llvm.org GIT mirror llvm / release_40 lib / Target / AMDGPU / SIShrinkInstructions.cpp
release_40

Tree @release_40 (Download .tar.gz)

SIShrinkInstructions.cpp @release_40raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
//===-- SIShrinkInstructions.cpp - Shrink Instructions --------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
/// The pass tries to use the 32-bit encoding for instructions when possible.
//===----------------------------------------------------------------------===//
//

#include "AMDGPU.h"
#include "AMDGPUMCInstLower.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetMachine.h"

#define DEBUG_TYPE "si-shrink-instructions"

STATISTIC(NumInstructionsShrunk,
          "Number of 64-bit instruction reduced to 32-bit.");
STATISTIC(NumLiteralConstantsFolded,
          "Number of literal constants folded into 32-bit instructions.");

using namespace llvm;

namespace {

class SIShrinkInstructions : public MachineFunctionPass {
public:
  static char ID;

public:
  SIShrinkInstructions() : MachineFunctionPass(ID) {
  }

  bool runOnMachineFunction(MachineFunction &MF) override;

  StringRef getPassName() const override { return "SI Shrink Instructions"; }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.setPreservesCFG();
    MachineFunctionPass::getAnalysisUsage(AU);
  }
};

} // End anonymous namespace.

INITIALIZE_PASS(SIShrinkInstructions, DEBUG_TYPE,
                "SI Shrink Instructions", false, false)

char SIShrinkInstructions::ID = 0;

FunctionPass *llvm::createSIShrinkInstructionsPass() {
  return new SIShrinkInstructions();
}

static bool isVGPR(const MachineOperand *MO, const SIRegisterInfo &TRI,
                   const MachineRegisterInfo &MRI) {
  if (!MO->isReg())
    return false;

  if (TargetRegisterInfo::isVirtualRegister(MO->getReg()))
    return TRI.hasVGPRs(MRI.getRegClass(MO->getReg()));

  return TRI.hasVGPRs(TRI.getPhysRegClass(MO->getReg()));
}

static bool canShrink(MachineInstr &MI, const SIInstrInfo *TII,
                      const SIRegisterInfo &TRI,
                      const MachineRegisterInfo &MRI) {

  const MachineOperand *Src2 = TII->getNamedOperand(MI, AMDGPU::OpName::src2);
  // Can't shrink instruction with three operands.
  // FIXME: v_cndmask_b32 has 3 operands and is shrinkable, but we need to add
  // a special case for it.  It can only be shrunk if the third operand
  // is vcc.  We should handle this the same way we handle vopc, by addding
  // a register allocation hint pre-regalloc and then do the shrinking
  // post-regalloc.
  if (Src2) {
    switch (MI.getOpcode()) {
      default: return false;

      case AMDGPU::V_ADDC_U32_e64:
      case AMDGPU::V_SUBB_U32_e64:
        // Additional verification is needed for sdst/src2.
        return true;

      case AMDGPU::V_MAC_F32_e64:
      case AMDGPU::V_MAC_F16_e64:
        if (!isVGPR(Src2, TRI, MRI) ||
            TII->hasModifiersSet(MI, AMDGPU::OpName::src2_modifiers))
          return false;
        break;

      case AMDGPU::V_CNDMASK_B32_e64:
        break;
    }
  }

  const MachineOperand *Src1 = TII->getNamedOperand(MI, AMDGPU::OpName::src1);
  const MachineOperand *Src1Mod =
      TII->getNamedOperand(MI, AMDGPU::OpName::src1_modifiers);

  if (Src1 && (!isVGPR(Src1, TRI, MRI) || (Src1Mod && Src1Mod->getImm() != 0)))
    return false;

  // We don't need to check src0, all input types are legal, so just make sure
  // src0 isn't using any modifiers.
  if (TII->hasModifiersSet(MI, AMDGPU::OpName::src0_modifiers))
    return false;

  // Check output modifiers
  if (TII->hasModifiersSet(MI, AMDGPU::OpName::omod))
    return false;

  return !TII->hasModifiersSet(MI, AMDGPU::OpName::clamp);
}

/// \brief This function checks \p MI for operands defined by a move immediate
/// instruction and then folds the literal constant into the instruction if it
/// can.  This function assumes that \p MI is a VOP1, VOP2, or VOPC instruction
/// and will only fold literal constants if we are still in SSA.
static void foldImmediates(MachineInstr &MI, const SIInstrInfo *TII,
                           MachineRegisterInfo &MRI, bool TryToCommute = true) {

  if (!MRI.isSSA())
    return;

  assert(TII->isVOP1(MI) || TII->isVOP2(MI) || TII->isVOPC(MI));

  int Src0Idx = AMDGPU::getNamedOperandIdx(MI.getOpcode(), AMDGPU::OpName::src0);

  // Only one literal constant is allowed per instruction, so if src0 is a
  // literal constant then we can't do any folding.
  if (TII->isLiteralConstant(MI, Src0Idx))
    return;

  // Try to fold Src0
  MachineOperand &Src0 = MI.getOperand(Src0Idx);
  if (Src0.isReg() && MRI.hasOneUse(Src0.getReg())) {
    unsigned Reg = Src0.getReg();
    MachineInstr *Def = MRI.getUniqueVRegDef(Reg);
    if (Def && Def->isMoveImmediate()) {
      MachineOperand &MovSrc = Def->getOperand(1);
      bool ConstantFolded = false;

      if (MovSrc.isImm() && (isInt<32>(MovSrc.getImm()) ||
                             isUInt<32>(MovSrc.getImm()))) {
        Src0.ChangeToImmediate(MovSrc.getImm());
        ConstantFolded = true;
      }
      if (ConstantFolded) {
        if (MRI.use_empty(Reg))
          Def->eraseFromParent();
        ++NumLiteralConstantsFolded;
        return;
      }
    }
  }

  // We have failed to fold src0, so commute the instruction and try again.
  if (TryToCommute && MI.isCommutable() && TII->commuteInstruction(MI))
    foldImmediates(MI, TII, MRI, false);

}

// Copy MachineOperand with all flags except setting it as implicit.
static void copyFlagsToImplicitVCC(MachineInstr &MI,
                                   const MachineOperand &Orig) {

  for (MachineOperand &Use : MI.implicit_operands()) {
    if (Use.isUse() && Use.getReg() == AMDGPU::VCC) {
      Use.setIsUndef(Orig.isUndef());
      Use.setIsKill(Orig.isKill());
      return;
    }
  }
}

static bool isKImmOperand(const SIInstrInfo *TII, const MachineOperand &Src) {
  return isInt<16>(Src.getImm()) &&
    !TII->isInlineConstant(*Src.getParent(),
                           Src.getParent()->getOperandNo(&Src));
}

static bool isKUImmOperand(const SIInstrInfo *TII, const MachineOperand &Src) {
  return isUInt<16>(Src.getImm()) &&
    !TII->isInlineConstant(*Src.getParent(),
                           Src.getParent()->getOperandNo(&Src));
}

static bool isKImmOrKUImmOperand(const SIInstrInfo *TII,
                                 const MachineOperand &Src,
                                 bool &IsUnsigned) {
  if (isInt<16>(Src.getImm())) {
    IsUnsigned = false;
    return !TII->isInlineConstant(Src);
  }

  if (isUInt<16>(Src.getImm())) {
    IsUnsigned = true;
    return !TII->isInlineConstant(Src);
  }

  return false;
}

/// \returns true if the constant in \p Src should be replaced with a bitreverse
/// of an inline immediate.
static bool isReverseInlineImm(const SIInstrInfo *TII,
                               const MachineOperand &Src,
                               int32_t &ReverseImm) {
  if (!isInt<32>(Src.getImm()) || TII->isInlineConstant(Src))
    return false;

  ReverseImm = reverseBits<int32_t>(static_cast<int32_t>(Src.getImm()));
  return ReverseImm >= -16 && ReverseImm <= 64;
}

/// Copy implicit register operands from specified instruction to this
/// instruction that are not part of the instruction definition.
static void copyExtraImplicitOps(MachineInstr &NewMI, MachineFunction &MF,
                                 const MachineInstr &MI) {
  for (unsigned i = MI.getDesc().getNumOperands() +
         MI.getDesc().getNumImplicitUses() +
         MI.getDesc().getNumImplicitDefs(), e = MI.getNumOperands();
       i != e; ++i) {
    const MachineOperand &MO = MI.getOperand(i);
    if ((MO.isReg() && MO.isImplicit()) || MO.isRegMask())
      NewMI.addOperand(MF, MO);
  }
}

static void shrinkScalarCompare(const SIInstrInfo *TII, MachineInstr &MI) {
  // cmpk instructions do scc = dst <cc op> imm16, so commute the instruction to
  // get constants on the RHS.
  if (!MI.getOperand(0).isReg())
    TII->commuteInstruction(MI, false, 0, 1);

  const MachineOperand &Src1 = MI.getOperand(1);
  if (!Src1.isImm())
    return;

  int SOPKOpc = AMDGPU::getSOPKOp(MI.getOpcode());
  if (SOPKOpc == -1)
    return;

  // eq/ne is special because the imm16 can be treated as signed or unsigned,
  // and initially selectd to the unsigned versions.
  if (SOPKOpc == AMDGPU::S_CMPK_EQ_U32 || SOPKOpc == AMDGPU::S_CMPK_LG_U32) {
    bool HasUImm;
    if (isKImmOrKUImmOperand(TII, Src1, HasUImm)) {
      if (!HasUImm) {
        SOPKOpc = (SOPKOpc == AMDGPU::S_CMPK_EQ_U32) ?
          AMDGPU::S_CMPK_EQ_I32 : AMDGPU::S_CMPK_LG_I32;
      }

      MI.setDesc(TII->get(SOPKOpc));
    }

    return;
  }

  const MCInstrDesc &NewDesc = TII->get(SOPKOpc);

  if ((TII->sopkIsZext(SOPKOpc) && isKUImmOperand(TII, Src1)) ||
      (!TII->sopkIsZext(SOPKOpc) && isKImmOperand(TII, Src1))) {
    MI.setDesc(NewDesc);
  }
}

bool SIShrinkInstructions::runOnMachineFunction(MachineFunction &MF) {
  if (skipFunction(*MF.getFunction()))
    return false;

  MachineRegisterInfo &MRI = MF.getRegInfo();
  const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
  const SIInstrInfo *TII = ST.getInstrInfo();
  const SIRegisterInfo &TRI = TII->getRegisterInfo();

  std::vector<unsigned> I1Defs;

  for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
                                                  BI != BE; ++BI) {

    MachineBasicBlock &MBB = *BI;
    MachineBasicBlock::iterator I, Next;
    for (I = MBB.begin(); I != MBB.end(); I = Next) {
      Next = std::next(I);
      MachineInstr &MI = *I;

      if (MI.getOpcode() == AMDGPU::V_MOV_B32_e32) {
        // If this has a literal constant source that is the same as the
        // reversed bits of an inline immediate, replace with a bitreverse of
        // that constant. This saves 4 bytes in the common case of materializing
        // sign bits.

        // Test if we are after regalloc. We only want to do this after any
        // optimizations happen because this will confuse them.
        // XXX - not exactly a check for post-regalloc run.
        MachineOperand &Src = MI.getOperand(1);
        if (Src.isImm() &&
            TargetRegisterInfo::isPhysicalRegister(MI.getOperand(0).getReg())) {
          int32_t ReverseImm;
          if (isReverseInlineImm(TII, Src, ReverseImm)) {
            MI.setDesc(TII->get(AMDGPU::V_BFREV_B32_e32));
            Src.setImm(ReverseImm);
            continue;
          }
        }
      }

      // Combine adjacent s_nops to use the immediate operand encoding how long
      // to wait.
      //
      // s_nop N
      // s_nop M
      //  =>
      // s_nop (N + M)
      if (MI.getOpcode() == AMDGPU::S_NOP &&
          Next != MBB.end() &&
          (*Next).getOpcode() == AMDGPU::S_NOP) {

        MachineInstr &NextMI = *Next;
        // The instruction encodes the amount to wait with an offset of 1,
        // i.e. 0 is wait 1 cycle. Convert both to cycles and then convert back
        // after adding.
        uint8_t Nop0 = MI.getOperand(0).getImm() + 1;
        uint8_t Nop1 = NextMI.getOperand(0).getImm() + 1;

        // Make sure we don't overflow the bounds.
        if (Nop0 + Nop1 <= 8) {
          NextMI.getOperand(0).setImm(Nop0 + Nop1 - 1);
          MI.eraseFromParent();
        }

        continue;
      }

      // FIXME: We also need to consider movs of constant operands since
      // immediate operands are not folded if they have more than one use, and
      // the operand folding pass is unaware if the immediate will be free since
      // it won't know if the src == dest constraint will end up being
      // satisfied.
      if (MI.getOpcode() == AMDGPU::S_ADD_I32 ||
          MI.getOpcode() == AMDGPU::S_MUL_I32) {
        const MachineOperand *Dest = &MI.getOperand(0);
        MachineOperand *Src0 = &MI.getOperand(1);
        MachineOperand *Src1 = &MI.getOperand(2);

        if (!Src0->isReg() && Src1->isReg()) {
          if (TII->commuteInstruction(MI, false, 1, 2))
            std::swap(Src0, Src1);
        }

        // FIXME: This could work better if hints worked with subregisters. If
        // we have a vector add of a constant, we usually don't get the correct
        // allocation due to the subregister usage.
        if (TargetRegisterInfo::isVirtualRegister(Dest->getReg()) &&
            Src0->isReg()) {
          MRI.setRegAllocationHint(Dest->getReg(), 0, Src0->getReg());
          MRI.setRegAllocationHint(Src0->getReg(), 0, Dest->getReg());
          continue;
        }

        if (Src0->isReg() && Src0->getReg() == Dest->getReg()) {
          if (Src1->isImm() && isKImmOperand(TII, *Src1)) {
            unsigned Opc = (MI.getOpcode() == AMDGPU::S_ADD_I32) ?
              AMDGPU::S_ADDK_I32 : AMDGPU::S_MULK_I32;

            MI.setDesc(TII->get(Opc));
            MI.tieOperands(0, 1);
          }
        }
      }

      // Try to use s_cmpk_*
      if (MI.isCompare() && TII->isSOPC(MI)) {
        shrinkScalarCompare(TII, MI);
        continue;
      }

      // Try to use S_MOVK_I32, which will save 4 bytes for small immediates.
      if (MI.getOpcode() == AMDGPU::S_MOV_B32) {
        const MachineOperand &Dst = MI.getOperand(0);
        MachineOperand &Src = MI.getOperand(1);

        if (Src.isImm() &&
            TargetRegisterInfo::isPhysicalRegister(Dst.getReg())) {
          int32_t ReverseImm;
          if (isKImmOperand(TII, Src))
            MI.setDesc(TII->get(AMDGPU::S_MOVK_I32));
          else if (isReverseInlineImm(TII, Src, ReverseImm)) {
            MI.setDesc(TII->get(AMDGPU::S_BREV_B32));
            Src.setImm(ReverseImm);
          }
        }

        continue;
      }

      if (!TII->hasVALU32BitEncoding(MI.getOpcode()))
        continue;

      if (!canShrink(MI, TII, TRI, MRI)) {
        // Try commuting the instruction and see if that enables us to shrink
        // it.
        if (!MI.isCommutable() || !TII->commuteInstruction(MI) ||
            !canShrink(MI, TII, TRI, MRI))
          continue;
      }

      // getVOPe32 could be -1 here if we started with an instruction that had
      // a 32-bit encoding and then commuted it to an instruction that did not.
      if (!TII->hasVALU32BitEncoding(MI.getOpcode()))
        continue;

      int Op32 = AMDGPU::getVOPe32(MI.getOpcode());

      if (TII->isVOPC(Op32)) {
        unsigned DstReg = MI.getOperand(0).getReg();
        if (TargetRegisterInfo::isVirtualRegister(DstReg)) {
          // VOPC instructions can only write to the VCC register. We can't
          // force them to use VCC here, because this is only one register and
          // cannot deal with sequences which would require multiple copies of
          // VCC, e.g. S_AND_B64 (vcc = V_CMP_...), (vcc = V_CMP_...)
          //
          // So, instead of forcing the instruction to write to VCC, we provide
          // a hint to the register allocator to use VCC and then we we will run
          // this pass again after RA and shrink it if it outputs to VCC.
          MRI.setRegAllocationHint(MI.getOperand(0).getReg(), 0, AMDGPU::VCC);
          continue;
        }
        if (DstReg != AMDGPU::VCC)
          continue;
      }

      if (Op32 == AMDGPU::V_CNDMASK_B32_e32) {
        // We shrink V_CNDMASK_B32_e64 using regalloc hints like we do for VOPC
        // instructions.
        const MachineOperand *Src2 =
            TII->getNamedOperand(MI, AMDGPU::OpName::src2);
        if (!Src2->isReg())
          continue;
        unsigned SReg = Src2->getReg();
        if (TargetRegisterInfo::isVirtualRegister(SReg)) {
          MRI.setRegAllocationHint(SReg, 0, AMDGPU::VCC);
          continue;
        }
        if (SReg != AMDGPU::VCC)
          continue;
      }

      // Check for the bool flag output for instructions like V_ADD_I32_e64.
      const MachineOperand *SDst = TII->getNamedOperand(MI,
                                                        AMDGPU::OpName::sdst);

      // Check the carry-in operand for v_addc_u32_e64.
      const MachineOperand *Src2 = TII->getNamedOperand(MI,
                                                        AMDGPU::OpName::src2);

      if (SDst) {
        if (SDst->getReg() != AMDGPU::VCC) {
          if (TargetRegisterInfo::isVirtualRegister(SDst->getReg()))
            MRI.setRegAllocationHint(SDst->getReg(), 0, AMDGPU::VCC);
          continue;
        }

        // All of the instructions with carry outs also have an SGPR input in
        // src2.
        if (Src2 && Src2->getReg() != AMDGPU::VCC) {
          if (TargetRegisterInfo::isVirtualRegister(Src2->getReg()))
            MRI.setRegAllocationHint(Src2->getReg(), 0, AMDGPU::VCC);

          continue;
        }
      }

      // We can shrink this instruction
      DEBUG(dbgs() << "Shrinking " << MI);

      MachineInstrBuilder Inst32 =
          BuildMI(MBB, I, MI.getDebugLoc(), TII->get(Op32));

      // Add the dst operand if the 32-bit encoding also has an explicit $vdst.
      // For VOPC instructions, this is replaced by an implicit def of vcc.
      int Op32DstIdx = AMDGPU::getNamedOperandIdx(Op32, AMDGPU::OpName::vdst);
      if (Op32DstIdx != -1) {
        // dst
        Inst32.addOperand(MI.getOperand(0));
      } else {
        assert(MI.getOperand(0).getReg() == AMDGPU::VCC &&
               "Unexpected case");
      }


      Inst32.addOperand(*TII->getNamedOperand(MI, AMDGPU::OpName::src0));

      const MachineOperand *Src1 =
          TII->getNamedOperand(MI, AMDGPU::OpName::src1);
      if (Src1)
        Inst32.addOperand(*Src1);

      if (Src2) {
        int Op32Src2Idx = AMDGPU::getNamedOperandIdx(Op32, AMDGPU::OpName::src2);
        if (Op32Src2Idx != -1) {
          Inst32.addOperand(*Src2);
        } else {
          // In the case of V_CNDMASK_B32_e32, the explicit operand src2 is
          // replaced with an implicit read of vcc. This was already added
          // during the initial BuildMI, so find it to preserve the flags.
          copyFlagsToImplicitVCC(*Inst32, *Src2);
        }
      }

      ++NumInstructionsShrunk;

      // Copy extra operands not present in the instruction definition.
      copyExtraImplicitOps(*Inst32, MF, MI);

      MI.eraseFromParent();
      foldImmediates(*Inst32, TII, MRI);

      DEBUG(dbgs() << "e32 MI = " << *Inst32 << '\n');


    }
  }
  return false;
}