------------------------------------------------===//
// FoldingSetNodeIDRef Implementation

/// ComputeHash - Compute a strong hash value for this FoldingSetNodeIDRef,
/// used to lookup the node in the FoldingSetBase.
unsigned FoldingSetNodeIDRef::ComputeHash() const {
  return static_cast<unsigned>(hash_combine_range(Data, Data+Size));
}

bool FoldingSetNodeIDRef::operator==(FoldingSetNodeIDRef RHS) const {
  if (Size != RHS.Size) return false;
  return memcmp(Data, RHS.Data, Size*sizeof(*Data)) == 0;
}

/// Used to compare the "ordering" of two nodes as defined by the
/// profiled bits and their ordering defined by memcmp().
bool FoldingSetNodeIDRef::operator<(FoldingSetNodeIDRef RHS) const {
  if (Size != RHS.Size)
    return Size < RHS.Size;
  return memcmp(Data, RHS.Data, Size*sizeof(*Data)) < 0;
}

//===----------------------------------------------------------------------===//
// FoldingSetNodeID Implementation

/// Add* - Add various data types to Bit data.
///
void FoldingSetNodeID::AddPointer(const void *Ptr) {
  // Note: this adds pointers to the hash using sizes and endianness that
  // depend on the host. It doesn't matter, however, because hashing on
  // pointer values is inherently unstable. Nothing should depend on the
  // ordering of nodes in the folding set.
  static_assert(sizeof(uintptr_t) <= sizeof(unsigned long long),
                "unexpected pointer size");
  AddInteger(reinterpret_cast<uintptr_t>(Ptr));
}
void FoldingSetNodeID::AddInteger(signed I) {
  Bits.push_back(I);
}
void FoldingSetNodeID::AddInteger(unsigned I) {
  Bits.push_back(I);
}
void FoldingSetNodeID::AddInteger(long I) {
  AddInteger((unsigned long)I);
}
void FoldingSetNodeID::AddInteger(unsigned long I) {
  if (sizeof(long) == sizeof(int))
    AddInteger(unsigned(I));
  else if (sizeof(long) == sizeof(long long)) {
    AddInteger((unsigned long long)I);
  } else {
    llvm_unreachable("unexpected sizeof(long)");
  }
}
void FoldingSetNodeID::AddInteger(long long I) {
  AddInteger((unsigned long long)I);
}
void FoldingSetNodeID::AddInteger(unsigned long long I) {
  AddInteger(unsigned(I));
  AddInteger(unsigned(I >> 32));
}

void FoldingSetNodeID::AddString(StringRef String) {
  unsigned Size =  String.size();
  Bits.push_back(Size);
  if (!Size) return;

  unsigned Units = Size / 4;
  unsigned Pos = 0;
  const unsigned *Base = (const unsigned*) String.data();
  
  // If the string is aligned do a bulk transfer.
  if (!((intptr_t)Base & 3)) {
    Bits.append(Base, Base + Units);
    Pos = (Units + 1) * 4;
  } else {
    // Otherwise do it the hard way.
    // To be compatible with above bulk transfer, we need to take endianness
    // into account.
    static_assert(sys::IsBigEndianHost || sys::IsLittleEndianHost,
                  "Unexpected host endianness");
    if (sys::IsBigEndianHost) {
      for (Pos += 4; Pos <= Size; Pos += 4) {
        unsigned V = ((unsigned char)String[Pos - 4] << 24) |
                     ((unsigned char)String[Pos - 3] << 16) |
                     ((unsigned char)String[Pos - 2] << 8) |
                      (unsigned char)String[Pos - 1];
        Bits.push_back(V);
      }
    } else {  // Little-endian host
      for (Pos += 4; Pos <= Size; Pos += 4) {
        unsigned V = ((unsigned char)String[Pos - 1] << 24) |
                     ((unsigned char)String[Pos - 2] << 16) |
                     ((unsigned char)String[Pos - 3] << 8) |
                      (unsigned char)String[Pos - 4];
        Bits.push_back(V);
      }
    }
  }
  
  // With the leftover bits.
  unsigned V = 0;
  // Pos will have overshot size by 4 - #bytes left over.
  // No need to take endianness into account here - this is always executed.
  switch (Pos - Size) {
  case 1: V = (V << 8) | (unsigned char)String[Size - 3]; LLVM_FALLTHROUGH;
  case 2: V = (V << 8) | (unsigned char)String[Size - 2]; LLVM_FALLTHROUGH;
  case 3: V = (V << 8) | (unsigned char)String[Size - 1]; break;
  default: return; // Nothing left.
  }

  Bits.push_back(V);
}

// AddNodeID - Adds the Bit data of another ID to *this.
void FoldingSetNodeID::AddNodeID(const FoldingSetNodeID &ID) {
  Bits.append(ID.Bits.begin(), ID.Bits.end());
}

/// ComputeHash - Compute a strong hash value for this FoldingSetNodeID, used to 
/// lookup the node in the FoldingSetBase.
unsigned FoldingSetNodeID::ComputeHash() const {
  return FoldingSetNodeIDRef(Bits.data(), Bits.size()).ComputeHash();
}

/// operator== - Used to compare two nodes to each other.
///
bool FoldingSetNodeID::operator==(const FoldingSetNodeID &RHS) const {
  return *this == FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size());
}

/// operator== - Used to compare two nodes to each other.
///
bool FoldingSetNodeID::operator==(FoldingSetNodeIDRef RHS) const {
  return FoldingSetNodeIDRef(Bits.data(), Bits.size()) == RHS;
}

/// Used to compare the "ordering" of two nodes as defined by the
/// profiled bits and their ordering defined by memcmp().
bool FoldingSetNodeID::operator<(const FoldingSetNodeID &RHS) const {
  return *this < FoldingSetNodeIDRef(RHS.Bits.data(), RHS.Bits.size());
}

bool FoldingSetNodeID::operator<(FoldingSetNodeIDRef RHS) const {
  return FoldingSetNodeIDRef(Bits.data(), Bits.size()) < RHS;
}

/// Intern - Copy this node's data to a memory region allocated from the
/// given allocator and return a FoldingSetNodeIDRef describing the
/// interned data.
FoldingSetNodeIDRef
FoldingSetNodeID::Intern(BumpPtrAllocator &Allocator) const {
  unsigned *New = Allocator.Allocate<unsigned>(Bits.size());
  std::uninitialized_copy(Bits.begin(), Bits.end(), New);
  return FoldingSetNodeIDRef(New, Bits.size());
}

//===----------------------------------------------------------------------===//
/// Helper functions for FoldingSetBase.

/// GetNextPtr - In order to save space, each bucket is a
/// singly-linked-list. In order to make deletion more efficient, we make
/// the list circular, so we can delete a node without computing its hash.
/// The problem with this is that the start of the hash buckets are not
/// Nodes.  If NextInBucketPtr is a bucket pointer, this method returns null:
/// use GetBucketPtr when this happens.
static FoldingSetBase::Node *GetNextPtr(void *NextInBucketPtr) {
  // The low bit is set if this is the pointer back to the bucket.
  if (reinterpret_cast<intptr_t>(NextInBucketPtr) & 1)
    return nullptr;
  
  return static_cast<FoldingSetBase::Node*>(NextInBucketPtr);
}


/// testing.
static void **GetBucketPtr(void *NextInBucketPtr) {
  intptr_t Ptr = reinterpret_cast<intptr_t>(NextInBucketPtr);
  assert((Ptr & 1) && "Not a bucket pointer");
  return reinterpret_cast<void**>(Ptr & ~intptr_t(1));
}

/// GetBucketFor - Hash the specified node ID and return the hash bucket for
/// the specified ID.
static void **GetBucketFor(unsigned Hash, void **Buckets, unsigned NumBuckets) {
  // NumBuckets is always a power of 2.
  unsigned BucketNum = Hash & (NumBuckets-1);
  return Buckets + BucketNum;
}

/// AllocateBuckets - Allocated initialized bucket memory.
static void **AllocateBuckets(unsigned NumBuckets) {
  void **Buckets = static_cast<void**>(calloc(NumBuckets+1, sizeof(void*)));
  // Set the very last bucket to be a non-null "pointer".
  Buckets[NumBuckets] = reinterpret_cast<void*>(-1);
  return Buckets;
}

//===----------------------------------------------------------------------===//
// FoldingSetBase Implementation

void FoldingSetBase::anchor() {}

FoldingSetBase::FoldingSetBase(unsigned Log2InitSize) {
  assert(5 < Log2InitSize && Log2InitSize < 32 &&
         "Initial hash table size out of range");
  NumBuckets = 1 << Log2InitSize;
  Buckets = AllocateBuckets(NumBuckets);
  NumNodes = 0;
}

FoldingSetBase::FoldingSetBase(FoldingSetBase &&Arg)
    : Buckets(Arg.Buckets), NumBuckets(Arg.NumBuckets), NumNodes(Arg.NumNodes) {
  Arg.Buckets = nullptr;
  Arg.NumBuckets = 0;
  Arg.NumNodes = 0;
}

FoldingSetBase &FoldingSetBase::operator=(FoldingSetBase &&RHS) {
  free(Buckets); // This may be null if the set is in a moved-from state.
  Buckets = RHS.Buckets;
  NumBuckets = RHS.NumBuckets;
  NumNodes = RHS.NumNodes;
  RHS.Buckets = nullptr;
  RHS.NumBuckets = 0;
  RHS.NumNodes = 0;
  return *this;
}

FoldingSetBase::~FoldingSetBase() {
  free(Buckets);
}

void FoldingSetBase::clear() {
  // Set all but the last bucket to null pointers.
  memset(Buckets, 0, NumBuckets*sizeof(void*));

  // Set the very last bucket to be a non-null "pointer".
  Buckets[NumBuckets] = reinterpret_cast<void*>(-1);

  // Reset the node count to zero.
  NumNodes = 0;
}

void FoldingSetBase::GrowBucketCount(unsigned NewBucketCount) {
  assert((NewBucketCount > NumBuckets) && "Can't shrink a folding set with GrowBucketCount");
  assert(isPowerOf2_32(NewBucketCount) && "Bad bucket count!");
  void **OldBuckets = Buckets;
  unsigned OldNumBuckets = NumBuckets;
  NumBuckets = NewBucketCount;
  
  // Clear out new buckets.
  Buckets = AllocateBuckets(NumBuckets);
  NumNodes = 0;

  // Walk the old buckets, rehashing nodes into their new place.
  FoldingSetNodeID TempID;
  for (unsigned i = 0; i != OldNumBuckets; ++i) {
    void *Probe = OldBuckets[i];
    if (!Probe) continue;
    while (Node *NodeInBucket = GetNextPtr(Probe)) {
      // Figure out the next link, remove NodeInBucket from the old link.
      Probe = NodeInBucket->getNextInBucket();
      NodeInBucket->SetNextInBucket(nullptr);

      // Insert the node into the new bucket, after recomputing the hash.
      InsertNode(NodeInBucket,
                 GetBucketFor(ComputeNodeHash(NodeInBucket, TempID),
                              Buckets, NumBuckets));
      TempID.clear();
    }
  }
  
  free(OldBuckets);
}

/// GrowHashTable - Double the size of the hash table and rehash everything.
///
void FoldingSetBase::GrowHashTable() {
  GrowBucketCount(NumBuckets * 2);
}

void FoldingSetBase::reserve(unsigned EltCount) {
  // This will give us somewhere between EltCount / 2 and
  // EltCount buckets.  This puts us in the load factor
  // range of 1.0 - 2.0.
  if(EltCount < capacity())
    return;
  GrowBucketCount(PowerOf2Floor(EltCount));
}

/// FindNodeOrInsertPos - Look up the node specified by ID.  If it exists,
/// return it.  If not, return the insertion token that will make insertion
/// faster.
FoldingSetBase::Node *
FoldingSetBase::FindNodeOrInsertPos(const FoldingSetNodeID &ID,
                                    void *&InsertPos) {
  unsigned IDHash = ID.ComputeHash();
  void **Bucket = GetBucketFor(IDHash, Buckets, NumBuckets);
  void *Probe = *Bucket;
  
  InsertPos = nullptr;
  
  FoldingSetNodeID TempID;
  while (Node *NodeInBucket = GetNextPtr(Probe)) {
    if (NodeEquals(NodeInBucket, ID, IDHash, TempID))
      return NodeInBucket;
    TempID.clear();

    Probe = NodeInBucket->getNextInBucket();
  }
  
  // Didn't find the node, return null with the bucket as the InsertPos.
  InsertPos = Bucket;
  return nullptr;
}

/// InsertNode - Insert the specified node into the folding set, knowing that it
/// is not already in the map.  InsertPos must be obtained from 
/// FindNodeOrInsertPos.
void FoldingSetBase::InsertNode(Node *N, void *InsertPos) {
  assert(!N->getNextInBucket());
  // Do we need to grow the hashtable?
  if (NumNodes+1 > capacity()) {
    GrowHashTable();
    FoldingSetNodeID TempID;
    InsertPos = GetBucketFor(ComputeNodeHash(N, TempID), Buckets, NumBuckets);
  }

  ++NumNodes;
  
  /// The insert position is actually a bucket pointer.
  void **Bucket = static_cast<void**>(InsertPos);
  
  void *Next = *Bucket;
  
  // If this is the first insertion into this bucket, its next pointer will be
  // null.  Pretend as if it pointed to itself, setting the low bit to indicate
  // that it is a pointer to the bucket.
  if (!Next)
    Next = reinterpret_cast<void*>(reinterpret_cast<intptr_t>(Bucket)|1);

  // Set the node's next pointer, and make the bucket point to the node.
  N->SetNextInBucket(Next);
  *Bucket = N;
}

/// RemoveNode - Remove a node from the folding set, returning true if one was
/// removed or false if the node was not in the folding set.
bool FoldingSetBase::RemoveNode(Node *N) {
  // Because each bucket is a circular list, we don't need to compute N's hash
  // to remove it.
  void *Ptr = N->getNextInBucket();
  if (!Ptr) return false;  // Not in folding set.

  --NumNodes;
  N->SetNextInBucket(nullptr);

  // Remember what N originally pointed to, either a bucket or another node.
  void *NodeNextPtr = Ptr;
  
  // Chase around the list until we find the node (or bucket) which points to N.
  while (true) {
    if (Node *NodeInBucket = GetNextPtr(Ptr)) {
      // Advance pointer.
      Ptr = NodeInBucket->getNextInBucket();
      
      // We found a node that points to N, change it to point to N's next node,
      // removing N from the list.
      if (Ptr == N) {
        NodeInBucket->SetNextInBucket(NodeNextPtr);
        return true;
      }
    } else {
      void **Bucket = GetBucketPtr(Ptr);
      Ptr = *Bucket;
      
      // If we found that the bucket points to N, update the bucket to point to
      // whatever is next.
      if (Ptr == N) {
        *Bucket = NodeNextPtr;
        return true;
      }
    }
  }
}

/// GetOrInsertNode - If there is an existing simple Node exactly
/// equal to the specified node, return it.  Otherwise, insert 'N' and it
/// instead.
FoldingSetBase::Node *FoldingSetBase::GetOrInsertNode(FoldingSetBase::Node *N) {
  FoldingSetNodeID ID;
  GetNodeProfile(N, ID);
  void *IP;
  if (Node *E = FindNodeOrInsertPos(ID, IP))
    return E;
  InsertNode(N, IP);
  return N;
}

//===----------------------------------------------------------------------===//
// FoldingSetIteratorImpl Implementation

FoldingSetIteratorImpl::FoldingSetIteratorImpl(void **Bucket) {
  // Skip to the first non-null non-self-cycle bucket.
  while (*Bucket != reinterpret_cast<void*>(-1) &&
         (!*Bucket || !GetNextPtr(*Bucket)))
    ++Bucket;
  
  NodePtr = static_cast<FoldingSetNode*>(*Bucket);
}

void FoldingSetIteratorImpl::advance() {
  // If there is another link within this bucket, go to it.
  void *Probe = NodePtr->getNextInBucket();

  if (FoldingSetNode *NextNodeInBucket = GetNextPtr(Probe))
    NodePtr = NextNodeInBucket;
  else {
    // Otherwise, this is the last link in this bucket.  
    void **Bucket = GetBucketPtr(Probe);

    // Skip to the next non-null non-self-cycle bucket.
    do {
      ++Bucket;
    } while (*Bucket != reinterpret_cast<void*>(-1) &&
             (!*Bucket || !GetNextPtr(*Bucket)));
    
    NodePtr = static_cast<FoldingSetNode*>(*Bucket);
  }
}

//===----------------------------------------------------------------------===//
// FoldingSetBucketIteratorImpl Implementation

FoldingSetBucketIteratorImpl::FoldingSetBucketIteratorImpl(void **Bucket) {
  Ptr = (!*Bucket || !GetNextPtr(*Bucket)) ? (void*) Bucket : *Bucket;
}