llvm.org GIT mirror llvm / release_39 lib / Transforms / Scalar / GVNHoist.cpp
release_39

Tree @release_39 (Download .tar.gz)

GVNHoist.cpp @release_39raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
//===- GVNHoist.cpp - Hoist scalar and load expressions -------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass hoists expressions from branches to a common dominator. It uses
// GVN (global value numbering) to discover expressions computing the same
// values. The primary goal is to reduce the code size, and in some
// cases reduce critical path (by exposing more ILP).
// Hoisting may affect the performance in some cases. To mitigate that, hoisting
// is disabled in the following cases.
// 1. Scalars across calls.
// 2. geps when corresponding load/store cannot be hoisted.
//===----------------------------------------------------------------------===//

#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Transforms/Scalar.h"
#include "llvm/Transforms/Scalar/GVN.h"
#include "llvm/Transforms/Utils/MemorySSA.h"

using namespace llvm;

#define DEBUG_TYPE "gvn-hoist"

STATISTIC(NumHoisted, "Number of instructions hoisted");
STATISTIC(NumRemoved, "Number of instructions removed");
STATISTIC(NumLoadsHoisted, "Number of loads hoisted");
STATISTIC(NumLoadsRemoved, "Number of loads removed");
STATISTIC(NumStoresHoisted, "Number of stores hoisted");
STATISTIC(NumStoresRemoved, "Number of stores removed");
STATISTIC(NumCallsHoisted, "Number of calls hoisted");
STATISTIC(NumCallsRemoved, "Number of calls removed");

static cl::opt<int>
    MaxHoistedThreshold("gvn-max-hoisted", cl::Hidden, cl::init(-1),
                        cl::desc("Max number of instructions to hoist "
                                 "(default unlimited = -1)"));
static cl::opt<int> MaxNumberOfBBSInPath(
    "gvn-hoist-max-bbs", cl::Hidden, cl::init(4),
    cl::desc("Max number of basic blocks on the path between "
             "hoisting locations (default = 4, unlimited = -1)"));

namespace {

// Provides a sorting function based on the execution order of two instructions.
struct SortByDFSIn {
private:
  DenseMap<const BasicBlock *, unsigned> &DFSNumber;

public:
  SortByDFSIn(DenseMap<const BasicBlock *, unsigned> &D) : DFSNumber(D) {}

  // Returns true when A executes before B.
  bool operator()(const Instruction *A, const Instruction *B) const {
    // FIXME: libc++ has a std::sort() algorithm that will call the compare
    // function on the same element.  Once PR20837 is fixed and some more years
    // pass by and all the buildbots have moved to a corrected std::sort(),
    // enable the following assert:
    //
    // assert(A != B);

    const BasicBlock *BA = A->getParent();
    const BasicBlock *BB = B->getParent();
    unsigned NA = DFSNumber[BA];
    unsigned NB = DFSNumber[BB];
    if (NA < NB)
      return true;
    if (NA == NB) {
      // Sort them in the order they occur in the same basic block.
      BasicBlock::const_iterator AI(A), BI(B);
      return std::distance(AI, BI) < 0;
    }
    return false;
  }
};

// A map from a pair of VNs to all the instructions with those VNs.
typedef DenseMap<std::pair<unsigned, unsigned>, SmallVector<Instruction *, 4>>
    VNtoInsns;
// An invalid value number Used when inserting a single value number into
// VNtoInsns.
enum : unsigned { InvalidVN = ~2U };

// Records all scalar instructions candidate for code hoisting.
class InsnInfo {
  VNtoInsns VNtoScalars;

public:
  // Inserts I and its value number in VNtoScalars.
  void insert(Instruction *I, GVN::ValueTable &VN) {
    // Scalar instruction.
    unsigned V = VN.lookupOrAdd(I);
    VNtoScalars[{V, InvalidVN}].push_back(I);
  }

  const VNtoInsns &getVNTable() const { return VNtoScalars; }
};

// Records all load instructions candidate for code hoisting.
class LoadInfo {
  VNtoInsns VNtoLoads;

public:
  // Insert Load and the value number of its memory address in VNtoLoads.
  void insert(LoadInst *Load, GVN::ValueTable &VN) {
    if (Load->isSimple()) {
      unsigned V = VN.lookupOrAdd(Load->getPointerOperand());
      VNtoLoads[{V, InvalidVN}].push_back(Load);
    }
  }

  const VNtoInsns &getVNTable() const { return VNtoLoads; }
};

// Records all store instructions candidate for code hoisting.
class StoreInfo {
  VNtoInsns VNtoStores;

public:
  // Insert the Store and a hash number of the store address and the stored
  // value in VNtoStores.
  void insert(StoreInst *Store, GVN::ValueTable &VN) {
    if (!Store->isSimple())
      return;
    // Hash the store address and the stored value.
    Value *Ptr = Store->getPointerOperand();
    Value *Val = Store->getValueOperand();
    VNtoStores[{VN.lookupOrAdd(Ptr), VN.lookupOrAdd(Val)}].push_back(Store);
  }

  const VNtoInsns &getVNTable() const { return VNtoStores; }
};

// Records all call instructions candidate for code hoisting.
class CallInfo {
  VNtoInsns VNtoCallsScalars;
  VNtoInsns VNtoCallsLoads;
  VNtoInsns VNtoCallsStores;

public:
  // Insert Call and its value numbering in one of the VNtoCalls* containers.
  void insert(CallInst *Call, GVN::ValueTable &VN) {
    // A call that doesNotAccessMemory is handled as a Scalar,
    // onlyReadsMemory will be handled as a Load instruction,
    // all other calls will be handled as stores.
    unsigned V = VN.lookupOrAdd(Call);
    auto Entry = std::make_pair(V, InvalidVN);

    if (Call->doesNotAccessMemory())
      VNtoCallsScalars[Entry].push_back(Call);
    else if (Call->onlyReadsMemory())
      VNtoCallsLoads[Entry].push_back(Call);
    else
      VNtoCallsStores[Entry].push_back(Call);
  }

  const VNtoInsns &getScalarVNTable() const { return VNtoCallsScalars; }

  const VNtoInsns &getLoadVNTable() const { return VNtoCallsLoads; }

  const VNtoInsns &getStoreVNTable() const { return VNtoCallsStores; }
};

typedef DenseMap<const BasicBlock *, bool> BBSideEffectsSet;
typedef SmallVector<Instruction *, 4> SmallVecInsn;
typedef SmallVectorImpl<Instruction *> SmallVecImplInsn;

// This pass hoists common computations across branches sharing common
// dominator. The primary goal is to reduce the code size, and in some
// cases reduce critical path (by exposing more ILP).
class GVNHoist {
public:
  GVN::ValueTable VN;
  DominatorTree *DT;
  AliasAnalysis *AA;
  MemoryDependenceResults *MD;
  const bool OptForMinSize;
  DenseMap<const BasicBlock *, unsigned> DFSNumber;
  BBSideEffectsSet BBSideEffects;
  MemorySSA *MSSA;
  int HoistedCtr;

  enum InsKind { Unknown, Scalar, Load, Store };

  GVNHoist(DominatorTree *Dt, AliasAnalysis *Aa, MemoryDependenceResults *Md,
           bool OptForMinSize)
      : DT(Dt), AA(Aa), MD(Md), OptForMinSize(OptForMinSize), HoistedCtr(0) {}

  // Return true when there are exception handling in BB.
  bool hasEH(const BasicBlock *BB) {
    auto It = BBSideEffects.find(BB);
    if (It != BBSideEffects.end())
      return It->second;

    if (BB->isEHPad() || BB->hasAddressTaken()) {
      BBSideEffects[BB] = true;
      return true;
    }

    if (BB->getTerminator()->mayThrow()) {
      BBSideEffects[BB] = true;
      return true;
    }

    BBSideEffects[BB] = false;
    return false;
  }

  // Return true when all paths from A to the end of the function pass through
  // either B or C.
  bool hoistingFromAllPaths(const BasicBlock *A, const BasicBlock *B,
                            const BasicBlock *C) {
    // We fully copy the WL in order to be able to remove items from it.
    SmallPtrSet<const BasicBlock *, 2> WL;
    WL.insert(B);
    WL.insert(C);

    for (auto It = df_begin(A), E = df_end(A); It != E;) {
      // There exists a path from A to the exit of the function if we are still
      // iterating in DF traversal and we removed all instructions from the work
      // list.
      if (WL.empty())
        return false;

      const BasicBlock *BB = *It;
      if (WL.erase(BB)) {
        // Stop DFS traversal when BB is in the work list.
        It.skipChildren();
        continue;
      }

      // Check for end of function, calls that do not return, etc.
      if (!isGuaranteedToTransferExecutionToSuccessor(BB->getTerminator()))
        return false;

      // Increment DFS traversal when not skipping children.
      ++It;
    }

    return true;
  }

  /* Return true when I1 appears before I2 in the instructions of BB.  */
  bool firstInBB(BasicBlock *BB, const Instruction *I1, const Instruction *I2) {
    for (Instruction &I : *BB) {
      if (&I == I1)
        return true;
      if (&I == I2)
        return false;
    }

    llvm_unreachable("I1 and I2 not found in BB");
  }
  // Return true when there are users of Def in BB.
  bool hasMemoryUseOnPath(MemoryAccess *Def, const BasicBlock *BB,
                          const Instruction *OldPt) {
    const BasicBlock *DefBB = Def->getBlock();
    const BasicBlock *OldBB = OldPt->getParent();

    for (User *U : Def->users())
      if (auto *MU = dyn_cast<MemoryUse>(U)) {
        BasicBlock *UBB = MU->getBlock();
        // Only analyze uses in BB.
        if (BB != UBB)
          continue;

        // A use in the same block as the Def is on the path.
        if (UBB == DefBB) {
          assert(MSSA->locallyDominates(Def, MU) && "def not dominating use");
          return true;
        }

        if (UBB != OldBB)
          return true;

        // It is only harmful to hoist when the use is before OldPt.
        if (firstInBB(UBB, MU->getMemoryInst(), OldPt))
          return true;
      }

    return false;
  }

  // Return true when there are exception handling or loads of memory Def
  // between OldPt and NewPt.

  // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
  // return true when the counter NBBsOnAllPaths reaces 0, except when it is
  // initialized to -1 which is unlimited.
  bool hasEHOrLoadsOnPath(const Instruction *NewPt, const Instruction *OldPt,
                          MemoryAccess *Def, int &NBBsOnAllPaths) {
    const BasicBlock *NewBB = NewPt->getParent();
    const BasicBlock *OldBB = OldPt->getParent();
    assert(DT->dominates(NewBB, OldBB) && "invalid path");
    assert(DT->dominates(Def->getBlock(), NewBB) &&
           "def does not dominate new hoisting point");

    // Walk all basic blocks reachable in depth-first iteration on the inverse
    // CFG from OldBB to NewBB. These blocks are all the blocks that may be
    // executed between the execution of NewBB and OldBB. Hoisting an expression
    // from OldBB into NewBB has to be safe on all execution paths.
    for (auto I = idf_begin(OldBB), E = idf_end(OldBB); I != E;) {
      if (*I == NewBB) {
        // Stop traversal when reaching HoistPt.
        I.skipChildren();
        continue;
      }

      // Impossible to hoist with exceptions on the path.
      if (hasEH(*I))
        return true;

      // Check that we do not move a store past loads.
      if (hasMemoryUseOnPath(Def, *I, OldPt))
        return true;

      // Stop walk once the limit is reached.
      if (NBBsOnAllPaths == 0)
        return true;

      // -1 is unlimited number of blocks on all paths.
      if (NBBsOnAllPaths != -1)
        --NBBsOnAllPaths;

      ++I;
    }

    return false;
  }

  // Return true when there are exception handling between HoistPt and BB.
  // Decrement by 1 NBBsOnAllPaths for each block between HoistPt and BB, and
  // return true when the counter NBBsOnAllPaths reaches 0, except when it is
  // initialized to -1 which is unlimited.
  bool hasEHOnPath(const BasicBlock *HoistPt, const BasicBlock *BB,
                   int &NBBsOnAllPaths) {
    assert(DT->dominates(HoistPt, BB) && "Invalid path");

    // Walk all basic blocks reachable in depth-first iteration on
    // the inverse CFG from BBInsn to NewHoistPt. These blocks are all the
    // blocks that may be executed between the execution of NewHoistPt and
    // BBInsn. Hoisting an expression from BBInsn into NewHoistPt has to be safe
    // on all execution paths.
    for (auto I = idf_begin(BB), E = idf_end(BB); I != E;) {
      if (*I == HoistPt) {
        // Stop traversal when reaching NewHoistPt.
        I.skipChildren();
        continue;
      }

      // Impossible to hoist with exceptions on the path.
      if (hasEH(*I))
        return true;

      // Stop walk once the limit is reached.
      if (NBBsOnAllPaths == 0)
        return true;

      // -1 is unlimited number of blocks on all paths.
      if (NBBsOnAllPaths != -1)
        --NBBsOnAllPaths;

      ++I;
    }

    return false;
  }

  // Return true when it is safe to hoist a memory load or store U from OldPt
  // to NewPt.
  bool safeToHoistLdSt(const Instruction *NewPt, const Instruction *OldPt,
                       MemoryUseOrDef *U, InsKind K, int &NBBsOnAllPaths) {

    // In place hoisting is safe.
    if (NewPt == OldPt)
      return true;

    const BasicBlock *NewBB = NewPt->getParent();
    const BasicBlock *OldBB = OldPt->getParent();
    const BasicBlock *UBB = U->getBlock();

    // Check for dependences on the Memory SSA.
    MemoryAccess *D = U->getDefiningAccess();
    BasicBlock *DBB = D->getBlock();
    if (DT->properlyDominates(NewBB, DBB))
      // Cannot move the load or store to NewBB above its definition in DBB.
      return false;

    if (NewBB == DBB && !MSSA->isLiveOnEntryDef(D))
      if (auto *UD = dyn_cast<MemoryUseOrDef>(D))
        if (firstInBB(DBB, NewPt, UD->getMemoryInst()))
          // Cannot move the load or store to NewPt above its definition in D.
          return false;

    // Check for unsafe hoistings due to side effects.
    if (K == InsKind::Store) {
      if (hasEHOrLoadsOnPath(NewPt, OldPt, D, NBBsOnAllPaths))
        return false;
    } else if (hasEHOnPath(NewBB, OldBB, NBBsOnAllPaths))
      return false;

    if (UBB == NewBB) {
      if (DT->properlyDominates(DBB, NewBB))
        return true;
      assert(UBB == DBB);
      assert(MSSA->locallyDominates(D, U));
    }

    // No side effects: it is safe to hoist.
    return true;
  }

  // Return true when it is safe to hoist scalar instructions from BB1 and BB2
  // to HoistBB.
  bool safeToHoistScalar(const BasicBlock *HoistBB, const BasicBlock *BB1,
                         const BasicBlock *BB2, int &NBBsOnAllPaths) {
    // Check that the hoisted expression is needed on all paths.  When HoistBB
    // already contains an instruction to be hoisted, the expression is needed
    // on all paths.  Enable scalar hoisting at -Oz as it is safe to hoist
    // scalars to a place where they are partially needed.
    if (!OptForMinSize && BB1 != HoistBB &&
        !hoistingFromAllPaths(HoistBB, BB1, BB2))
      return false;

    if (hasEHOnPath(HoistBB, BB1, NBBsOnAllPaths) ||
        hasEHOnPath(HoistBB, BB2, NBBsOnAllPaths))
      return false;

    // Safe to hoist scalars from BB1 and BB2 to HoistBB.
    return true;
  }

  // Each element of a hoisting list contains the basic block where to hoist and
  // a list of instructions to be hoisted.
  typedef std::pair<BasicBlock *, SmallVecInsn> HoistingPointInfo;
  typedef SmallVector<HoistingPointInfo, 4> HoistingPointList;

  // Partition InstructionsToHoist into a set of candidates which can share a
  // common hoisting point. The partitions are collected in HPL. IsScalar is
  // true when the instructions in InstructionsToHoist are scalars. IsLoad is
  // true when the InstructionsToHoist are loads, false when they are stores.
  void partitionCandidates(SmallVecImplInsn &InstructionsToHoist,
                           HoistingPointList &HPL, InsKind K) {
    // No need to sort for two instructions.
    if (InstructionsToHoist.size() > 2) {
      SortByDFSIn Pred(DFSNumber);
      std::sort(InstructionsToHoist.begin(), InstructionsToHoist.end(), Pred);
    }

    int NBBsOnAllPaths = MaxNumberOfBBSInPath;

    SmallVecImplInsn::iterator II = InstructionsToHoist.begin();
    SmallVecImplInsn::iterator Start = II;
    Instruction *HoistPt = *II;
    BasicBlock *HoistBB = HoistPt->getParent();
    MemoryUseOrDef *UD;
    if (K != InsKind::Scalar)
      UD = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(HoistPt));

    for (++II; II != InstructionsToHoist.end(); ++II) {
      Instruction *Insn = *II;
      BasicBlock *BB = Insn->getParent();
      BasicBlock *NewHoistBB;
      Instruction *NewHoistPt;

      if (BB == HoistBB) {
        NewHoistBB = HoistBB;
        NewHoistPt = firstInBB(BB, Insn, HoistPt) ? Insn : HoistPt;
      } else {
        NewHoistBB = DT->findNearestCommonDominator(HoistBB, BB);
        if (NewHoistBB == BB)
          NewHoistPt = Insn;
        else if (NewHoistBB == HoistBB)
          NewHoistPt = HoistPt;
        else
          NewHoistPt = NewHoistBB->getTerminator();
      }

      if (K == InsKind::Scalar) {
        if (safeToHoistScalar(NewHoistBB, HoistBB, BB, NBBsOnAllPaths)) {
          // Extend HoistPt to NewHoistPt.
          HoistPt = NewHoistPt;
          HoistBB = NewHoistBB;
          continue;
        }
      } else {
        // When NewBB already contains an instruction to be hoisted, the
        // expression is needed on all paths.
        // Check that the hoisted expression is needed on all paths: it is
        // unsafe to hoist loads to a place where there may be a path not
        // loading from the same address: for instance there may be a branch on
        // which the address of the load may not be initialized.
        if ((HoistBB == NewHoistBB || BB == NewHoistBB ||
             hoistingFromAllPaths(NewHoistBB, HoistBB, BB)) &&
            // Also check that it is safe to move the load or store from HoistPt
            // to NewHoistPt, and from Insn to NewHoistPt.
            safeToHoistLdSt(NewHoistPt, HoistPt, UD, K, NBBsOnAllPaths) &&
            safeToHoistLdSt(NewHoistPt, Insn,
                            cast<MemoryUseOrDef>(MSSA->getMemoryAccess(Insn)),
                            K, NBBsOnAllPaths)) {
          // Extend HoistPt to NewHoistPt.
          HoistPt = NewHoistPt;
          HoistBB = NewHoistBB;
          continue;
        }
      }

      // At this point it is not safe to extend the current hoisting to
      // NewHoistPt: save the hoisting list so far.
      if (std::distance(Start, II) > 1)
        HPL.push_back({HoistBB, SmallVecInsn(Start, II)});

      // Start over from BB.
      Start = II;
      if (K != InsKind::Scalar)
        UD = cast<MemoryUseOrDef>(MSSA->getMemoryAccess(*Start));
      HoistPt = Insn;
      HoistBB = BB;
      NBBsOnAllPaths = MaxNumberOfBBSInPath;
    }

    // Save the last partition.
    if (std::distance(Start, II) > 1)
      HPL.push_back({HoistBB, SmallVecInsn(Start, II)});
  }

  // Initialize HPL from Map.
  void computeInsertionPoints(const VNtoInsns &Map, HoistingPointList &HPL,
                              InsKind K) {
    for (const auto &Entry : Map) {
      if (MaxHoistedThreshold != -1 && ++HoistedCtr > MaxHoistedThreshold)
        return;

      const SmallVecInsn &V = Entry.second;
      if (V.size() < 2)
        continue;

      // Compute the insertion point and the list of expressions to be hoisted.
      SmallVecInsn InstructionsToHoist;
      for (auto I : V)
        if (!hasEH(I->getParent()))
          InstructionsToHoist.push_back(I);

      if (!InstructionsToHoist.empty())
        partitionCandidates(InstructionsToHoist, HPL, K);
    }
  }

  // Return true when all operands of Instr are available at insertion point
  // HoistPt. When limiting the number of hoisted expressions, one could hoist
  // a load without hoisting its access function. So before hoisting any
  // expression, make sure that all its operands are available at insert point.
  bool allOperandsAvailable(const Instruction *I,
                            const BasicBlock *HoistPt) const {
    for (const Use &Op : I->operands())
      if (const auto *Inst = dyn_cast<Instruction>(&Op))
        if (!DT->dominates(Inst->getParent(), HoistPt))
          return false;

    return true;
  }

  Instruction *firstOfTwo(Instruction *I, Instruction *J) const {
    for (Instruction &I1 : *I->getParent())
      if (&I1 == I || &I1 == J)
        return &I1;
    llvm_unreachable("Both I and J must be from same BB");
  }

  // Replace the use of From with To in Insn.
  void replaceUseWith(Instruction *Insn, Value *From, Value *To) const {
    for (Value::use_iterator UI = From->use_begin(), UE = From->use_end();
         UI != UE;) {
      Use &U = *UI++;
      if (U.getUser() == Insn) {
        U.set(To);
        return;
      }
    }
    llvm_unreachable("should replace exactly once");
  }

  bool makeOperandsAvailable(Instruction *Repl, BasicBlock *HoistPt) const {
    // Check whether the GEP of a ld/st can be synthesized at HoistPt.
    GetElementPtrInst *Gep = nullptr;
    Instruction *Val = nullptr;
    if (auto *Ld = dyn_cast<LoadInst>(Repl))
      Gep = dyn_cast<GetElementPtrInst>(Ld->getPointerOperand());
    if (auto *St = dyn_cast<StoreInst>(Repl)) {
      Gep = dyn_cast<GetElementPtrInst>(St->getPointerOperand());
      Val = dyn_cast<Instruction>(St->getValueOperand());
      // Check that the stored value is available.
      if (Val) {
        if (isa<GetElementPtrInst>(Val)) {
          // Check whether we can compute the GEP at HoistPt.
          if (!allOperandsAvailable(Val, HoistPt))
            return false;
        } else if (!DT->dominates(Val->getParent(), HoistPt))
          return false;
      }
    }

    // Check whether we can compute the Gep at HoistPt.
    if (!Gep || !allOperandsAvailable(Gep, HoistPt))
      return false;

    // Copy the gep before moving the ld/st.
    Instruction *ClonedGep = Gep->clone();
    ClonedGep->insertBefore(HoistPt->getTerminator());
    replaceUseWith(Repl, Gep, ClonedGep);

    // Also copy Val when it is a GEP.
    if (Val && isa<GetElementPtrInst>(Val)) {
      Instruction *ClonedVal = Val->clone();
      ClonedVal->insertBefore(HoistPt->getTerminator());
      replaceUseWith(Repl, Val, ClonedVal);
    }

    return true;
  }

  std::pair<unsigned, unsigned> hoist(HoistingPointList &HPL) {
    unsigned NI = 0, NL = 0, NS = 0, NC = 0, NR = 0;
    for (const HoistingPointInfo &HP : HPL) {
      // Find out whether we already have one of the instructions in HoistPt,
      // in which case we do not have to move it.
      BasicBlock *HoistPt = HP.first;
      const SmallVecInsn &InstructionsToHoist = HP.second;
      Instruction *Repl = nullptr;
      for (Instruction *I : InstructionsToHoist)
        if (I->getParent() == HoistPt) {
          // If there are two instructions in HoistPt to be hoisted in place:
          // update Repl to be the first one, such that we can rename the uses
          // of the second based on the first.
          Repl = !Repl ? I : firstOfTwo(Repl, I);
        }

      if (Repl) {
        // Repl is already in HoistPt: it remains in place.
        assert(allOperandsAvailable(Repl, HoistPt) &&
               "instruction depends on operands that are not available");
      } else {
        // When we do not find Repl in HoistPt, select the first in the list
        // and move it to HoistPt.
        Repl = InstructionsToHoist.front();

        // We can move Repl in HoistPt only when all operands are available.
        // The order in which hoistings are done may influence the availability
        // of operands.
        if (!allOperandsAvailable(Repl, HoistPt) &&
            !makeOperandsAvailable(Repl, HoistPt))
          continue;
        Repl->moveBefore(HoistPt->getTerminator());
      }

      if (isa<LoadInst>(Repl))
        ++NL;
      else if (isa<StoreInst>(Repl))
        ++NS;
      else if (isa<CallInst>(Repl))
        ++NC;
      else // Scalar
        ++NI;

      // Remove and rename all other instructions.
      for (Instruction *I : InstructionsToHoist)
        if (I != Repl) {
          ++NR;
          if (isa<LoadInst>(Repl))
            ++NumLoadsRemoved;
          else if (isa<StoreInst>(Repl))
            ++NumStoresRemoved;
          else if (isa<CallInst>(Repl))
            ++NumCallsRemoved;
          I->replaceAllUsesWith(Repl);
          I->eraseFromParent();
        }
    }

    NumHoisted += NL + NS + NC + NI;
    NumRemoved += NR;
    NumLoadsHoisted += NL;
    NumStoresHoisted += NS;
    NumCallsHoisted += NC;
    return {NI, NL + NC + NS};
  }

  // Hoist all expressions. Returns Number of scalars hoisted
  // and number of non-scalars hoisted.
  std::pair<unsigned, unsigned> hoistExpressions(Function &F) {
    InsnInfo II;
    LoadInfo LI;
    StoreInfo SI;
    CallInfo CI;
    for (BasicBlock *BB : depth_first(&F.getEntryBlock())) {
      for (Instruction &I1 : *BB) {
        if (auto *Load = dyn_cast<LoadInst>(&I1))
          LI.insert(Load, VN);
        else if (auto *Store = dyn_cast<StoreInst>(&I1))
          SI.insert(Store, VN);
        else if (auto *Call = dyn_cast<CallInst>(&I1)) {
          if (auto *Intr = dyn_cast<IntrinsicInst>(Call)) {
            if (isa<DbgInfoIntrinsic>(Intr) ||
                Intr->getIntrinsicID() == Intrinsic::assume)
              continue;
          }
          if (Call->mayHaveSideEffects()) {
            if (!OptForMinSize)
              break;
            // We may continue hoisting across calls which write to memory.
            if (Call->mayThrow())
              break;
          }
          CI.insert(Call, VN);
        } else if (OptForMinSize || !isa<GetElementPtrInst>(&I1))
          // Do not hoist scalars past calls that may write to memory because
          // that could result in spills later. geps are handled separately.
          // TODO: We can relax this for targets like AArch64 as they have more
          // registers than X86.
          II.insert(&I1, VN);
      }
    }

    HoistingPointList HPL;
    computeInsertionPoints(II.getVNTable(), HPL, InsKind::Scalar);
    computeInsertionPoints(LI.getVNTable(), HPL, InsKind::Load);
    computeInsertionPoints(SI.getVNTable(), HPL, InsKind::Store);
    computeInsertionPoints(CI.getScalarVNTable(), HPL, InsKind::Scalar);
    computeInsertionPoints(CI.getLoadVNTable(), HPL, InsKind::Load);
    computeInsertionPoints(CI.getStoreVNTable(), HPL, InsKind::Store);
    return hoist(HPL);
  }

  bool run(Function &F) {
    VN.setDomTree(DT);
    VN.setAliasAnalysis(AA);
    VN.setMemDep(MD);
    bool Res = false;

    unsigned I = 0;
    for (const BasicBlock *BB : depth_first(&F.getEntryBlock()))
      DFSNumber.insert({BB, ++I});

    // FIXME: use lazy evaluation of VN to avoid the fix-point computation.
    while (1) {
      // FIXME: only compute MemorySSA once. We need to update the analysis in
      // the same time as transforming the code.
      MemorySSA M(F, AA, DT);
      MSSA = &M;

      auto HoistStat = hoistExpressions(F);
      if (HoistStat.first + HoistStat.second == 0) {
        return Res;
      }
      if (HoistStat.second > 0) {
        // To address a limitation of the current GVN, we need to rerun the
        // hoisting after we hoisted loads in order to be able to hoist all
        // scalars dependent on the hoisted loads. Same for stores.
        VN.clear();
      }
      Res = true;
    }

    return Res;
  }
};

class GVNHoistLegacyPass : public FunctionPass {
public:
  static char ID;

  GVNHoistLegacyPass() : FunctionPass(ID) {
    initializeGVNHoistLegacyPassPass(*PassRegistry::getPassRegistry());
  }

  bool runOnFunction(Function &F) override {
    auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
    auto &AA = getAnalysis<AAResultsWrapperPass>().getAAResults();
    auto &MD = getAnalysis<MemoryDependenceWrapperPass>().getMemDep();

    GVNHoist G(&DT, &AA, &MD, F.optForMinSize());
    return G.run(F);
  }

  void getAnalysisUsage(AnalysisUsage &AU) const override {
    AU.addRequired<DominatorTreeWrapperPass>();
    AU.addRequired<AAResultsWrapperPass>();
    AU.addRequired<MemoryDependenceWrapperPass>();
    AU.addPreserved<DominatorTreeWrapperPass>();
  }
};
} // namespace

PreservedAnalyses GVNHoistPass::run(Function &F,
                                    AnalysisManager<Function> &AM) {
  DominatorTree &DT = AM.getResult<DominatorTreeAnalysis>(F);
  AliasAnalysis &AA = AM.getResult<AAManager>(F);
  MemoryDependenceResults &MD = AM.getResult<MemoryDependenceAnalysis>(F);

  GVNHoist G(&DT, &AA, &MD, F.optForMinSize());
  if (!G.run(F))
    return PreservedAnalyses::all();

  PreservedAnalyses PA;
  PA.preserve<DominatorTreeAnalysis>();
  return PA;
}

char GVNHoistLegacyPass::ID = 0;
INITIALIZE_PASS_BEGIN(GVNHoistLegacyPass, "gvn-hoist",
                      "Early GVN Hoisting of Expressions", false, false)
INITIALIZE_PASS_DEPENDENCY(MemoryDependenceWrapperPass)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
INITIALIZE_PASS_END(GVNHoistLegacyPass, "gvn-hoist",
                    "Early GVN Hoisting of Expressions", false, false)

FunctionPass *llvm::createGVNHoistPass() { return new GVNHoistLegacyPass(); }