llvm.org GIT mirror llvm / release_40 lib / Analysis / ModuleSummaryAnalysis.cpp
release_40

Tree @release_40 (Download .tar.gz)

ModuleSummaryAnalysis.cpp @release_40raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
//===- ModuleSummaryAnalysis.cpp - Module summary index builder -----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass builds a ModuleSummaryIndex object for the module, to be written
// to bitcode or LLVM assembly.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/ModuleSummaryAnalysis.h"
#include "llvm/ADT/MapVector.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/Triple.h"
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/IndirectCallPromotionAnalysis.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/Analysis/TypeMetadataUtils.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/ValueSymbolTable.h"
#include "llvm/Object/IRObjectFile.h"
#include "llvm/Pass.h"
using namespace llvm;

#define DEBUG_TYPE "module-summary-analysis"

// Walk through the operands of a given User via worklist iteration and populate
// the set of GlobalValue references encountered. Invoked either on an
// Instruction or a GlobalVariable (which walks its initializer).
static void findRefEdges(const User *CurUser, SetVector<ValueInfo> &RefEdges,
                         SmallPtrSet<const User *, 8> &Visited) {
  SmallVector<const User *, 32> Worklist;
  Worklist.push_back(CurUser);

  while (!Worklist.empty()) {
    const User *U = Worklist.pop_back_val();

    if (!Visited.insert(U).second)
      continue;

    ImmutableCallSite CS(U);

    for (const auto &OI : U->operands()) {
      const User *Operand = dyn_cast<User>(OI);
      if (!Operand)
        continue;
      if (isa<BlockAddress>(Operand))
        continue;
      if (auto *GV = dyn_cast<GlobalValue>(Operand)) {
        // We have a reference to a global value. This should be added to
        // the reference set unless it is a callee. Callees are handled
        // specially by WriteFunction and are added to a separate list.
        if (!(CS && CS.isCallee(&OI)))
          RefEdges.insert(GV);
        continue;
      }
      Worklist.push_back(Operand);
    }
  }
}

static CalleeInfo::HotnessType getHotness(uint64_t ProfileCount,
                                          ProfileSummaryInfo *PSI) {
  if (!PSI)
    return CalleeInfo::HotnessType::Unknown;
  if (PSI->isHotCount(ProfileCount))
    return CalleeInfo::HotnessType::Hot;
  if (PSI->isColdCount(ProfileCount))
    return CalleeInfo::HotnessType::Cold;
  return CalleeInfo::HotnessType::None;
}

static bool isNonRenamableLocal(const GlobalValue &GV) {
  return GV.hasSection() && GV.hasLocalLinkage();
}

static void
computeFunctionSummary(ModuleSummaryIndex &Index, const Module &M,
                       const Function &F, BlockFrequencyInfo *BFI,
                       ProfileSummaryInfo *PSI, bool HasLocalsInUsed,
                       DenseSet<GlobalValue::GUID> &CantBePromoted) {
  // Summary not currently supported for anonymous functions, they should
  // have been named.
  assert(F.hasName());

  unsigned NumInsts = 0;
  // Map from callee ValueId to profile count. Used to accumulate profile
  // counts for all static calls to a given callee.
  MapVector<ValueInfo, CalleeInfo> CallGraphEdges;
  SetVector<ValueInfo> RefEdges;
  SetVector<GlobalValue::GUID> TypeTests;
  ICallPromotionAnalysis ICallAnalysis;

  bool HasInlineAsmMaybeReferencingInternal = false;
  SmallPtrSet<const User *, 8> Visited;
  for (const BasicBlock &BB : F)
    for (const Instruction &I : BB) {
      if (isa<DbgInfoIntrinsic>(I))
        continue;
      ++NumInsts;
      findRefEdges(&I, RefEdges, Visited);
      auto CS = ImmutableCallSite(&I);
      if (!CS)
        continue;

      const auto *CI = dyn_cast<CallInst>(&I);
      // Since we don't know exactly which local values are referenced in inline
      // assembly, conservatively mark the function as possibly referencing
      // a local value from inline assembly to ensure we don't export a
      // reference (which would require renaming and promotion of the
      // referenced value).
      if (HasLocalsInUsed && CI && CI->isInlineAsm())
        HasInlineAsmMaybeReferencingInternal = true;

      auto *CalledValue = CS.getCalledValue();
      auto *CalledFunction = CS.getCalledFunction();
      // Check if this is an alias to a function. If so, get the
      // called aliasee for the checks below.
      if (auto *GA = dyn_cast<GlobalAlias>(CalledValue)) {
        assert(!CalledFunction && "Expected null called function in callsite for alias");
        CalledFunction = dyn_cast<Function>(GA->getBaseObject());
      }
      // Check if this is a direct call to a known function or a known
      // intrinsic, or an indirect call with profile data.
      if (CalledFunction) {
        if (CalledFunction->isIntrinsic()) {
          if (CalledFunction->getIntrinsicID() != Intrinsic::type_test)
            continue;
          // Produce a summary from type.test intrinsics. We only summarize
          // type.test intrinsics that are used other than by an llvm.assume
          // intrinsic. Intrinsics that are assumed are relevant only to the
          // devirtualization pass, not the type test lowering pass.
          bool HasNonAssumeUses = llvm::any_of(CI->uses(), [](const Use &CIU) {
            auto *AssumeCI = dyn_cast<CallInst>(CIU.getUser());
            if (!AssumeCI)
              return true;
            Function *F = AssumeCI->getCalledFunction();
            return !F || F->getIntrinsicID() != Intrinsic::assume;
          });
          if (HasNonAssumeUses) {
            auto *TypeMDVal = cast<MetadataAsValue>(CI->getArgOperand(1));
            if (auto *TypeId = dyn_cast<MDString>(TypeMDVal->getMetadata()))
              TypeTests.insert(GlobalValue::getGUID(TypeId->getString()));
          }
        }
        // We should have named any anonymous globals
        assert(CalledFunction->hasName());
        auto ScaledCount = BFI ? BFI->getBlockProfileCount(&BB) : None;
        auto Hotness = ScaledCount ? getHotness(ScaledCount.getValue(), PSI)
                                   : CalleeInfo::HotnessType::Unknown;

        // Use the original CalledValue, in case it was an alias. We want
        // to record the call edge to the alias in that case. Eventually
        // an alias summary will be created to associate the alias and
        // aliasee.
        CallGraphEdges[cast<GlobalValue>(CalledValue)].updateHotness(Hotness);
      } else {
        // Skip inline assembly calls.
        if (CI && CI->isInlineAsm())
          continue;
        // Skip direct calls.
        if (!CS.getCalledValue() || isa<Constant>(CS.getCalledValue()))
          continue;

        uint32_t NumVals, NumCandidates;
        uint64_t TotalCount;
        auto CandidateProfileData =
            ICallAnalysis.getPromotionCandidatesForInstruction(
                &I, NumVals, TotalCount, NumCandidates);
        for (auto &Candidate : CandidateProfileData)
          CallGraphEdges[Candidate.Value].updateHotness(
              getHotness(Candidate.Count, PSI));
      }
    }

  bool NonRenamableLocal = isNonRenamableLocal(F);
  bool NotEligibleForImport =
      NonRenamableLocal || HasInlineAsmMaybeReferencingInternal ||
      // Inliner doesn't handle variadic functions.
      // FIXME: refactor this to use the same code that inliner is using.
      F.isVarArg();
  GlobalValueSummary::GVFlags Flags(F.getLinkage(), NotEligibleForImport,
                                    /* LiveRoot = */ false);
  auto FuncSummary = llvm::make_unique<FunctionSummary>(
      Flags, NumInsts, RefEdges.takeVector(), CallGraphEdges.takeVector(),
      TypeTests.takeVector());
  if (NonRenamableLocal)
    CantBePromoted.insert(F.getGUID());
  Index.addGlobalValueSummary(F.getName(), std::move(FuncSummary));
}

static void
computeVariableSummary(ModuleSummaryIndex &Index, const GlobalVariable &V,
                       DenseSet<GlobalValue::GUID> &CantBePromoted) {
  SetVector<ValueInfo> RefEdges;
  SmallPtrSet<const User *, 8> Visited;
  findRefEdges(&V, RefEdges, Visited);
  bool NonRenamableLocal = isNonRenamableLocal(V);
  GlobalValueSummary::GVFlags Flags(V.getLinkage(), NonRenamableLocal,
                                    /* LiveRoot = */ false);
  auto GVarSummary =
      llvm::make_unique<GlobalVarSummary>(Flags, RefEdges.takeVector());
  if (NonRenamableLocal)
    CantBePromoted.insert(V.getGUID());
  Index.addGlobalValueSummary(V.getName(), std::move(GVarSummary));
}

static void
computeAliasSummary(ModuleSummaryIndex &Index, const GlobalAlias &A,
                    DenseSet<GlobalValue::GUID> &CantBePromoted) {
  bool NonRenamableLocal = isNonRenamableLocal(A);
  GlobalValueSummary::GVFlags Flags(A.getLinkage(), NonRenamableLocal,
                                    /* LiveRoot = */ false);
  auto AS = llvm::make_unique<AliasSummary>(Flags, ArrayRef<ValueInfo>{});
  auto *Aliasee = A.getBaseObject();
  auto *AliaseeSummary = Index.getGlobalValueSummary(*Aliasee);
  assert(AliaseeSummary && "Alias expects aliasee summary to be parsed");
  AS->setAliasee(AliaseeSummary);
  if (NonRenamableLocal)
    CantBePromoted.insert(A.getGUID());
  Index.addGlobalValueSummary(A.getName(), std::move(AS));
}

// Set LiveRoot flag on entries matching the given value name.
static void setLiveRoot(ModuleSummaryIndex &Index, StringRef Name) {
  auto SummaryList =
      Index.findGlobalValueSummaryList(GlobalValue::getGUID(Name));
  if (SummaryList == Index.end())
    return;
  for (auto &Summary : SummaryList->second)
    Summary->setLiveRoot();
}

ModuleSummaryIndex llvm::buildModuleSummaryIndex(
    const Module &M,
    std::function<BlockFrequencyInfo *(const Function &F)> GetBFICallback,
    ProfileSummaryInfo *PSI) {
  ModuleSummaryIndex Index;

  // Identify the local values in the llvm.used and llvm.compiler.used sets,
  // which should not be exported as they would then require renaming and
  // promotion, but we may have opaque uses e.g. in inline asm. We collect them
  // here because we use this information to mark functions containing inline
  // assembly calls as not importable.
  SmallPtrSet<GlobalValue *, 8> LocalsUsed;
  SmallPtrSet<GlobalValue *, 8> Used;
  // First collect those in the llvm.used set.
  collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ false);
  // Next collect those in the llvm.compiler.used set.
  collectUsedGlobalVariables(M, Used, /*CompilerUsed*/ true);
  DenseSet<GlobalValue::GUID> CantBePromoted;
  for (auto *V : Used) {
    if (V->hasLocalLinkage()) {
      LocalsUsed.insert(V);
      CantBePromoted.insert(V->getGUID());
    }
  }

  // Compute summaries for all functions defined in module, and save in the
  // index.
  for (auto &F : M) {
    if (F.isDeclaration())
      continue;

    BlockFrequencyInfo *BFI = nullptr;
    std::unique_ptr<BlockFrequencyInfo> BFIPtr;
    if (GetBFICallback)
      BFI = GetBFICallback(F);
    else if (F.getEntryCount().hasValue()) {
      LoopInfo LI{DominatorTree(const_cast<Function &>(F))};
      BranchProbabilityInfo BPI{F, LI};
      BFIPtr = llvm::make_unique<BlockFrequencyInfo>(F, BPI, LI);
      BFI = BFIPtr.get();
    }

    computeFunctionSummary(Index, M, F, BFI, PSI, !LocalsUsed.empty(),
                           CantBePromoted);
  }

  // Compute summaries for all variables defined in module, and save in the
  // index.
  for (const GlobalVariable &G : M.globals()) {
    if (G.isDeclaration())
      continue;
    computeVariableSummary(Index, G, CantBePromoted);
  }

  // Compute summaries for all aliases defined in module, and save in the
  // index.
  for (const GlobalAlias &A : M.aliases())
    computeAliasSummary(Index, A, CantBePromoted);

  for (auto *V : LocalsUsed) {
    auto *Summary = Index.getGlobalValueSummary(*V);
    assert(Summary && "Missing summary for global value");
    Summary->setNotEligibleToImport();
  }

  // The linker doesn't know about these LLVM produced values, so we need
  // to flag them as live in the index to ensure index-based dead value
  // analysis treats them as live roots of the analysis.
  setLiveRoot(Index, "llvm.used");
  setLiveRoot(Index, "llvm.compiler.used");
  setLiveRoot(Index, "llvm.global_ctors");
  setLiveRoot(Index, "llvm.global_dtors");
  setLiveRoot(Index, "llvm.global.annotations");

  if (!M.getModuleInlineAsm().empty()) {
    // Collect the local values defined by module level asm, and set up
    // summaries for these symbols so that they can be marked as NoRename,
    // to prevent export of any use of them in regular IR that would require
    // renaming within the module level asm. Note we don't need to create a
    // summary for weak or global defs, as they don't need to be flagged as
    // NoRename, and defs in module level asm can't be imported anyway.
    // Also, any values used but not defined within module level asm should
    // be listed on the llvm.used or llvm.compiler.used global and marked as
    // referenced from there.
    ModuleSymbolTable::CollectAsmSymbols(
        Triple(M.getTargetTriple()), M.getModuleInlineAsm(),
        [&M, &Index, &CantBePromoted](StringRef Name,
                                      object::BasicSymbolRef::Flags Flags) {
          // Symbols not marked as Weak or Global are local definitions.
          if (Flags & (object::BasicSymbolRef::SF_Weak |
                       object::BasicSymbolRef::SF_Global))
            return;
          GlobalValue *GV = M.getNamedValue(Name);
          if (!GV)
            return;
          assert(GV->isDeclaration() && "Def in module asm already has definition");
          GlobalValueSummary::GVFlags GVFlags(GlobalValue::InternalLinkage,
                                              /* NotEligibleToImport */ true,
                                              /* LiveRoot */ true);
          CantBePromoted.insert(GlobalValue::getGUID(Name));
          // Create the appropriate summary type.
          if (isa<Function>(GV)) {
            std::unique_ptr<FunctionSummary> Summary =
                llvm::make_unique<FunctionSummary>(
                    GVFlags, 0, ArrayRef<ValueInfo>{},
                    ArrayRef<FunctionSummary::EdgeTy>{},
                    ArrayRef<GlobalValue::GUID>{});
            Index.addGlobalValueSummary(Name, std::move(Summary));
          } else {
            std::unique_ptr<GlobalVarSummary> Summary =
                llvm::make_unique<GlobalVarSummary>(GVFlags,
                                                    ArrayRef<ValueInfo>{});
            Index.addGlobalValueSummary(Name, std::move(Summary));
          }
        });
  }

  for (auto &GlobalList : Index) {
    assert(GlobalList.second.size() == 1 &&
           "Expected module's index to have one summary per GUID");
    auto &Summary = GlobalList.second[0];
    bool AllRefsCanBeExternallyReferenced =
        llvm::all_of(Summary->refs(), [&](const ValueInfo &VI) {
          return !CantBePromoted.count(VI.getValue()->getGUID());
        });
    if (!AllRefsCanBeExternallyReferenced) {
      Summary->setNotEligibleToImport();
      continue;
    }

    if (auto *FuncSummary = dyn_cast<FunctionSummary>(Summary.get())) {
      bool AllCallsCanBeExternallyReferenced = llvm::all_of(
          FuncSummary->calls(), [&](const FunctionSummary::EdgeTy &Edge) {
            auto GUID = Edge.first.isGUID() ? Edge.first.getGUID()
                                            : Edge.first.getValue()->getGUID();
            return !CantBePromoted.count(GUID);
          });
      if (!AllCallsCanBeExternallyReferenced)
        Summary->setNotEligibleToImport();
    }
  }

  return Index;
}

AnalysisKey ModuleSummaryIndexAnalysis::Key;

ModuleSummaryIndex
ModuleSummaryIndexAnalysis::run(Module &M, ModuleAnalysisManager &AM) {
  ProfileSummaryInfo &PSI = AM.getResult<ProfileSummaryAnalysis>(M);
  auto &FAM = AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
  return buildModuleSummaryIndex(
      M,
      [&FAM](const Function &F) {
        return &FAM.getResult<BlockFrequencyAnalysis>(
            *const_cast<Function *>(&F));
      },
      &PSI);
}

char ModuleSummaryIndexWrapperPass::ID = 0;
INITIALIZE_PASS_BEGIN(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
                      "Module Summary Analysis", false, true)
INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
INITIALIZE_PASS_END(ModuleSummaryIndexWrapperPass, "module-summary-analysis",
                    "Module Summary Analysis", false, true)

ModulePass *llvm::createModuleSummaryIndexWrapperPass() {
  return new ModuleSummaryIndexWrapperPass();
}

ModuleSummaryIndexWrapperPass::ModuleSummaryIndexWrapperPass()
    : ModulePass(ID) {
  initializeModuleSummaryIndexWrapperPassPass(*PassRegistry::getPassRegistry());
}

bool ModuleSummaryIndexWrapperPass::runOnModule(Module &M) {
  auto &PSI = *getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
  Index = buildModuleSummaryIndex(
      M,
      [this](const Function &F) {
        return &(this->getAnalysis<BlockFrequencyInfoWrapperPass>(
                         *const_cast<Function *>(&F))
                     .getBFI());
      },
      &PSI);
  return false;
}

bool ModuleSummaryIndexWrapperPass::doFinalization(Module &M) {
  Index.reset();
  return false;
}

void ModuleSummaryIndexWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequired<BlockFrequencyInfoWrapperPass>();
  AU.addRequired<ProfileSummaryInfoWrapperPass>();
}