llvm.org GIT mirror llvm / release_40 lib / CodeGen / RegAllocPBQP.cpp
release_40

Tree @release_40 (Download .tar.gz)

RegAllocPBQP.cpp @release_40raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
//===------ RegAllocPBQP.cpp ---- PBQP Register Allocator -------*- C++ -*-===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains a Partitioned Boolean Quadratic Programming (PBQP) based
// register allocator for LLVM. This allocator works by constructing a PBQP
// problem representing the register allocation problem under consideration,
// solving this using a PBQP solver, and mapping the solution back to a
// register assignment. If any variables are selected for spilling then spill
// code is inserted and the process repeated.
//
// The PBQP solver (pbqp.c) provided for this allocator uses a heuristic tuned
// for register allocation. For more information on PBQP for register
// allocation, see the following papers:
//
//   (1) Hames, L. and Scholz, B. 2006. Nearly optimal register allocation with
//   PBQP. In Proceedings of the 7th Joint Modular Languages Conference
//   (JMLC'06). LNCS, vol. 4228. Springer, New York, NY, USA. 346-361.
//
//   (2) Scholz, B., Eckstein, E. 2002. Register allocation for irregular
//   architectures. In Proceedings of the Joint Conference on Languages,
//   Compilers and Tools for Embedded Systems (LCTES'02), ACM Press, New York,
//   NY, USA, 139-148.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/RegAllocPBQP.h"
#include "RegisterCoalescer.h"
#include "Spiller.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveRangeEdit.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/VirtRegMap.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/FileSystem.h"
#include "llvm/Support/Printable.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"
#include <limits>
#include <memory>
#include <queue>
#include <set>
#include <sstream>
#include <vector>

using namespace llvm;

#define DEBUG_TYPE "regalloc"

static RegisterRegAlloc
RegisterPBQPRepAlloc("pbqp", "PBQP register allocator",
                       createDefaultPBQPRegisterAllocator);

static cl::opt<bool>
PBQPCoalescing("pbqp-coalescing",
                cl::desc("Attempt coalescing during PBQP register allocation."),
                cl::init(false), cl::Hidden);

#ifndef NDEBUG
static cl::opt<bool>
PBQPDumpGraphs("pbqp-dump-graphs",
               cl::desc("Dump graphs for each function/round in the compilation unit."),
               cl::init(false), cl::Hidden);
#endif

namespace {

///
/// PBQP based allocators solve the register allocation problem by mapping
/// register allocation problems to Partitioned Boolean Quadratic
/// Programming problems.
class RegAllocPBQP : public MachineFunctionPass {
public:

  static char ID;

  /// Construct a PBQP register allocator.
  RegAllocPBQP(char *cPassID = nullptr)
      : MachineFunctionPass(ID), customPassID(cPassID) {
    initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
    initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
    initializeLiveStacksPass(*PassRegistry::getPassRegistry());
    initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
  }

  /// Return the pass name.
  StringRef getPassName() const override { return "PBQP Register Allocator"; }

  /// PBQP analysis usage.
  void getAnalysisUsage(AnalysisUsage &au) const override;

  /// Perform register allocation
  bool runOnMachineFunction(MachineFunction &MF) override;

  MachineFunctionProperties getRequiredProperties() const override {
    return MachineFunctionProperties().set(
        MachineFunctionProperties::Property::NoPHIs);
  }

private:

  typedef std::map<const LiveInterval*, unsigned> LI2NodeMap;
  typedef std::vector<const LiveInterval*> Node2LIMap;
  typedef std::vector<unsigned> AllowedSet;
  typedef std::vector<AllowedSet> AllowedSetMap;
  typedef std::pair<unsigned, unsigned> RegPair;
  typedef std::map<RegPair, PBQP::PBQPNum> CoalesceMap;
  typedef std::set<unsigned> RegSet;

  char *customPassID;

  RegSet VRegsToAlloc, EmptyIntervalVRegs;

  /// Inst which is a def of an original reg and whose defs are already all
  /// dead after remat is saved in DeadRemats. The deletion of such inst is
  /// postponed till all the allocations are done, so its remat expr is
  /// always available for the remat of all the siblings of the original reg.
  SmallPtrSet<MachineInstr *, 32> DeadRemats;

  /// \brief Finds the initial set of vreg intervals to allocate.
  void findVRegIntervalsToAlloc(const MachineFunction &MF, LiveIntervals &LIS);

  /// \brief Constructs an initial graph.
  void initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM, Spiller &VRegSpiller);

  /// \brief Spill the given VReg.
  void spillVReg(unsigned VReg, SmallVectorImpl<unsigned> &NewIntervals,
                 MachineFunction &MF, LiveIntervals &LIS, VirtRegMap &VRM,
                 Spiller &VRegSpiller);

  /// \brief Given a solved PBQP problem maps this solution back to a register
  /// assignment.
  bool mapPBQPToRegAlloc(const PBQPRAGraph &G,
                         const PBQP::Solution &Solution,
                         VirtRegMap &VRM,
                         Spiller &VRegSpiller);

  /// \brief Postprocessing before final spilling. Sets basic block "live in"
  /// variables.
  void finalizeAlloc(MachineFunction &MF, LiveIntervals &LIS,
                     VirtRegMap &VRM) const;

  void postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS);
};

char RegAllocPBQP::ID = 0;

/// @brief Set spill costs for each node in the PBQP reg-alloc graph.
class SpillCosts : public PBQPRAConstraint {
public:
  void apply(PBQPRAGraph &G) override {
    LiveIntervals &LIS = G.getMetadata().LIS;

    // A minimum spill costs, so that register constraints can can be set
    // without normalization in the [0.0:MinSpillCost( interval.
    const PBQP::PBQPNum MinSpillCost = 10.0;

    for (auto NId : G.nodeIds()) {
      PBQP::PBQPNum SpillCost =
        LIS.getInterval(G.getNodeMetadata(NId).getVReg()).weight;
      if (SpillCost == 0.0)
        SpillCost = std::numeric_limits<PBQP::PBQPNum>::min();
      else
        SpillCost += MinSpillCost;
      PBQPRAGraph::RawVector NodeCosts(G.getNodeCosts(NId));
      NodeCosts[PBQP::RegAlloc::getSpillOptionIdx()] = SpillCost;
      G.setNodeCosts(NId, std::move(NodeCosts));
    }
  }
};

/// @brief Add interference edges between overlapping vregs.
class Interference : public PBQPRAConstraint {
private:

  typedef const PBQP::RegAlloc::AllowedRegVector* AllowedRegVecPtr;
  typedef std::pair<AllowedRegVecPtr, AllowedRegVecPtr> IKey;
  typedef DenseMap<IKey, PBQPRAGraph::MatrixPtr> IMatrixCache;
  typedef DenseSet<IKey> DisjointAllowedRegsCache;
  typedef std::pair<PBQP::GraphBase::NodeId, PBQP::GraphBase::NodeId> IEdgeKey;
  typedef DenseSet<IEdgeKey> IEdgeCache;

  bool haveDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
                               PBQPRAGraph::NodeId MId,
                               const DisjointAllowedRegsCache &D) const {
    const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
    const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();

    if (NRegs == MRegs)
      return false;

    if (NRegs < MRegs)
      return D.count(IKey(NRegs, MRegs)) > 0;

    return D.count(IKey(MRegs, NRegs)) > 0;
  }

  void setDisjointAllowedRegs(const PBQPRAGraph &G, PBQPRAGraph::NodeId NId,
                              PBQPRAGraph::NodeId MId,
                              DisjointAllowedRegsCache &D) {
    const auto *NRegs = &G.getNodeMetadata(NId).getAllowedRegs();
    const auto *MRegs = &G.getNodeMetadata(MId).getAllowedRegs();

    assert(NRegs != MRegs && "AllowedRegs can not be disjoint with itself");

    if (NRegs < MRegs)
      D.insert(IKey(NRegs, MRegs));
    else
      D.insert(IKey(MRegs, NRegs));
  }

  // Holds (Interval, CurrentSegmentID, and NodeId). The first two are required
  // for the fast interference graph construction algorithm. The last is there
  // to save us from looking up node ids via the VRegToNode map in the graph
  // metadata.
  typedef std::tuple<LiveInterval*, size_t, PBQP::GraphBase::NodeId>
    IntervalInfo;

  static SlotIndex getStartPoint(const IntervalInfo &I) {
    return std::get<0>(I)->segments[std::get<1>(I)].start;
  }

  static SlotIndex getEndPoint(const IntervalInfo &I) {
    return std::get<0>(I)->segments[std::get<1>(I)].end;
  }

  static PBQP::GraphBase::NodeId getNodeId(const IntervalInfo &I) {
    return std::get<2>(I);
  }

  static bool lowestStartPoint(const IntervalInfo &I1,
                               const IntervalInfo &I2) {
    // Condition reversed because priority queue has the *highest* element at
    // the front, rather than the lowest.
    return getStartPoint(I1) > getStartPoint(I2);
  }

  static bool lowestEndPoint(const IntervalInfo &I1,
                             const IntervalInfo &I2) {
    SlotIndex E1 = getEndPoint(I1);
    SlotIndex E2 = getEndPoint(I2);

    if (E1 < E2)
      return true;

    if (E1 > E2)
      return false;

    // If two intervals end at the same point, we need a way to break the tie or
    // the set will assume they're actually equal and refuse to insert a
    // "duplicate". Just compare the vregs - fast and guaranteed unique.
    return std::get<0>(I1)->reg < std::get<0>(I2)->reg;
  }

  static bool isAtLastSegment(const IntervalInfo &I) {
    return std::get<1>(I) == std::get<0>(I)->size() - 1;
  }

  static IntervalInfo nextSegment(const IntervalInfo &I) {
    return std::make_tuple(std::get<0>(I), std::get<1>(I) + 1, std::get<2>(I));
  }

public:

  void apply(PBQPRAGraph &G) override {
    // The following is loosely based on the linear scan algorithm introduced in
    // "Linear Scan Register Allocation" by Poletto and Sarkar. This version
    // isn't linear, because the size of the active set isn't bound by the
    // number of registers, but rather the size of the largest clique in the
    // graph. Still, we expect this to be better than N^2.
    LiveIntervals &LIS = G.getMetadata().LIS;

    // Interferenc matrices are incredibly regular - they're only a function of
    // the allowed sets, so we cache them to avoid the overhead of constructing
    // and uniquing them.
    IMatrixCache C;

    // Finding an edge is expensive in the worst case (O(max_clique(G))). So
    // cache locally edges we have already seen.
    IEdgeCache EC;

    // Cache known disjoint allowed registers pairs
    DisjointAllowedRegsCache D;

    typedef std::set<IntervalInfo, decltype(&lowestEndPoint)> IntervalSet;
    typedef std::priority_queue<IntervalInfo, std::vector<IntervalInfo>,
                                decltype(&lowestStartPoint)> IntervalQueue;
    IntervalSet Active(lowestEndPoint);
    IntervalQueue Inactive(lowestStartPoint);

    // Start by building the inactive set.
    for (auto NId : G.nodeIds()) {
      unsigned VReg = G.getNodeMetadata(NId).getVReg();
      LiveInterval &LI = LIS.getInterval(VReg);
      assert(!LI.empty() && "PBQP graph contains node for empty interval");
      Inactive.push(std::make_tuple(&LI, 0, NId));
    }

    while (!Inactive.empty()) {
      // Tentatively grab the "next" interval - this choice may be overriden
      // below.
      IntervalInfo Cur = Inactive.top();

      // Retire any active intervals that end before Cur starts.
      IntervalSet::iterator RetireItr = Active.begin();
      while (RetireItr != Active.end() &&
             (getEndPoint(*RetireItr) <= getStartPoint(Cur))) {
        // If this interval has subsequent segments, add the next one to the
        // inactive list.
        if (!isAtLastSegment(*RetireItr))
          Inactive.push(nextSegment(*RetireItr));

        ++RetireItr;
      }
      Active.erase(Active.begin(), RetireItr);

      // One of the newly retired segments may actually start before the
      // Cur segment, so re-grab the front of the inactive list.
      Cur = Inactive.top();
      Inactive.pop();

      // At this point we know that Cur overlaps all active intervals. Add the
      // interference edges.
      PBQP::GraphBase::NodeId NId = getNodeId(Cur);
      for (const auto &A : Active) {
        PBQP::GraphBase::NodeId MId = getNodeId(A);

        // Do not add an edge when the nodes' allowed registers do not
        // intersect: there is obviously no interference.
        if (haveDisjointAllowedRegs(G, NId, MId, D))
          continue;

        // Check that we haven't already added this edge
        IEdgeKey EK(std::min(NId, MId), std::max(NId, MId));
        if (EC.count(EK))
          continue;

        // This is a new edge - add it to the graph.
        if (!createInterferenceEdge(G, NId, MId, C))
          setDisjointAllowedRegs(G, NId, MId, D);
        else
          EC.insert(EK);
      }

      // Finally, add Cur to the Active set.
      Active.insert(Cur);
    }
  }

private:

  // Create an Interference edge and add it to the graph, unless it is
  // a null matrix, meaning the nodes' allowed registers do not have any
  // interference. This case occurs frequently between integer and floating
  // point registers for example.
  // return true iff both nodes interferes.
  bool createInterferenceEdge(PBQPRAGraph &G,
                              PBQPRAGraph::NodeId NId, PBQPRAGraph::NodeId MId,
                              IMatrixCache &C) {

    const TargetRegisterInfo &TRI =
        *G.getMetadata().MF.getSubtarget().getRegisterInfo();
    const auto &NRegs = G.getNodeMetadata(NId).getAllowedRegs();
    const auto &MRegs = G.getNodeMetadata(MId).getAllowedRegs();

    // Try looking the edge costs up in the IMatrixCache first.
    IKey K(&NRegs, &MRegs);
    IMatrixCache::iterator I = C.find(K);
    if (I != C.end()) {
      G.addEdgeBypassingCostAllocator(NId, MId, I->second);
      return true;
    }

    PBQPRAGraph::RawMatrix M(NRegs.size() + 1, MRegs.size() + 1, 0);
    bool NodesInterfere = false;
    for (unsigned I = 0; I != NRegs.size(); ++I) {
      unsigned PRegN = NRegs[I];
      for (unsigned J = 0; J != MRegs.size(); ++J) {
        unsigned PRegM = MRegs[J];
        if (TRI.regsOverlap(PRegN, PRegM)) {
          M[I + 1][J + 1] = std::numeric_limits<PBQP::PBQPNum>::infinity();
          NodesInterfere = true;
        }
      }
    }

    if (!NodesInterfere)
      return false;

    PBQPRAGraph::EdgeId EId = G.addEdge(NId, MId, std::move(M));
    C[K] = G.getEdgeCostsPtr(EId);

    return true;
  }
};


class Coalescing : public PBQPRAConstraint {
public:
  void apply(PBQPRAGraph &G) override {
    MachineFunction &MF = G.getMetadata().MF;
    MachineBlockFrequencyInfo &MBFI = G.getMetadata().MBFI;
    CoalescerPair CP(*MF.getSubtarget().getRegisterInfo());

    // Scan the machine function and add a coalescing cost whenever CoalescerPair
    // gives the Ok.
    for (const auto &MBB : MF) {
      for (const auto &MI : MBB) {

        // Skip not-coalescable or already coalesced copies.
        if (!CP.setRegisters(&MI) || CP.getSrcReg() == CP.getDstReg())
          continue;

        unsigned DstReg = CP.getDstReg();
        unsigned SrcReg = CP.getSrcReg();

        const float Scale = 1.0f / MBFI.getEntryFreq();
        PBQP::PBQPNum CBenefit = MBFI.getBlockFreq(&MBB).getFrequency() * Scale;

        if (CP.isPhys()) {
          if (!MF.getRegInfo().isAllocatable(DstReg))
            continue;

          PBQPRAGraph::NodeId NId = G.getMetadata().getNodeIdForVReg(SrcReg);

          const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed =
            G.getNodeMetadata(NId).getAllowedRegs();

          unsigned PRegOpt = 0;
          while (PRegOpt < Allowed.size() && Allowed[PRegOpt] != DstReg)
            ++PRegOpt;

          if (PRegOpt < Allowed.size()) {
            PBQPRAGraph::RawVector NewCosts(G.getNodeCosts(NId));
            NewCosts[PRegOpt + 1] -= CBenefit;
            G.setNodeCosts(NId, std::move(NewCosts));
          }
        } else {
          PBQPRAGraph::NodeId N1Id = G.getMetadata().getNodeIdForVReg(DstReg);
          PBQPRAGraph::NodeId N2Id = G.getMetadata().getNodeIdForVReg(SrcReg);
          const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed1 =
            &G.getNodeMetadata(N1Id).getAllowedRegs();
          const PBQPRAGraph::NodeMetadata::AllowedRegVector *Allowed2 =
            &G.getNodeMetadata(N2Id).getAllowedRegs();

          PBQPRAGraph::EdgeId EId = G.findEdge(N1Id, N2Id);
          if (EId == G.invalidEdgeId()) {
            PBQPRAGraph::RawMatrix Costs(Allowed1->size() + 1,
                                         Allowed2->size() + 1, 0);
            addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
            G.addEdge(N1Id, N2Id, std::move(Costs));
          } else {
            if (G.getEdgeNode1Id(EId) == N2Id) {
              std::swap(N1Id, N2Id);
              std::swap(Allowed1, Allowed2);
            }
            PBQPRAGraph::RawMatrix Costs(G.getEdgeCosts(EId));
            addVirtRegCoalesce(Costs, *Allowed1, *Allowed2, CBenefit);
            G.updateEdgeCosts(EId, std::move(Costs));
          }
        }
      }
    }
  }

private:

  void addVirtRegCoalesce(
                    PBQPRAGraph::RawMatrix &CostMat,
                    const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed1,
                    const PBQPRAGraph::NodeMetadata::AllowedRegVector &Allowed2,
                    PBQP::PBQPNum Benefit) {
    assert(CostMat.getRows() == Allowed1.size() + 1 && "Size mismatch.");
    assert(CostMat.getCols() == Allowed2.size() + 1 && "Size mismatch.");
    for (unsigned I = 0; I != Allowed1.size(); ++I) {
      unsigned PReg1 = Allowed1[I];
      for (unsigned J = 0; J != Allowed2.size(); ++J) {
        unsigned PReg2 = Allowed2[J];
        if (PReg1 == PReg2)
          CostMat[I + 1][J + 1] -= Benefit;
      }
    }
  }

};

} // End anonymous namespace.

// Out-of-line destructor/anchor for PBQPRAConstraint.
PBQPRAConstraint::~PBQPRAConstraint() {}
void PBQPRAConstraint::anchor() {}
void PBQPRAConstraintList::anchor() {}

void RegAllocPBQP::getAnalysisUsage(AnalysisUsage &au) const {
  au.setPreservesCFG();
  au.addRequired<AAResultsWrapperPass>();
  au.addPreserved<AAResultsWrapperPass>();
  au.addRequired<SlotIndexes>();
  au.addPreserved<SlotIndexes>();
  au.addRequired<LiveIntervals>();
  au.addPreserved<LiveIntervals>();
  //au.addRequiredID(SplitCriticalEdgesID);
  if (customPassID)
    au.addRequiredID(*customPassID);
  au.addRequired<LiveStacks>();
  au.addPreserved<LiveStacks>();
  au.addRequired<MachineBlockFrequencyInfo>();
  au.addPreserved<MachineBlockFrequencyInfo>();
  au.addRequired<MachineLoopInfo>();
  au.addPreserved<MachineLoopInfo>();
  au.addRequired<MachineDominatorTree>();
  au.addPreserved<MachineDominatorTree>();
  au.addRequired<VirtRegMap>();
  au.addPreserved<VirtRegMap>();
  MachineFunctionPass::getAnalysisUsage(au);
}

void RegAllocPBQP::findVRegIntervalsToAlloc(const MachineFunction &MF,
                                            LiveIntervals &LIS) {
  const MachineRegisterInfo &MRI = MF.getRegInfo();

  // Iterate over all live ranges.
  for (unsigned I = 0, E = MRI.getNumVirtRegs(); I != E; ++I) {
    unsigned Reg = TargetRegisterInfo::index2VirtReg(I);
    if (MRI.reg_nodbg_empty(Reg))
      continue;
    LiveInterval &LI = LIS.getInterval(Reg);

    // If this live interval is non-empty we will use pbqp to allocate it.
    // Empty intervals we allocate in a simple post-processing stage in
    // finalizeAlloc.
    if (!LI.empty()) {
      VRegsToAlloc.insert(LI.reg);
    } else {
      EmptyIntervalVRegs.insert(LI.reg);
    }
  }
}

static bool isACalleeSavedRegister(unsigned reg, const TargetRegisterInfo &TRI,
                                   const MachineFunction &MF) {
  const MCPhysReg *CSR = TRI.getCalleeSavedRegs(&MF);
  for (unsigned i = 0; CSR[i] != 0; ++i)
    if (TRI.regsOverlap(reg, CSR[i]))
      return true;
  return false;
}

void RegAllocPBQP::initializeGraph(PBQPRAGraph &G, VirtRegMap &VRM,
                                   Spiller &VRegSpiller) {
  MachineFunction &MF = G.getMetadata().MF;

  LiveIntervals &LIS = G.getMetadata().LIS;
  const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
  const TargetRegisterInfo &TRI =
      *G.getMetadata().MF.getSubtarget().getRegisterInfo();

  std::vector<unsigned> Worklist(VRegsToAlloc.begin(), VRegsToAlloc.end());

  while (!Worklist.empty()) {
    unsigned VReg = Worklist.back();
    Worklist.pop_back();

    const TargetRegisterClass *TRC = MRI.getRegClass(VReg);
    LiveInterval &VRegLI = LIS.getInterval(VReg);

    // Record any overlaps with regmask operands.
    BitVector RegMaskOverlaps;
    LIS.checkRegMaskInterference(VRegLI, RegMaskOverlaps);

    // Compute an initial allowed set for the current vreg.
    std::vector<unsigned> VRegAllowed;
    ArrayRef<MCPhysReg> RawPRegOrder = TRC->getRawAllocationOrder(MF);
    for (unsigned I = 0; I != RawPRegOrder.size(); ++I) {
      unsigned PReg = RawPRegOrder[I];
      if (MRI.isReserved(PReg))
        continue;

      // vregLI crosses a regmask operand that clobbers preg.
      if (!RegMaskOverlaps.empty() && !RegMaskOverlaps.test(PReg))
        continue;

      // vregLI overlaps fixed regunit interference.
      bool Interference = false;
      for (MCRegUnitIterator Units(PReg, &TRI); Units.isValid(); ++Units) {
        if (VRegLI.overlaps(LIS.getRegUnit(*Units))) {
          Interference = true;
          break;
        }
      }
      if (Interference)
        continue;

      // preg is usable for this virtual register.
      VRegAllowed.push_back(PReg);
    }

    // Check for vregs that have no allowed registers. These should be
    // pre-spilled and the new vregs added to the worklist.
    if (VRegAllowed.empty()) {
      SmallVector<unsigned, 8> NewVRegs;
      spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
      Worklist.insert(Worklist.end(), NewVRegs.begin(), NewVRegs.end());
      continue;
    }

    PBQPRAGraph::RawVector NodeCosts(VRegAllowed.size() + 1, 0);

    // Tweak cost of callee saved registers, as using then force spilling and
    // restoring them. This would only happen in the prologue / epilogue though.
    for (unsigned i = 0; i != VRegAllowed.size(); ++i)
      if (isACalleeSavedRegister(VRegAllowed[i], TRI, MF))
        NodeCosts[1 + i] += 1.0;

    PBQPRAGraph::NodeId NId = G.addNode(std::move(NodeCosts));
    G.getNodeMetadata(NId).setVReg(VReg);
    G.getNodeMetadata(NId).setAllowedRegs(
      G.getMetadata().getAllowedRegs(std::move(VRegAllowed)));
    G.getMetadata().setNodeIdForVReg(VReg, NId);
  }
}

void RegAllocPBQP::spillVReg(unsigned VReg,
                             SmallVectorImpl<unsigned> &NewIntervals,
                             MachineFunction &MF, LiveIntervals &LIS,
                             VirtRegMap &VRM, Spiller &VRegSpiller) {

  VRegsToAlloc.erase(VReg);
  LiveRangeEdit LRE(&LIS.getInterval(VReg), NewIntervals, MF, LIS, &VRM,
                    nullptr, &DeadRemats);
  VRegSpiller.spill(LRE);

  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
  (void)TRI;
  DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> SPILLED (Cost: "
               << LRE.getParent().weight << ", New vregs: ");

  // Copy any newly inserted live intervals into the list of regs to
  // allocate.
  for (LiveRangeEdit::iterator I = LRE.begin(), E = LRE.end();
       I != E; ++I) {
    const LiveInterval &LI = LIS.getInterval(*I);
    assert(!LI.empty() && "Empty spill range.");
    DEBUG(dbgs() << PrintReg(LI.reg, &TRI) << " ");
    VRegsToAlloc.insert(LI.reg);
  }

  DEBUG(dbgs() << ")\n");
}

bool RegAllocPBQP::mapPBQPToRegAlloc(const PBQPRAGraph &G,
                                     const PBQP::Solution &Solution,
                                     VirtRegMap &VRM,
                                     Spiller &VRegSpiller) {
  MachineFunction &MF = G.getMetadata().MF;
  LiveIntervals &LIS = G.getMetadata().LIS;
  const TargetRegisterInfo &TRI = *MF.getSubtarget().getRegisterInfo();
  (void)TRI;

  // Set to true if we have any spills
  bool AnotherRoundNeeded = false;

  // Clear the existing allocation.
  VRM.clearAllVirt();

  // Iterate over the nodes mapping the PBQP solution to a register
  // assignment.
  for (auto NId : G.nodeIds()) {
    unsigned VReg = G.getNodeMetadata(NId).getVReg();
    unsigned AllocOption = Solution.getSelection(NId);

    if (AllocOption != PBQP::RegAlloc::getSpillOptionIdx()) {
      unsigned PReg = G.getNodeMetadata(NId).getAllowedRegs()[AllocOption - 1];
      DEBUG(dbgs() << "VREG " << PrintReg(VReg, &TRI) << " -> "
            << TRI.getName(PReg) << "\n");
      assert(PReg != 0 && "Invalid preg selected.");
      VRM.assignVirt2Phys(VReg, PReg);
    } else {
      // Spill VReg. If this introduces new intervals we'll need another round
      // of allocation.
      SmallVector<unsigned, 8> NewVRegs;
      spillVReg(VReg, NewVRegs, MF, LIS, VRM, VRegSpiller);
      AnotherRoundNeeded |= !NewVRegs.empty();
    }
  }

  return !AnotherRoundNeeded;
}

void RegAllocPBQP::finalizeAlloc(MachineFunction &MF,
                                 LiveIntervals &LIS,
                                 VirtRegMap &VRM) const {
  MachineRegisterInfo &MRI = MF.getRegInfo();

  // First allocate registers for the empty intervals.
  for (RegSet::const_iterator
         I = EmptyIntervalVRegs.begin(), E = EmptyIntervalVRegs.end();
         I != E; ++I) {
    LiveInterval &LI = LIS.getInterval(*I);

    unsigned PReg = MRI.getSimpleHint(LI.reg);

    if (PReg == 0) {
      const TargetRegisterClass &RC = *MRI.getRegClass(LI.reg);
      PReg = RC.getRawAllocationOrder(MF).front();
    }

    VRM.assignVirt2Phys(LI.reg, PReg);
  }
}

void RegAllocPBQP::postOptimization(Spiller &VRegSpiller, LiveIntervals &LIS) {
  VRegSpiller.postOptimization();
  /// Remove dead defs because of rematerialization.
  for (auto DeadInst : DeadRemats) {
    LIS.RemoveMachineInstrFromMaps(*DeadInst);
    DeadInst->eraseFromParent();
  }
  DeadRemats.clear();
}

static inline float normalizePBQPSpillWeight(float UseDefFreq, unsigned Size,
                                         unsigned NumInstr) {
  // All intervals have a spill weight that is mostly proportional to the number
  // of uses, with uses in loops having a bigger weight.
  return NumInstr * normalizeSpillWeight(UseDefFreq, Size, 1);
}

bool RegAllocPBQP::runOnMachineFunction(MachineFunction &MF) {
  LiveIntervals &LIS = getAnalysis<LiveIntervals>();
  MachineBlockFrequencyInfo &MBFI =
    getAnalysis<MachineBlockFrequencyInfo>();

  VirtRegMap &VRM = getAnalysis<VirtRegMap>();

  calculateSpillWeightsAndHints(LIS, MF, &VRM, getAnalysis<MachineLoopInfo>(),
                                MBFI, normalizePBQPSpillWeight);

  std::unique_ptr<Spiller> VRegSpiller(createInlineSpiller(*this, MF, VRM));

  MF.getRegInfo().freezeReservedRegs(MF);

  DEBUG(dbgs() << "PBQP Register Allocating for " << MF.getName() << "\n");

  // Allocator main loop:
  //
  // * Map current regalloc problem to a PBQP problem
  // * Solve the PBQP problem
  // * Map the solution back to a register allocation
  // * Spill if necessary
  //
  // This process is continued till no more spills are generated.

  // Find the vreg intervals in need of allocation.
  findVRegIntervalsToAlloc(MF, LIS);

#ifndef NDEBUG
  const Function &F = *MF.getFunction();
  std::string FullyQualifiedName =
    F.getParent()->getModuleIdentifier() + "." + F.getName().str();
#endif

  // If there are non-empty intervals allocate them using pbqp.
  if (!VRegsToAlloc.empty()) {

    const TargetSubtargetInfo &Subtarget = MF.getSubtarget();
    std::unique_ptr<PBQPRAConstraintList> ConstraintsRoot =
      llvm::make_unique<PBQPRAConstraintList>();
    ConstraintsRoot->addConstraint(llvm::make_unique<SpillCosts>());
    ConstraintsRoot->addConstraint(llvm::make_unique<Interference>());
    if (PBQPCoalescing)
      ConstraintsRoot->addConstraint(llvm::make_unique<Coalescing>());
    ConstraintsRoot->addConstraint(Subtarget.getCustomPBQPConstraints());

    bool PBQPAllocComplete = false;
    unsigned Round = 0;

    while (!PBQPAllocComplete) {
      DEBUG(dbgs() << "  PBQP Regalloc round " << Round << ":\n");

      PBQPRAGraph G(PBQPRAGraph::GraphMetadata(MF, LIS, MBFI));
      initializeGraph(G, VRM, *VRegSpiller);
      ConstraintsRoot->apply(G);

#ifndef NDEBUG
      if (PBQPDumpGraphs) {
        std::ostringstream RS;
        RS << Round;
        std::string GraphFileName = FullyQualifiedName + "." + RS.str() +
                                    ".pbqpgraph";
        std::error_code EC;
        raw_fd_ostream OS(GraphFileName, EC, sys::fs::F_Text);
        DEBUG(dbgs() << "Dumping graph for round " << Round << " to \""
              << GraphFileName << "\"\n");
        G.dump(OS);
      }
#endif

      PBQP::Solution Solution = PBQP::RegAlloc::solve(G);
      PBQPAllocComplete = mapPBQPToRegAlloc(G, Solution, VRM, *VRegSpiller);
      ++Round;
    }
  }

  // Finalise allocation, allocate empty ranges.
  finalizeAlloc(MF, LIS, VRM);
  postOptimization(*VRegSpiller, LIS);
  VRegsToAlloc.clear();
  EmptyIntervalVRegs.clear();

  DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << VRM << "\n");

  return true;
}

/// Create Printable object for node and register info.
static Printable PrintNodeInfo(PBQP::RegAlloc::PBQPRAGraph::NodeId NId,
                               const PBQP::RegAlloc::PBQPRAGraph &G) {
  return Printable([NId, &G](raw_ostream &OS) {
    const MachineRegisterInfo &MRI = G.getMetadata().MF.getRegInfo();
    const TargetRegisterInfo *TRI = MRI.getTargetRegisterInfo();
    unsigned VReg = G.getNodeMetadata(NId).getVReg();
    const char *RegClassName = TRI->getRegClassName(MRI.getRegClass(VReg));
    OS << NId << " (" << RegClassName << ':' << PrintReg(VReg, TRI) << ')';
  });
}

void PBQP::RegAlloc::PBQPRAGraph::dump(raw_ostream &OS) const {
  for (auto NId : nodeIds()) {
    const Vector &Costs = getNodeCosts(NId);
    assert(Costs.getLength() != 0 && "Empty vector in graph.");
    OS << PrintNodeInfo(NId, *this) << ": " << Costs << '\n';
  }
  OS << '\n';

  for (auto EId : edgeIds()) {
    NodeId N1Id = getEdgeNode1Id(EId);
    NodeId N2Id = getEdgeNode2Id(EId);
    assert(N1Id != N2Id && "PBQP graphs should not have self-edges.");
    const Matrix &M = getEdgeCosts(EId);
    assert(M.getRows() != 0 && "No rows in matrix.");
    assert(M.getCols() != 0 && "No cols in matrix.");
    OS << PrintNodeInfo(N1Id, *this) << ' ' << M.getRows() << " rows / ";
    OS << PrintNodeInfo(N2Id, *this) << ' ' << M.getCols() << " cols:\n";
    OS << M << '\n';
  }
}

LLVM_DUMP_METHOD void PBQP::RegAlloc::PBQPRAGraph::dump() const { dump(dbgs()); }

void PBQP::RegAlloc::PBQPRAGraph::printDot(raw_ostream &OS) const {
  OS << "graph {\n";
  for (auto NId : nodeIds()) {
    OS << "  node" << NId << " [ label=\""
       << PrintNodeInfo(NId, *this) << "\\n"
       << getNodeCosts(NId) << "\" ]\n";
  }

  OS << "  edge [ len=" << nodeIds().size() << " ]\n";
  for (auto EId : edgeIds()) {
    OS << "  node" << getEdgeNode1Id(EId)
       << " -- node" << getEdgeNode2Id(EId)
       << " [ label=\"";
    const Matrix &EdgeCosts = getEdgeCosts(EId);
    for (unsigned i = 0; i < EdgeCosts.getRows(); ++i) {
      OS << EdgeCosts.getRowAsVector(i) << "\\n";
    }
    OS << "\" ]\n";
  }
  OS << "}\n";
}

FunctionPass *llvm::createPBQPRegisterAllocator(char *customPassID) {
  return new RegAllocPBQP(customPassID);
}

FunctionPass* llvm::createDefaultPBQPRegisterAllocator() {
  return createPBQPRegisterAllocator();
}

#undef DEBUG_TYPE