llvm.org GIT mirror llvm / release_40 lib / Transforms / Utils / SimplifyIndVar.cpp
release_40

Tree @release_40 (Download .tar.gz)

SimplifyIndVar.cpp @release_40raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
//===-- SimplifyIndVar.cpp - Induction variable simplification ------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements induction variable simplification. It does
// not define any actual pass or policy, but provides a single function to
// simplify a loop's induction variables based on ScalarEvolution.
//
//===----------------------------------------------------------------------===//

#include "llvm/Transforms/Utils/SimplifyIndVar.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/IRBuilder.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"

using namespace llvm;

#define DEBUG_TYPE "indvars"

STATISTIC(NumElimIdentity, "Number of IV identities eliminated");
STATISTIC(NumElimOperand,  "Number of IV operands folded into a use");
STATISTIC(NumElimRem     , "Number of IV remainder operations eliminated");
STATISTIC(NumElimCmp     , "Number of IV comparisons eliminated");

namespace {
  /// This is a utility for simplifying induction variables
  /// based on ScalarEvolution. It is the primary instrument of the
  /// IndvarSimplify pass, but it may also be directly invoked to cleanup after
  /// other loop passes that preserve SCEV.
  class SimplifyIndvar {
    Loop             *L;
    LoopInfo         *LI;
    ScalarEvolution  *SE;
    DominatorTree    *DT;

    SmallVectorImpl<WeakVH> &DeadInsts;

    bool Changed;

  public:
    SimplifyIndvar(Loop *Loop, ScalarEvolution *SE, DominatorTree *DT,
                   LoopInfo *LI,SmallVectorImpl<WeakVH> &Dead)
        : L(Loop), LI(LI), SE(SE), DT(DT), DeadInsts(Dead), Changed(false) {
      assert(LI && "IV simplification requires LoopInfo");
    }

    bool hasChanged() const { return Changed; }

    /// Iteratively perform simplification on a worklist of users of the
    /// specified induction variable. This is the top-level driver that applies
    /// all simplifications to users of an IV.
    void simplifyUsers(PHINode *CurrIV, IVVisitor *V = nullptr);

    Value *foldIVUser(Instruction *UseInst, Instruction *IVOperand);

    bool eliminateIdentitySCEV(Instruction *UseInst, Instruction *IVOperand);

    bool eliminateOverflowIntrinsic(CallInst *CI);
    bool eliminateIVUser(Instruction *UseInst, Instruction *IVOperand);
    void eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand);
    void eliminateIVRemainder(BinaryOperator *Rem, Value *IVOperand,
                              bool IsSigned);
    bool strengthenOverflowingOperation(BinaryOperator *OBO, Value *IVOperand);
  };
}

/// Fold an IV operand into its use.  This removes increments of an
/// aligned IV when used by a instruction that ignores the low bits.
///
/// IVOperand is guaranteed SCEVable, but UseInst may not be.
///
/// Return the operand of IVOperand for this induction variable if IVOperand can
/// be folded (in case more folding opportunities have been exposed).
/// Otherwise return null.
Value *SimplifyIndvar::foldIVUser(Instruction *UseInst, Instruction *IVOperand) {
  Value *IVSrc = nullptr;
  unsigned OperIdx = 0;
  const SCEV *FoldedExpr = nullptr;
  switch (UseInst->getOpcode()) {
  default:
    return nullptr;
  case Instruction::UDiv:
  case Instruction::LShr:
    // We're only interested in the case where we know something about
    // the numerator and have a constant denominator.
    if (IVOperand != UseInst->getOperand(OperIdx) ||
        !isa<ConstantInt>(UseInst->getOperand(1)))
      return nullptr;

    // Attempt to fold a binary operator with constant operand.
    // e.g. ((I + 1) >> 2) => I >> 2
    if (!isa<BinaryOperator>(IVOperand)
        || !isa<ConstantInt>(IVOperand->getOperand(1)))
      return nullptr;

    IVSrc = IVOperand->getOperand(0);
    // IVSrc must be the (SCEVable) IV, since the other operand is const.
    assert(SE->isSCEVable(IVSrc->getType()) && "Expect SCEVable IV operand");

    ConstantInt *D = cast<ConstantInt>(UseInst->getOperand(1));
    if (UseInst->getOpcode() == Instruction::LShr) {
      // Get a constant for the divisor. See createSCEV.
      uint32_t BitWidth = cast<IntegerType>(UseInst->getType())->getBitWidth();
      if (D->getValue().uge(BitWidth))
        return nullptr;

      D = ConstantInt::get(UseInst->getContext(),
                           APInt::getOneBitSet(BitWidth, D->getZExtValue()));
    }
    FoldedExpr = SE->getUDivExpr(SE->getSCEV(IVSrc), SE->getSCEV(D));
  }
  // We have something that might fold it's operand. Compare SCEVs.
  if (!SE->isSCEVable(UseInst->getType()))
    return nullptr;

  // Bypass the operand if SCEV can prove it has no effect.
  if (SE->getSCEV(UseInst) != FoldedExpr)
    return nullptr;

  DEBUG(dbgs() << "INDVARS: Eliminated IV operand: " << *IVOperand
        << " -> " << *UseInst << '\n');

  UseInst->setOperand(OperIdx, IVSrc);
  assert(SE->getSCEV(UseInst) == FoldedExpr && "bad SCEV with folded oper");

  ++NumElimOperand;
  Changed = true;
  if (IVOperand->use_empty())
    DeadInsts.emplace_back(IVOperand);
  return IVSrc;
}

/// SimplifyIVUsers helper for eliminating useless
/// comparisons against an induction variable.
void SimplifyIndvar::eliminateIVComparison(ICmpInst *ICmp, Value *IVOperand) {
  unsigned IVOperIdx = 0;
  ICmpInst::Predicate Pred = ICmp->getPredicate();
  if (IVOperand != ICmp->getOperand(0)) {
    // Swapped
    assert(IVOperand == ICmp->getOperand(1) && "Can't find IVOperand");
    IVOperIdx = 1;
    Pred = ICmpInst::getSwappedPredicate(Pred);
  }

  // Get the SCEVs for the ICmp operands.
  const SCEV *S = SE->getSCEV(ICmp->getOperand(IVOperIdx));
  const SCEV *X = SE->getSCEV(ICmp->getOperand(1 - IVOperIdx));

  // Simplify unnecessary loops away.
  const Loop *ICmpLoop = LI->getLoopFor(ICmp->getParent());
  S = SE->getSCEVAtScope(S, ICmpLoop);
  X = SE->getSCEVAtScope(X, ICmpLoop);

  ICmpInst::Predicate InvariantPredicate;
  const SCEV *InvariantLHS, *InvariantRHS;

  // If the condition is always true or always false, replace it with
  // a constant value.
  if (SE->isKnownPredicate(Pred, S, X)) {
    ICmp->replaceAllUsesWith(ConstantInt::getTrue(ICmp->getContext()));
    DeadInsts.emplace_back(ICmp);
    DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
  } else if (SE->isKnownPredicate(ICmpInst::getInversePredicate(Pred), S, X)) {
    ICmp->replaceAllUsesWith(ConstantInt::getFalse(ICmp->getContext()));
    DeadInsts.emplace_back(ICmp);
    DEBUG(dbgs() << "INDVARS: Eliminated comparison: " << *ICmp << '\n');
  } else if (isa<PHINode>(IVOperand) &&
             SE->isLoopInvariantPredicate(Pred, S, X, L, InvariantPredicate,
                                          InvariantLHS, InvariantRHS)) {

    // Rewrite the comparison to a loop invariant comparison if it can be done
    // cheaply, where cheaply means "we don't need to emit any new
    // instructions".

    Value *NewLHS = nullptr, *NewRHS = nullptr;

    if (S == InvariantLHS || X == InvariantLHS)
      NewLHS =
          ICmp->getOperand(S == InvariantLHS ? IVOperIdx : (1 - IVOperIdx));

    if (S == InvariantRHS || X == InvariantRHS)
      NewRHS =
          ICmp->getOperand(S == InvariantRHS ? IVOperIdx : (1 - IVOperIdx));

    auto *PN = cast<PHINode>(IVOperand);
    for (unsigned i = 0, e = PN->getNumIncomingValues();
         i != e && (!NewLHS || !NewRHS);
         ++i) {

      // If this is a value incoming from the backedge, then it cannot be a loop
      // invariant value (since we know that IVOperand is an induction variable).
      if (L->contains(PN->getIncomingBlock(i)))
        continue;

      // NB! This following assert does not fundamentally have to be true, but
      // it is true today given how SCEV analyzes induction variables.
      // Specifically, today SCEV will *not* recognize %iv as an induction
      // variable in the following case:
      //
      // define void @f(i32 %k) {
      // entry:
      //   br i1 undef, label %r, label %l
      //
      // l:
      //   %k.inc.l = add i32 %k, 1
      //   br label %loop
      //
      // r:
      //   %k.inc.r = add i32 %k, 1
      //   br label %loop
      //
      // loop:
      //   %iv = phi i32 [ %k.inc.l, %l ], [ %k.inc.r, %r ], [ %iv.inc, %loop ]
      //   %iv.inc = add i32 %iv, 1
      //   br label %loop
      // }
      //
      // but if it starts to, at some point, then the assertion below will have
      // to be changed to a runtime check.

      Value *Incoming = PN->getIncomingValue(i);

#ifndef NDEBUG
      if (auto *I = dyn_cast<Instruction>(Incoming))
        assert(DT->dominates(I, ICmp) && "Should be a unique loop dominating value!");
#endif

      const SCEV *IncomingS = SE->getSCEV(Incoming);

      if (!NewLHS && IncomingS == InvariantLHS)
        NewLHS = Incoming;
      if (!NewRHS && IncomingS == InvariantRHS)
        NewRHS = Incoming;
    }

    if (!NewLHS || !NewRHS)
      // We could not find an existing value to replace either LHS or RHS.
      // Generating new instructions has subtler tradeoffs, so avoid doing that
      // for now.
      return;

    DEBUG(dbgs() << "INDVARS: Simplified comparison: " << *ICmp << '\n');
    ICmp->setPredicate(InvariantPredicate);
    ICmp->setOperand(0, NewLHS);
    ICmp->setOperand(1, NewRHS);
  } else
    return;

  ++NumElimCmp;
  Changed = true;
}

/// SimplifyIVUsers helper for eliminating useless
/// remainder operations operating on an induction variable.
void SimplifyIndvar::eliminateIVRemainder(BinaryOperator *Rem,
                                      Value *IVOperand,
                                      bool IsSigned) {
  // We're only interested in the case where we know something about
  // the numerator.
  if (IVOperand != Rem->getOperand(0))
    return;

  // Get the SCEVs for the ICmp operands.
  const SCEV *S = SE->getSCEV(Rem->getOperand(0));
  const SCEV *X = SE->getSCEV(Rem->getOperand(1));

  // Simplify unnecessary loops away.
  const Loop *ICmpLoop = LI->getLoopFor(Rem->getParent());
  S = SE->getSCEVAtScope(S, ICmpLoop);
  X = SE->getSCEVAtScope(X, ICmpLoop);

  // i % n  -->  i  if i is in [0,n).
  if ((!IsSigned || SE->isKnownNonNegative(S)) &&
      SE->isKnownPredicate(IsSigned ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
                           S, X))
    Rem->replaceAllUsesWith(Rem->getOperand(0));
  else {
    // (i+1) % n  -->  (i+1)==n?0:(i+1)  if i is in [0,n).
    const SCEV *LessOne = SE->getMinusSCEV(S, SE->getOne(S->getType()));
    if (IsSigned && !SE->isKnownNonNegative(LessOne))
      return;

    if (!SE->isKnownPredicate(IsSigned ?
                              ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT,
                              LessOne, X))
      return;

    ICmpInst *ICmp = new ICmpInst(Rem, ICmpInst::ICMP_EQ,
                                  Rem->getOperand(0), Rem->getOperand(1));
    SelectInst *Sel =
      SelectInst::Create(ICmp,
                         ConstantInt::get(Rem->getType(), 0),
                         Rem->getOperand(0), "tmp", Rem);
    Rem->replaceAllUsesWith(Sel);
  }

  DEBUG(dbgs() << "INDVARS: Simplified rem: " << *Rem << '\n');
  ++NumElimRem;
  Changed = true;
  DeadInsts.emplace_back(Rem);
}

bool SimplifyIndvar::eliminateOverflowIntrinsic(CallInst *CI) {
  auto *F = CI->getCalledFunction();
  if (!F)
    return false;

  typedef const SCEV *(ScalarEvolution::*OperationFunctionTy)(
      const SCEV *, const SCEV *, SCEV::NoWrapFlags);
  typedef const SCEV *(ScalarEvolution::*ExtensionFunctionTy)(
      const SCEV *, Type *);

  OperationFunctionTy Operation;
  ExtensionFunctionTy Extension;

  Instruction::BinaryOps RawOp;

  // We always have exactly one of nsw or nuw.  If NoSignedOverflow is false, we
  // have nuw.
  bool NoSignedOverflow;

  switch (F->getIntrinsicID()) {
  default:
    return false;

  case Intrinsic::sadd_with_overflow:
    Operation = &ScalarEvolution::getAddExpr;
    Extension = &ScalarEvolution::getSignExtendExpr;
    RawOp = Instruction::Add;
    NoSignedOverflow = true;
    break;

  case Intrinsic::uadd_with_overflow:
    Operation = &ScalarEvolution::getAddExpr;
    Extension = &ScalarEvolution::getZeroExtendExpr;
    RawOp = Instruction::Add;
    NoSignedOverflow = false;
    break;

  case Intrinsic::ssub_with_overflow:
    Operation = &ScalarEvolution::getMinusSCEV;
    Extension = &ScalarEvolution::getSignExtendExpr;
    RawOp = Instruction::Sub;
    NoSignedOverflow = true;
    break;

  case Intrinsic::usub_with_overflow:
    Operation = &ScalarEvolution::getMinusSCEV;
    Extension = &ScalarEvolution::getZeroExtendExpr;
    RawOp = Instruction::Sub;
    NoSignedOverflow = false;
    break;
  }

  const SCEV *LHS = SE->getSCEV(CI->getArgOperand(0));
  const SCEV *RHS = SE->getSCEV(CI->getArgOperand(1));

  auto *NarrowTy = cast<IntegerType>(LHS->getType());
  auto *WideTy =
    IntegerType::get(NarrowTy->getContext(), NarrowTy->getBitWidth() * 2);

  const SCEV *A =
      (SE->*Extension)((SE->*Operation)(LHS, RHS, SCEV::FlagAnyWrap), WideTy);
  const SCEV *B =
      (SE->*Operation)((SE->*Extension)(LHS, WideTy),
                       (SE->*Extension)(RHS, WideTy), SCEV::FlagAnyWrap);

  if (A != B)
    return false;

  // Proved no overflow, nuke the overflow check and, if possible, the overflow
  // intrinsic as well.

  BinaryOperator *NewResult = BinaryOperator::Create(
      RawOp, CI->getArgOperand(0), CI->getArgOperand(1), "", CI);

  if (NoSignedOverflow)
    NewResult->setHasNoSignedWrap(true);
  else
    NewResult->setHasNoUnsignedWrap(true);

  SmallVector<ExtractValueInst *, 4> ToDelete;

  for (auto *U : CI->users()) {
    if (auto *EVI = dyn_cast<ExtractValueInst>(U)) {
      if (EVI->getIndices()[0] == 1)
        EVI->replaceAllUsesWith(ConstantInt::getFalse(CI->getContext()));
      else {
        assert(EVI->getIndices()[0] == 0 && "Only two possibilities!");
        EVI->replaceAllUsesWith(NewResult);
      }
      ToDelete.push_back(EVI);
    }
  }

  for (auto *EVI : ToDelete)
    EVI->eraseFromParent();

  if (CI->use_empty())
    CI->eraseFromParent();

  return true;
}

/// Eliminate an operation that consumes a simple IV and has no observable
/// side-effect given the range of IV values.  IVOperand is guaranteed SCEVable,
/// but UseInst may not be.
bool SimplifyIndvar::eliminateIVUser(Instruction *UseInst,
                                     Instruction *IVOperand) {
  if (ICmpInst *ICmp = dyn_cast<ICmpInst>(UseInst)) {
    eliminateIVComparison(ICmp, IVOperand);
    return true;
  }
  if (BinaryOperator *Rem = dyn_cast<BinaryOperator>(UseInst)) {
    bool IsSigned = Rem->getOpcode() == Instruction::SRem;
    if (IsSigned || Rem->getOpcode() == Instruction::URem) {
      eliminateIVRemainder(Rem, IVOperand, IsSigned);
      return true;
    }
  }

  if (auto *CI = dyn_cast<CallInst>(UseInst))
    if (eliminateOverflowIntrinsic(CI))
      return true;

  if (eliminateIdentitySCEV(UseInst, IVOperand))
    return true;

  return false;
}

/// Eliminate any operation that SCEV can prove is an identity function.
bool SimplifyIndvar::eliminateIdentitySCEV(Instruction *UseInst,
                                           Instruction *IVOperand) {
  if (!SE->isSCEVable(UseInst->getType()) ||
      (UseInst->getType() != IVOperand->getType()) ||
      (SE->getSCEV(UseInst) != SE->getSCEV(IVOperand)))
    return false;

  // getSCEV(X) == getSCEV(Y) does not guarantee that X and Y are related in the
  // dominator tree, even if X is an operand to Y.  For instance, in
  //
  //     %iv = phi i32 {0,+,1}
  //     br %cond, label %left, label %merge
  //
  //   left:
  //     %X = add i32 %iv, 0
  //     br label %merge
  //
  //   merge:
  //     %M = phi (%X, %iv)
  //
  // getSCEV(%M) == getSCEV(%X) == {0,+,1}, but %X does not dominate %M, and
  // %M.replaceAllUsesWith(%X) would be incorrect.

  if (isa<PHINode>(UseInst))
    // If UseInst is not a PHI node then we know that IVOperand dominates
    // UseInst directly from the legality of SSA.
    if (!DT || !DT->dominates(IVOperand, UseInst))
      return false;

  if (!LI->replacementPreservesLCSSAForm(UseInst, IVOperand))
    return false;

  DEBUG(dbgs() << "INDVARS: Eliminated identity: " << *UseInst << '\n');

  UseInst->replaceAllUsesWith(IVOperand);
  ++NumElimIdentity;
  Changed = true;
  DeadInsts.emplace_back(UseInst);
  return true;
}

/// Annotate BO with nsw / nuw if it provably does not signed-overflow /
/// unsigned-overflow.  Returns true if anything changed, false otherwise.
bool SimplifyIndvar::strengthenOverflowingOperation(BinaryOperator *BO,
                                                    Value *IVOperand) {

  // Fastpath: we don't have any work to do if `BO` is `nuw` and `nsw`.
  if (BO->hasNoUnsignedWrap() && BO->hasNoSignedWrap())
    return false;

  const SCEV *(ScalarEvolution::*GetExprForBO)(const SCEV *, const SCEV *,
                                               SCEV::NoWrapFlags);

  switch (BO->getOpcode()) {
  default:
    return false;

  case Instruction::Add:
    GetExprForBO = &ScalarEvolution::getAddExpr;
    break;

  case Instruction::Sub:
    GetExprForBO = &ScalarEvolution::getMinusSCEV;
    break;

  case Instruction::Mul:
    GetExprForBO = &ScalarEvolution::getMulExpr;
    break;
  }

  unsigned BitWidth = cast<IntegerType>(BO->getType())->getBitWidth();
  Type *WideTy = IntegerType::get(BO->getContext(), BitWidth * 2);
  const SCEV *LHS = SE->getSCEV(BO->getOperand(0));
  const SCEV *RHS = SE->getSCEV(BO->getOperand(1));

  bool Changed = false;

  if (!BO->hasNoUnsignedWrap()) {
    const SCEV *ExtendAfterOp = SE->getZeroExtendExpr(SE->getSCEV(BO), WideTy);
    const SCEV *OpAfterExtend = (SE->*GetExprForBO)(
      SE->getZeroExtendExpr(LHS, WideTy), SE->getZeroExtendExpr(RHS, WideTy),
      SCEV::FlagAnyWrap);
    if (ExtendAfterOp == OpAfterExtend) {
      BO->setHasNoUnsignedWrap();
      SE->forgetValue(BO);
      Changed = true;
    }
  }

  if (!BO->hasNoSignedWrap()) {
    const SCEV *ExtendAfterOp = SE->getSignExtendExpr(SE->getSCEV(BO), WideTy);
    const SCEV *OpAfterExtend = (SE->*GetExprForBO)(
      SE->getSignExtendExpr(LHS, WideTy), SE->getSignExtendExpr(RHS, WideTy),
      SCEV::FlagAnyWrap);
    if (ExtendAfterOp == OpAfterExtend) {
      BO->setHasNoSignedWrap();
      SE->forgetValue(BO);
      Changed = true;
    }
  }

  return Changed;
}

/// Add all uses of Def to the current IV's worklist.
static void pushIVUsers(
  Instruction *Def,
  SmallPtrSet<Instruction*,16> &Simplified,
  SmallVectorImpl< std::pair<Instruction*,Instruction*> > &SimpleIVUsers) {

  for (User *U : Def->users()) {
    Instruction *UI = cast<Instruction>(U);

    // Avoid infinite or exponential worklist processing.
    // Also ensure unique worklist users.
    // If Def is a LoopPhi, it may not be in the Simplified set, so check for
    // self edges first.
    if (UI != Def && Simplified.insert(UI).second)
      SimpleIVUsers.push_back(std::make_pair(UI, Def));
  }
}

/// Return true if this instruction generates a simple SCEV
/// expression in terms of that IV.
///
/// This is similar to IVUsers' isInteresting() but processes each instruction
/// non-recursively when the operand is already known to be a simpleIVUser.
///
static bool isSimpleIVUser(Instruction *I, const Loop *L, ScalarEvolution *SE) {
  if (!SE->isSCEVable(I->getType()))
    return false;

  // Get the symbolic expression for this instruction.
  const SCEV *S = SE->getSCEV(I);

  // Only consider affine recurrences.
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(S);
  if (AR && AR->getLoop() == L)
    return true;

  return false;
}

/// Iteratively perform simplification on a worklist of users
/// of the specified induction variable. Each successive simplification may push
/// more users which may themselves be candidates for simplification.
///
/// This algorithm does not require IVUsers analysis. Instead, it simplifies
/// instructions in-place during analysis. Rather than rewriting induction
/// variables bottom-up from their users, it transforms a chain of IVUsers
/// top-down, updating the IR only when it encounters a clear optimization
/// opportunity.
///
/// Once DisableIVRewrite is default, LSR will be the only client of IVUsers.
///
void SimplifyIndvar::simplifyUsers(PHINode *CurrIV, IVVisitor *V) {
  if (!SE->isSCEVable(CurrIV->getType()))
    return;

  // Instructions processed by SimplifyIndvar for CurrIV.
  SmallPtrSet<Instruction*,16> Simplified;

  // Use-def pairs if IV users waiting to be processed for CurrIV.
  SmallVector<std::pair<Instruction*, Instruction*>, 8> SimpleIVUsers;

  // Push users of the current LoopPhi. In rare cases, pushIVUsers may be
  // called multiple times for the same LoopPhi. This is the proper thing to
  // do for loop header phis that use each other.
  pushIVUsers(CurrIV, Simplified, SimpleIVUsers);

  while (!SimpleIVUsers.empty()) {
    std::pair<Instruction*, Instruction*> UseOper =
      SimpleIVUsers.pop_back_val();
    Instruction *UseInst = UseOper.first;

    // Bypass back edges to avoid extra work.
    if (UseInst == CurrIV) continue;

    Instruction *IVOperand = UseOper.second;
    for (unsigned N = 0; IVOperand; ++N) {
      assert(N <= Simplified.size() && "runaway iteration");

      Value *NewOper = foldIVUser(UseOper.first, IVOperand);
      if (!NewOper)
        break; // done folding
      IVOperand = dyn_cast<Instruction>(NewOper);
    }
    if (!IVOperand)
      continue;

    if (eliminateIVUser(UseOper.first, IVOperand)) {
      pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
      continue;
    }

    if (BinaryOperator *BO = dyn_cast<BinaryOperator>(UseOper.first)) {
      if (isa<OverflowingBinaryOperator>(BO) &&
          strengthenOverflowingOperation(BO, IVOperand)) {
        // re-queue uses of the now modified binary operator and fall
        // through to the checks that remain.
        pushIVUsers(IVOperand, Simplified, SimpleIVUsers);
      }
    }

    CastInst *Cast = dyn_cast<CastInst>(UseOper.first);
    if (V && Cast) {
      V->visitCast(Cast);
      continue;
    }
    if (isSimpleIVUser(UseOper.first, L, SE)) {
      pushIVUsers(UseOper.first, Simplified, SimpleIVUsers);
    }
  }
}

namespace llvm {

void IVVisitor::anchor() { }

/// Simplify instructions that use this induction variable
/// by using ScalarEvolution to analyze the IV's recurrence.
bool simplifyUsersOfIV(PHINode *CurrIV, ScalarEvolution *SE, DominatorTree *DT,
                       LoopInfo *LI, SmallVectorImpl<WeakVH> &Dead,
                       IVVisitor *V) {
  SimplifyIndvar SIV(LI->getLoopFor(CurrIV->getParent()), SE, DT, LI, Dead);
  SIV.simplifyUsers(CurrIV, V);
  return SIV.hasChanged();
}

/// Simplify users of induction variables within this
/// loop. This does not actually change or add IVs.
bool simplifyLoopIVs(Loop *L, ScalarEvolution *SE, DominatorTree *DT,
                     LoopInfo *LI, SmallVectorImpl<WeakVH> &Dead) {
  bool Changed = false;
  for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I) {
    Changed |= simplifyUsersOfIV(cast<PHINode>(I), SE, DT, LI, Dead);
  }
  return Changed;
}

} // namespace llvm