llvm.org GIT mirror llvm / release_39 lib / Target / AMDGPU / SILowerControlFlow.cpp
release_39

Tree @release_39 (Download .tar.gz)

SILowerControlFlow.cpp @release_39raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
//===-- SILowerControlFlow.cpp - Use predicates for control flow ----------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief This pass lowers the pseudo control flow instructions to real
/// machine instructions.
///
/// All control flow is handled using predicated instructions and
/// a predicate stack.  Each Scalar ALU controls the operations of 64 Vector
/// ALUs.  The Scalar ALU can update the predicate for any of the Vector ALUs
/// by writting to the 64-bit EXEC register (each bit corresponds to a
/// single vector ALU).  Typically, for predicates, a vector ALU will write
/// to its bit of the VCC register (like EXEC VCC is 64-bits, one for each
/// Vector ALU) and then the ScalarALU will AND the VCC register with the
/// EXEC to update the predicates.
///
/// For example:
/// %VCC = V_CMP_GT_F32 %VGPR1, %VGPR2
/// %SGPR0 = SI_IF %VCC
///   %VGPR0 = V_ADD_F32 %VGPR0, %VGPR0
/// %SGPR0 = SI_ELSE %SGPR0
///   %VGPR0 = V_SUB_F32 %VGPR0, %VGPR0
/// SI_END_CF %SGPR0
///
/// becomes:
///
/// %SGPR0 = S_AND_SAVEEXEC_B64 %VCC  // Save and update the exec mask
/// %SGPR0 = S_XOR_B64 %SGPR0, %EXEC  // Clear live bits from saved exec mask
/// S_CBRANCH_EXECZ label0            // This instruction is an optional
///                                   // optimization which allows us to
///                                   // branch if all the bits of
///                                   // EXEC are zero.
/// %VGPR0 = V_ADD_F32 %VGPR0, %VGPR0 // Do the IF block of the branch
///
/// label0:
/// %SGPR0 = S_OR_SAVEEXEC_B64 %EXEC   // Restore the exec mask for the Then block
/// %EXEC = S_XOR_B64 %SGPR0, %EXEC    // Clear live bits from saved exec mask
/// S_BRANCH_EXECZ label1              // Use our branch optimization
///                                    // instruction again.
/// %VGPR0 = V_SUB_F32 %VGPR0, %VGPR   // Do the THEN block
/// label1:
/// %EXEC = S_OR_B64 %EXEC, %SGPR0     // Re-enable saved exec mask bits
//===----------------------------------------------------------------------===//

#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Constants.h"

using namespace llvm;

#define DEBUG_TYPE "si-lower-control-flow"

namespace {

class SILowerControlFlow : public MachineFunctionPass {
private:
  static const unsigned SkipThreshold = 12;

  const SIRegisterInfo *TRI;
  const SIInstrInfo *TII;

  bool shouldSkip(MachineBasicBlock *From, MachineBasicBlock *To);

  void Skip(MachineInstr &From, MachineOperand &To);
  bool skipIfDead(MachineInstr &MI, MachineBasicBlock &NextBB);

  void If(MachineInstr &MI);
  void Else(MachineInstr &MI, bool ExecModified);
  void Break(MachineInstr &MI);
  void IfBreak(MachineInstr &MI);
  void ElseBreak(MachineInstr &MI);
  void Loop(MachineInstr &MI);
  void EndCf(MachineInstr &MI);

  void Kill(MachineInstr &MI);
  void Branch(MachineInstr &MI);

  MachineBasicBlock *insertSkipBlock(MachineBasicBlock &MBB,
                                     MachineBasicBlock::iterator I) const;

  std::pair<MachineBasicBlock *, MachineBasicBlock *>
  splitBlock(MachineBasicBlock &MBB, MachineBasicBlock::iterator I);

  void splitLoadM0BlockLiveIns(LivePhysRegs &RemainderLiveRegs,
                               const MachineRegisterInfo &MRI,
                               const MachineInstr &MI,
                               MachineBasicBlock &LoopBB,
                               MachineBasicBlock &RemainderBB,
                               unsigned SaveReg,
                               const MachineOperand &IdxReg);

  void emitLoadM0FromVGPRLoop(MachineBasicBlock &LoopBB, DebugLoc DL,
                              MachineInstr *MovRel,
                              const MachineOperand &IdxReg,
                              int Offset);

  bool loadM0(MachineInstr &MI, MachineInstr *MovRel, int Offset = 0);
  std::pair<unsigned, int> computeIndirectRegAndOffset(unsigned VecReg,
                                                       int Offset) const;
  bool indirectSrc(MachineInstr &MI);
  bool indirectDst(MachineInstr &MI);

public:
  static char ID;

  SILowerControlFlow() :
    MachineFunctionPass(ID), TRI(nullptr), TII(nullptr) { }

  bool runOnMachineFunction(MachineFunction &MF) override;

  const char *getPassName() const override {
    return "SI Lower control flow pseudo instructions";
  }
};

} // End anonymous namespace

char SILowerControlFlow::ID = 0;

INITIALIZE_PASS(SILowerControlFlow, DEBUG_TYPE,
                "SI lower control flow", false, false)

char &llvm::SILowerControlFlowPassID = SILowerControlFlow::ID;


FunctionPass *llvm::createSILowerControlFlowPass() {
  return new SILowerControlFlow();
}

static bool opcodeEmitsNoInsts(unsigned Opc) {
  switch (Opc) {
  case TargetOpcode::IMPLICIT_DEF:
  case TargetOpcode::KILL:
  case TargetOpcode::BUNDLE:
  case TargetOpcode::CFI_INSTRUCTION:
  case TargetOpcode::EH_LABEL:
  case TargetOpcode::GC_LABEL:
  case TargetOpcode::DBG_VALUE:
    return true;
  default:
    return false;
  }
}

bool SILowerControlFlow::shouldSkip(MachineBasicBlock *From,
                                    MachineBasicBlock *To) {
  if (From->succ_empty())
    return false;

  unsigned NumInstr = 0;
  MachineFunction *MF = From->getParent();

  for (MachineFunction::iterator MBBI(From), ToI(To), End = MF->end();
       MBBI != End && MBBI != ToI; ++MBBI) {
    MachineBasicBlock &MBB = *MBBI;

    for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
         NumInstr < SkipThreshold && I != E; ++I) {
      if (opcodeEmitsNoInsts(I->getOpcode()))
        continue;

      // When a uniform loop is inside non-uniform control flow, the branch
      // leaving the loop might be an S_CBRANCH_VCCNZ, which is never taken
      // when EXEC = 0. We should skip the loop lest it becomes infinite.
      if (I->getOpcode() == AMDGPU::S_CBRANCH_VCCNZ ||
          I->getOpcode() == AMDGPU::S_CBRANCH_VCCZ)
        return true;

      if (I->isInlineAsm()) {
        const MCAsmInfo *MAI = MF->getTarget().getMCAsmInfo();
        const char *AsmStr = I->getOperand(0).getSymbolName();

        // inlineasm length estimate is number of bytes assuming the longest
        // instruction.
        uint64_t MaxAsmSize = TII->getInlineAsmLength(AsmStr, *MAI);
        NumInstr += MaxAsmSize / MAI->getMaxInstLength();
      } else {
        ++NumInstr;
      }

      if (NumInstr >= SkipThreshold)
        return true;
    }
  }

  return false;
}

void SILowerControlFlow::Skip(MachineInstr &From, MachineOperand &To) {

  if (!shouldSkip(*From.getParent()->succ_begin(), To.getMBB()))
    return;

  DebugLoc DL = From.getDebugLoc();
  BuildMI(*From.getParent(), &From, DL, TII->get(AMDGPU::S_CBRANCH_EXECZ))
    .addOperand(To);
}

bool SILowerControlFlow::skipIfDead(MachineInstr &MI, MachineBasicBlock &NextBB) {
  MachineBasicBlock &MBB = *MI.getParent();
  MachineFunction *MF = MBB.getParent();

  if (MF->getFunction()->getCallingConv() != CallingConv::AMDGPU_PS ||
      !shouldSkip(&MBB, &MBB.getParent()->back()))
    return false;

  MachineBasicBlock *SkipBB = insertSkipBlock(MBB, MI.getIterator());
  MBB.addSuccessor(SkipBB);

  const DebugLoc &DL = MI.getDebugLoc();

  // If the exec mask is non-zero, skip the next two instructions
  BuildMI(&MBB, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
    .addMBB(&NextBB);

  MachineBasicBlock::iterator Insert = SkipBB->begin();

  // Exec mask is zero: Export to NULL target...
  BuildMI(*SkipBB, Insert, DL, TII->get(AMDGPU::EXP))
    .addImm(0)
    .addImm(0x09) // V_008DFC_SQ_EXP_NULL
    .addImm(0)
    .addImm(1)
    .addImm(1)
    .addReg(AMDGPU::VGPR0, RegState::Undef)
    .addReg(AMDGPU::VGPR0, RegState::Undef)
    .addReg(AMDGPU::VGPR0, RegState::Undef)
    .addReg(AMDGPU::VGPR0, RegState::Undef);

  // ... and terminate wavefront.
  BuildMI(*SkipBB, Insert, DL, TII->get(AMDGPU::S_ENDPGM));

  return true;
}

void SILowerControlFlow::If(MachineInstr &MI) {
  MachineBasicBlock &MBB = *MI.getParent();
  DebugLoc DL = MI.getDebugLoc();
  unsigned Reg = MI.getOperand(0).getReg();
  unsigned Vcc = MI.getOperand(1).getReg();

  BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), Reg)
          .addReg(Vcc);

  BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_XOR_B64), Reg)
          .addReg(AMDGPU::EXEC)
          .addReg(Reg);

  Skip(MI, MI.getOperand(2));

  // Insert a pseudo terminator to help keep the verifier happy.
  BuildMI(MBB, &MI, DL, TII->get(AMDGPU::SI_MASK_BRANCH))
    .addOperand(MI.getOperand(2))
    .addReg(Reg);

  MI.eraseFromParent();
}

void SILowerControlFlow::Else(MachineInstr &MI, bool ExecModified) {
  MachineBasicBlock &MBB = *MI.getParent();
  DebugLoc DL = MI.getDebugLoc();
  unsigned Dst = MI.getOperand(0).getReg();
  unsigned Src = MI.getOperand(1).getReg();

  BuildMI(MBB, MBB.getFirstNonPHI(), DL,
          TII->get(AMDGPU::S_OR_SAVEEXEC_B64), Dst)
          .addReg(Src); // Saved EXEC

  if (ExecModified) {
    // Adjust the saved exec to account for the modifications during the flow
    // block that contains the ELSE. This can happen when WQM mode is switched
    // off.
    BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_AND_B64), Dst)
            .addReg(AMDGPU::EXEC)
            .addReg(Dst);
  }

  BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC)
          .addReg(AMDGPU::EXEC)
          .addReg(Dst);

  Skip(MI, MI.getOperand(2));

  // Insert a pseudo terminator to help keep the verifier happy.
  BuildMI(MBB, &MI, DL, TII->get(AMDGPU::SI_MASK_BRANCH))
    .addOperand(MI.getOperand(2))
    .addReg(Dst);

  MI.eraseFromParent();
}

void SILowerControlFlow::Break(MachineInstr &MI) {
  MachineBasicBlock &MBB = *MI.getParent();
  DebugLoc DL = MI.getDebugLoc();

  unsigned Dst = MI.getOperand(0).getReg();
  unsigned Src = MI.getOperand(1).getReg();

  BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst)
          .addReg(AMDGPU::EXEC)
          .addReg(Src);

  MI.eraseFromParent();
}

void SILowerControlFlow::IfBreak(MachineInstr &MI) {
  MachineBasicBlock &MBB = *MI.getParent();
  DebugLoc DL = MI.getDebugLoc();

  unsigned Dst = MI.getOperand(0).getReg();
  unsigned Vcc = MI.getOperand(1).getReg();
  unsigned Src = MI.getOperand(2).getReg();

  BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst)
          .addReg(Vcc)
          .addReg(Src);

  MI.eraseFromParent();
}

void SILowerControlFlow::ElseBreak(MachineInstr &MI) {
  MachineBasicBlock &MBB = *MI.getParent();
  DebugLoc DL = MI.getDebugLoc();

  unsigned Dst = MI.getOperand(0).getReg();
  unsigned Saved = MI.getOperand(1).getReg();
  unsigned Src = MI.getOperand(2).getReg();

  BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_OR_B64), Dst)
          .addReg(Saved)
          .addReg(Src);

  MI.eraseFromParent();
}

void SILowerControlFlow::Loop(MachineInstr &MI) {
  MachineBasicBlock &MBB = *MI.getParent();
  DebugLoc DL = MI.getDebugLoc();
  unsigned Src = MI.getOperand(0).getReg();

  BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_ANDN2_B64), AMDGPU::EXEC)
          .addReg(AMDGPU::EXEC)
          .addReg(Src);

  BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
    .addOperand(MI.getOperand(1));

  MI.eraseFromParent();
}

void SILowerControlFlow::EndCf(MachineInstr &MI) {
  MachineBasicBlock &MBB = *MI.getParent();
  DebugLoc DL = MI.getDebugLoc();
  unsigned Reg = MI.getOperand(0).getReg();

  BuildMI(MBB, MBB.getFirstNonPHI(), DL,
          TII->get(AMDGPU::S_OR_B64), AMDGPU::EXEC)
          .addReg(AMDGPU::EXEC)
          .addReg(Reg);

  MI.eraseFromParent();
}

void SILowerControlFlow::Branch(MachineInstr &MI) {
  MachineBasicBlock *MBB = MI.getOperand(0).getMBB();
  if (MBB == MI.getParent()->getNextNode())
    MI.eraseFromParent();

  // If these aren't equal, this is probably an infinite loop.
}

void SILowerControlFlow::Kill(MachineInstr &MI) {
  MachineBasicBlock &MBB = *MI.getParent();
  DebugLoc DL = MI.getDebugLoc();
  const MachineOperand &Op = MI.getOperand(0);

#ifndef NDEBUG
  CallingConv::ID CallConv = MBB.getParent()->getFunction()->getCallingConv();
  // Kill is only allowed in pixel / geometry shaders.
  assert(CallConv == CallingConv::AMDGPU_PS ||
         CallConv == CallingConv::AMDGPU_GS);
#endif

  // Clear this thread from the exec mask if the operand is negative
  if ((Op.isImm())) {
    // Constant operand: Set exec mask to 0 or do nothing
    if (Op.getImm() & 0x80000000) {
      BuildMI(MBB, &MI, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC)
              .addImm(0);
    }
  } else {
    BuildMI(MBB, &MI, DL, TII->get(AMDGPU::V_CMPX_LE_F32_e32))
           .addImm(0)
           .addOperand(Op);
  }

  MI.eraseFromParent();
}

// All currently live registers must remain so in the remainder block.
void SILowerControlFlow::splitLoadM0BlockLiveIns(LivePhysRegs &RemainderLiveRegs,
                                                 const MachineRegisterInfo &MRI,
                                                 const MachineInstr &MI,
                                                 MachineBasicBlock &LoopBB,
                                                 MachineBasicBlock &RemainderBB,
                                                 unsigned SaveReg,
                                                 const MachineOperand &IdxReg) {
  // Add reg defined in loop body.
  RemainderLiveRegs.addReg(SaveReg);

  if (const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val)) {
    if (!Val->isUndef()) {
      RemainderLiveRegs.addReg(Val->getReg());
      LoopBB.addLiveIn(Val->getReg());
    }
  }

  for (unsigned Reg : RemainderLiveRegs) {
    if (MRI.isAllocatable(Reg))
      RemainderBB.addLiveIn(Reg);
  }

  const MachineOperand *Src = TII->getNamedOperand(MI, AMDGPU::OpName::src);
  if (!Src->isUndef())
    LoopBB.addLiveIn(Src->getReg());

  if (!IdxReg.isUndef())
    LoopBB.addLiveIn(IdxReg.getReg());
  LoopBB.sortUniqueLiveIns();
}

void SILowerControlFlow::emitLoadM0FromVGPRLoop(MachineBasicBlock &LoopBB,
                                                DebugLoc DL,
                                                MachineInstr *MovRel,
                                                const MachineOperand &IdxReg,
                                                int Offset) {
  MachineBasicBlock::iterator I = LoopBB.begin();

  // Read the next variant into VCC (lower 32 bits) <- also loop target
  BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_READFIRSTLANE_B32), AMDGPU::VCC_LO)
    .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef()));

  // Move index from VCC into M0
  BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
    .addReg(AMDGPU::VCC_LO);

  // Compare the just read M0 value to all possible Idx values
  BuildMI(LoopBB, I, DL, TII->get(AMDGPU::V_CMP_EQ_U32_e32))
    .addReg(AMDGPU::M0)
    .addReg(IdxReg.getReg(), getUndefRegState(IdxReg.isUndef()));

  // Update EXEC, save the original EXEC value to VCC
  BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_AND_SAVEEXEC_B64), AMDGPU::VCC)
    .addReg(AMDGPU::VCC);

  if (Offset != 0) {
    BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
      .addReg(AMDGPU::M0)
      .addImm(Offset);
  }

  // Do the actual move
  LoopBB.insert(I, MovRel);

  // Update EXEC, switch all done bits to 0 and all todo bits to 1
  BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_XOR_B64), AMDGPU::EXEC)
    .addReg(AMDGPU::EXEC)
    .addReg(AMDGPU::VCC);

  // Loop back to V_READFIRSTLANE_B32 if there are still variants to cover
  BuildMI(LoopBB, I, DL, TII->get(AMDGPU::S_CBRANCH_EXECNZ))
    .addMBB(&LoopBB);
}

MachineBasicBlock *SILowerControlFlow::insertSkipBlock(
  MachineBasicBlock &MBB, MachineBasicBlock::iterator I) const {
  MachineFunction *MF = MBB.getParent();

  MachineBasicBlock *SkipBB = MF->CreateMachineBasicBlock();
  MachineFunction::iterator MBBI(MBB);
  ++MBBI;

  MF->insert(MBBI, SkipBB);

  return SkipBB;
}

std::pair<MachineBasicBlock *, MachineBasicBlock *>
SILowerControlFlow::splitBlock(MachineBasicBlock &MBB,
                               MachineBasicBlock::iterator I) {
  MachineFunction *MF = MBB.getParent();

  // To insert the loop we need to split the block. Move everything after this
  // point to a new block, and insert a new empty block between the two.
  MachineBasicBlock *LoopBB = MF->CreateMachineBasicBlock();
  MachineBasicBlock *RemainderBB = MF->CreateMachineBasicBlock();
  MachineFunction::iterator MBBI(MBB);
  ++MBBI;

  MF->insert(MBBI, LoopBB);
  MF->insert(MBBI, RemainderBB);

  // Move the rest of the block into a new block.
  RemainderBB->transferSuccessors(&MBB);
  RemainderBB->splice(RemainderBB->begin(), &MBB, I, MBB.end());

  MBB.addSuccessor(LoopBB);

  return std::make_pair(LoopBB, RemainderBB);
}

// Returns true if a new block was inserted.
bool SILowerControlFlow::loadM0(MachineInstr &MI, MachineInstr *MovRel, int Offset) {
  MachineBasicBlock &MBB = *MI.getParent();
  DebugLoc DL = MI.getDebugLoc();
  MachineBasicBlock::iterator I(&MI);

  const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);

  if (AMDGPU::SReg_32RegClass.contains(Idx->getReg())) {
    if (Offset != 0) {
      BuildMI(MBB, I, DL, TII->get(AMDGPU::S_ADD_I32), AMDGPU::M0)
        .addReg(Idx->getReg(), getUndefRegState(Idx->isUndef()))
        .addImm(Offset);
    } else {
      BuildMI(MBB, I, DL, TII->get(AMDGPU::S_MOV_B32), AMDGPU::M0)
        .addReg(Idx->getReg(), getUndefRegState(Idx->isUndef()));
    }

    MBB.insert(I, MovRel);
    MI.eraseFromParent();
    return false;
  }

  MachineOperand *SaveOp = TII->getNamedOperand(MI, AMDGPU::OpName::sdst);
  SaveOp->setIsDead(false);
  unsigned Save = SaveOp->getReg();

  // Reading from a VGPR requires looping over all workitems in the wavefront.
  assert(AMDGPU::SReg_64RegClass.contains(Save) &&
         AMDGPU::VGPR_32RegClass.contains(Idx->getReg()));

  // Save the EXEC mask
  BuildMI(MBB, I, DL, TII->get(AMDGPU::S_MOV_B64), Save)
    .addReg(AMDGPU::EXEC);

  LivePhysRegs RemainderLiveRegs(TRI);

  RemainderLiveRegs.addLiveOuts(MBB);

  MachineBasicBlock *LoopBB;
  MachineBasicBlock *RemainderBB;

  std::tie(LoopBB, RemainderBB) = splitBlock(MBB, I);

  for (const MachineInstr &Inst : reverse(*RemainderBB))
    RemainderLiveRegs.stepBackward(Inst);

  MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
  LoopBB->addSuccessor(RemainderBB);
  LoopBB->addSuccessor(LoopBB);

  splitLoadM0BlockLiveIns(RemainderLiveRegs, MRI, MI, *LoopBB,
                          *RemainderBB, Save, *Idx);

  emitLoadM0FromVGPRLoop(*LoopBB, DL, MovRel, *Idx, Offset);

  MachineBasicBlock::iterator First = RemainderBB->begin();
  BuildMI(*RemainderBB, First, DL, TII->get(AMDGPU::S_MOV_B64), AMDGPU::EXEC)
    .addReg(Save);

  MI.eraseFromParent();
  return true;
}

/// \param @VecReg The register which holds element zero of the vector being
///                 addressed into.
//
/// \param[in] @Idx The index operand from the movrel instruction. This must be
// a register, but may be NoRegister.
///
/// \param[in] @Offset As an input, this is the constant offset part of the
// indirect Index. e.g. v0 = v[VecReg + Offset] As an output, this is a constant
// value that needs to be added to the value stored in M0.
std::pair<unsigned, int>
SILowerControlFlow::computeIndirectRegAndOffset(unsigned VecReg, int Offset) const {
  unsigned SubReg = TRI->getSubReg(VecReg, AMDGPU::sub0);
  if (!SubReg)
    SubReg = VecReg;

  const TargetRegisterClass *SuperRC = TRI->getPhysRegClass(VecReg);
  const TargetRegisterClass *RC = TRI->getPhysRegClass(SubReg);
  int NumElts = SuperRC->getSize() / RC->getSize();

  int BaseRegIdx = TRI->getHWRegIndex(SubReg);

  // Skip out of bounds offsets, or else we would end up using an undefined
  // register.
  if (Offset >= NumElts)
    return std::make_pair(RC->getRegister(BaseRegIdx), Offset);

  int RegIdx = BaseRegIdx + Offset;
  if (RegIdx < 0) {
    Offset = RegIdx;
    RegIdx = 0;
  } else {
    Offset = 0;
  }

  unsigned Reg = RC->getRegister(RegIdx);
  return std::make_pair(Reg, Offset);
}

// Return true if a new block was inserted.
bool SILowerControlFlow::indirectSrc(MachineInstr &MI) {
  MachineBasicBlock &MBB = *MI.getParent();
  const DebugLoc &DL = MI.getDebugLoc();

  unsigned Dst = MI.getOperand(0).getReg();
  const MachineOperand *SrcVec = TII->getNamedOperand(MI, AMDGPU::OpName::src);
  int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
  unsigned Reg;

  std::tie(Reg, Offset) = computeIndirectRegAndOffset(SrcVec->getReg(), Offset);

  const MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
  if (Idx->getReg() == AMDGPU::NoRegister) {
    // Only had a constant offset, copy the register directly.
    BuildMI(MBB, MI.getIterator(), DL, TII->get(AMDGPU::V_MOV_B32_e32), Dst)
      .addReg(Reg, getUndefRegState(SrcVec->isUndef()));
    MI.eraseFromParent();
    return false;
  }

  MachineInstr *MovRel =
    BuildMI(*MBB.getParent(), DL, TII->get(AMDGPU::V_MOVRELS_B32_e32), Dst)
    .addReg(Reg, getUndefRegState(SrcVec->isUndef()))
    .addReg(SrcVec->getReg(), RegState::Implicit);

  return loadM0(MI, MovRel, Offset);
}

// Return true if a new block was inserted.
bool SILowerControlFlow::indirectDst(MachineInstr &MI) {
  MachineBasicBlock &MBB = *MI.getParent();
  const DebugLoc &DL = MI.getDebugLoc();

  unsigned Dst = MI.getOperand(0).getReg();
  int Offset = TII->getNamedOperand(MI, AMDGPU::OpName::offset)->getImm();
  unsigned Reg;

  const MachineOperand *Val = TII->getNamedOperand(MI, AMDGPU::OpName::val);
  std::tie(Reg, Offset) = computeIndirectRegAndOffset(Dst, Offset);

  MachineOperand *Idx = TII->getNamedOperand(MI, AMDGPU::OpName::idx);
  if (Idx->getReg() == AMDGPU::NoRegister) {
    // Only had a constant offset, copy the register directly.
    BuildMI(MBB, MI.getIterator(), DL, TII->get(AMDGPU::V_MOV_B32_e32), Reg)
      .addOperand(*Val);
    MI.eraseFromParent();
    return false;
  }

  MachineInstr *MovRel =
    BuildMI(*MBB.getParent(), DL, TII->get(AMDGPU::V_MOVRELD_B32_e32), Reg)
    .addReg(Val->getReg(), getUndefRegState(Val->isUndef()))
    .addReg(Dst, RegState::Implicit);

  return loadM0(MI, MovRel, Offset);
}

bool SILowerControlFlow::runOnMachineFunction(MachineFunction &MF) {
  const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
  TII = ST.getInstrInfo();
  TRI = &TII->getRegisterInfo();

  SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();

  bool HaveKill = false;
  bool NeedFlat = false;
  unsigned Depth = 0;

  MachineFunction::iterator NextBB;

  for (MachineFunction::iterator BI = MF.begin(), BE = MF.end();
       BI != BE; BI = NextBB) {
    NextBB = std::next(BI);
    MachineBasicBlock &MBB = *BI;

    MachineBasicBlock *EmptyMBBAtEnd = nullptr;
    MachineBasicBlock::iterator I, Next;
    bool ExecModified = false;

    for (I = MBB.begin(); I != MBB.end(); I = Next) {
      Next = std::next(I);

      MachineInstr &MI = *I;

      // Flat uses m0 in case it needs to access LDS.
      if (TII->isFLAT(MI))
        NeedFlat = true;

      if (I->modifiesRegister(AMDGPU::EXEC, TRI))
        ExecModified = true;

      switch (MI.getOpcode()) {
        default: break;
        case AMDGPU::SI_IF:
          ++Depth;
          If(MI);
          break;

        case AMDGPU::SI_ELSE:
          Else(MI, ExecModified);
          break;

        case AMDGPU::SI_BREAK:
          Break(MI);
          break;

        case AMDGPU::SI_IF_BREAK:
          IfBreak(MI);
          break;

        case AMDGPU::SI_ELSE_BREAK:
          ElseBreak(MI);
          break;

        case AMDGPU::SI_LOOP:
          ++Depth;
          Loop(MI);
          break;

        case AMDGPU::SI_END_CF:
          if (--Depth == 0 && HaveKill) {
            HaveKill = false;
            // TODO: Insert skip if exec is 0?
          }

          EndCf(MI);
          break;

        case AMDGPU::SI_KILL_TERMINATOR:
          if (Depth == 0) {
            if (skipIfDead(MI, *NextBB)) {
              NextBB = std::next(BI);
              BE = MF.end();
            }
          } else
            HaveKill = true;
          Kill(MI);
          break;

        case AMDGPU::S_BRANCH:
          Branch(MI);
          break;

        case AMDGPU::SI_INDIRECT_SRC_V1:
        case AMDGPU::SI_INDIRECT_SRC_V2:
        case AMDGPU::SI_INDIRECT_SRC_V4:
        case AMDGPU::SI_INDIRECT_SRC_V8:
        case AMDGPU::SI_INDIRECT_SRC_V16:
          if (indirectSrc(MI)) {
            // The block was split at this point. We can safely skip the middle
            // inserted block to the following which contains the rest of this
            // block's instructions.
            NextBB = std::next(BI);
            BE = MF.end();
            Next = MBB.end();
          }

          break;

        case AMDGPU::SI_INDIRECT_DST_V1:
        case AMDGPU::SI_INDIRECT_DST_V2:
        case AMDGPU::SI_INDIRECT_DST_V4:
        case AMDGPU::SI_INDIRECT_DST_V8:
        case AMDGPU::SI_INDIRECT_DST_V16:
          if (indirectDst(MI)) {
            // The block was split at this point. We can safely skip the middle
            // inserted block to the following which contains the rest of this
            // block's instructions.
            NextBB = std::next(BI);
            BE = MF.end();
            Next = MBB.end();
          }

          break;

        case AMDGPU::SI_RETURN: {
          assert(!MF.getInfo<SIMachineFunctionInfo>()->returnsVoid());

          // Graphics shaders returning non-void shouldn't contain S_ENDPGM,
          // because external bytecode will be appended at the end.
          if (BI != --MF.end() || I != MBB.getFirstTerminator()) {
            // SI_RETURN is not the last instruction. Add an empty block at
            // the end and jump there.
            if (!EmptyMBBAtEnd) {
              EmptyMBBAtEnd = MF.CreateMachineBasicBlock();
              MF.insert(MF.end(), EmptyMBBAtEnd);
            }

            MBB.addSuccessor(EmptyMBBAtEnd);
            BuildMI(*BI, I, MI.getDebugLoc(), TII->get(AMDGPU::S_BRANCH))
                    .addMBB(EmptyMBBAtEnd);
            I->eraseFromParent();
          }
          break;
        }
      }
    }
  }

  if (NeedFlat && MFI->IsKernel) {
    // TODO: What to use with function calls?
    // We will need to Initialize the flat scratch register pair.
    if (NeedFlat)
      MFI->setHasFlatInstructions(true);
  }

  return true;
}