llvm.org GIT mirror llvm / release_39 lib / LTO / ThinLTOCodeGenerator.cpp
release_39

Tree @release_39 (Download .tar.gz)

ThinLTOCodeGenerator.cpp @release_39raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
//===-ThinLTOCodeGenerator.cpp - LLVM Link Time Optimizer -----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Thin Link Time Optimization library. This library is
// intended to be used by linker to optimize code at link time.
//
//===----------------------------------------------------------------------===//

#include "llvm/LTO/legacy/ThinLTOCodeGenerator.h"

#ifdef HAVE_LLVM_REVISION
#include "LLVMLTORevision.h"
#endif

#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/ModuleSummaryAnalysis.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TargetTransformInfo.h"
#include "llvm/Bitcode/BitcodeWriterPass.h"
#include "llvm/Bitcode/ReaderWriter.h"
#include "llvm/ExecutionEngine/ObjectMemoryBuffer.h"
#include "llvm/IR/DiagnosticPrinter.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/IR/Mangler.h"
#include "llvm/IRReader/IRReader.h"
#include "llvm/LTO/LTO.h"
#include "llvm/Linker/Linker.h"
#include "llvm/MC/SubtargetFeature.h"
#include "llvm/Object/IRObjectFile.h"
#include "llvm/Object/ModuleSummaryIndexObjectFile.h"
#include "llvm/Support/CachePruning.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Path.h"
#include "llvm/Support/SHA1.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Support/ThreadPool.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Transforms/IPO.h"
#include "llvm/Transforms/IPO/FunctionImport.h"
#include "llvm/Transforms/IPO/Internalize.h"
#include "llvm/Transforms/IPO/PassManagerBuilder.h"
#include "llvm/Transforms/ObjCARC.h"
#include "llvm/Transforms/Utils/FunctionImportUtils.h"

#include <numeric>

using namespace llvm;

#define DEBUG_TYPE "thinlto"

namespace llvm {
// Flags -discard-value-names, defined in LTOCodeGenerator.cpp
extern cl::opt<bool> LTODiscardValueNames;
}

namespace {

static cl::opt<int> ThreadCount("threads",
                                cl::init(std::thread::hardware_concurrency()));

static void diagnosticHandler(const DiagnosticInfo &DI) {
  DiagnosticPrinterRawOStream DP(errs());
  DI.print(DP);
  errs() << '\n';
}

// Simple helper to save temporary files for debug.
static void saveTempBitcode(const Module &TheModule, StringRef TempDir,
                            unsigned count, StringRef Suffix) {
  if (TempDir.empty())
    return;
  // User asked to save temps, let dump the bitcode file after import.
  auto SaveTempPath = TempDir + llvm::utostr(count) + Suffix;
  std::error_code EC;
  raw_fd_ostream OS(SaveTempPath.str(), EC, sys::fs::F_None);
  if (EC)
    report_fatal_error(Twine("Failed to open ") + SaveTempPath +
                       " to save optimized bitcode\n");
  WriteBitcodeToFile(&TheModule, OS, /* ShouldPreserveUseListOrder */ true);
}

static const GlobalValueSummary *
getFirstDefinitionForLinker(const GlobalValueSummaryList &GVSummaryList) {
  // If there is any strong definition anywhere, get it.
  auto StrongDefForLinker = llvm::find_if(
      GVSummaryList, [](const std::unique_ptr<GlobalValueSummary> &Summary) {
        auto Linkage = Summary->linkage();
        return !GlobalValue::isAvailableExternallyLinkage(Linkage) &&
               !GlobalValue::isWeakForLinker(Linkage);
      });
  if (StrongDefForLinker != GVSummaryList.end())
    return StrongDefForLinker->get();
  // Get the first *linker visible* definition for this global in the summary
  // list.
  auto FirstDefForLinker = llvm::find_if(
      GVSummaryList, [](const std::unique_ptr<GlobalValueSummary> &Summary) {
        auto Linkage = Summary->linkage();
        return !GlobalValue::isAvailableExternallyLinkage(Linkage);
      });
  // Extern templates can be emitted as available_externally.
  if (FirstDefForLinker == GVSummaryList.end())
    return nullptr;
  return FirstDefForLinker->get();
}

// Populate map of GUID to the prevailing copy for any multiply defined
// symbols. Currently assume first copy is prevailing, or any strong
// definition. Can be refined with Linker information in the future.
static void computePrevailingCopies(
    const ModuleSummaryIndex &Index,
    DenseMap<GlobalValue::GUID, const GlobalValueSummary *> &PrevailingCopy) {
  auto HasMultipleCopies = [&](const GlobalValueSummaryList &GVSummaryList) {
    return GVSummaryList.size() > 1;
  };

  for (auto &I : Index) {
    if (HasMultipleCopies(I.second))
      PrevailingCopy[I.first] = getFirstDefinitionForLinker(I.second);
  }
}

static StringMap<MemoryBufferRef>
generateModuleMap(const std::vector<MemoryBufferRef> &Modules) {
  StringMap<MemoryBufferRef> ModuleMap;
  for (auto &ModuleBuffer : Modules) {
    assert(ModuleMap.find(ModuleBuffer.getBufferIdentifier()) ==
               ModuleMap.end() &&
           "Expect unique Buffer Identifier");
    ModuleMap[ModuleBuffer.getBufferIdentifier()] = ModuleBuffer;
  }
  return ModuleMap;
}

static void promoteModule(Module &TheModule, const ModuleSummaryIndex &Index) {
  if (renameModuleForThinLTO(TheModule, Index))
    report_fatal_error("renameModuleForThinLTO failed");
}

static void
crossImportIntoModule(Module &TheModule, const ModuleSummaryIndex &Index,
                      StringMap<MemoryBufferRef> &ModuleMap,
                      const FunctionImporter::ImportMapTy &ImportList) {
  ModuleLoader Loader(TheModule.getContext(), ModuleMap);
  FunctionImporter Importer(Index, Loader);
  Importer.importFunctions(TheModule, ImportList);
}

static void optimizeModule(Module &TheModule, TargetMachine &TM) {
  // Populate the PassManager
  PassManagerBuilder PMB;
  PMB.LibraryInfo = new TargetLibraryInfoImpl(TM.getTargetTriple());
  PMB.Inliner = createFunctionInliningPass();
  // FIXME: should get it from the bitcode?
  PMB.OptLevel = 3;
  PMB.LoopVectorize = true;
  PMB.SLPVectorize = true;
  PMB.VerifyInput = true;
  PMB.VerifyOutput = false;

  legacy::PassManager PM;

  // Add the TTI (required to inform the vectorizer about register size for
  // instance)
  PM.add(createTargetTransformInfoWrapperPass(TM.getTargetIRAnalysis()));

  // Add optimizations
  PMB.populateThinLTOPassManager(PM);

  PM.run(TheModule);
}

// Convert the PreservedSymbols map from "Name" based to "GUID" based.
static DenseSet<GlobalValue::GUID>
computeGUIDPreservedSymbols(const StringSet<> &PreservedSymbols,
                            const Triple &TheTriple) {
  DenseSet<GlobalValue::GUID> GUIDPreservedSymbols(PreservedSymbols.size());
  for (auto &Entry : PreservedSymbols) {
    StringRef Name = Entry.first();
    if (TheTriple.isOSBinFormatMachO() && Name.size() > 0 && Name[0] == '_')
      Name = Name.drop_front();
    GUIDPreservedSymbols.insert(GlobalValue::getGUID(Name));
  }
  return GUIDPreservedSymbols;
}

std::unique_ptr<MemoryBuffer> codegenModule(Module &TheModule,
                                            TargetMachine &TM) {
  SmallVector<char, 128> OutputBuffer;

  // CodeGen
  {
    raw_svector_ostream OS(OutputBuffer);
    legacy::PassManager PM;

    // If the bitcode files contain ARC code and were compiled with optimization,
    // the ObjCARCContractPass must be run, so do it unconditionally here.
    PM.add(createObjCARCContractPass());

    // Setup the codegen now.
    if (TM.addPassesToEmitFile(PM, OS, TargetMachine::CGFT_ObjectFile,
                               /* DisableVerify */ true))
      report_fatal_error("Failed to setup codegen");

    // Run codegen now. resulting binary is in OutputBuffer.
    PM.run(TheModule);
  }
  return make_unique<ObjectMemoryBuffer>(std::move(OutputBuffer));
}

/// Manage caching for a single Module.
class ModuleCacheEntry {
  SmallString<128> EntryPath;

public:
  // Create a cache entry. This compute a unique hash for the Module considering
  // the current list of export/import, and offer an interface to query to
  // access the content in the cache.
  ModuleCacheEntry(
      StringRef CachePath, const ModuleSummaryIndex &Index, StringRef ModuleID,
      const FunctionImporter::ImportMapTy &ImportList,
      const FunctionImporter::ExportSetTy &ExportList,
      const std::map<GlobalValue::GUID, GlobalValue::LinkageTypes> &ResolvedODR,
      const GVSummaryMapTy &DefinedFunctions,
      const DenseSet<GlobalValue::GUID> &PreservedSymbols) {
    if (CachePath.empty())
      return;

    // Compute the unique hash for this entry
    // This is based on the current compiler version, the module itself, the
    // export list, the hash for every single module in the import list, the
    // list of ResolvedODR for the module, and the list of preserved symbols.

    SHA1 Hasher;

    // Start with the compiler revision
    Hasher.update(LLVM_VERSION_STRING);
#ifdef HAVE_LLVM_REVISION
    Hasher.update(LLVM_REVISION);
#endif

    // Include the hash for the current module
    auto ModHash = Index.getModuleHash(ModuleID);
    Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash)));
    for (auto F : ExportList)
      // The export list can impact the internalization, be conservative here
      Hasher.update(ArrayRef<uint8_t>((uint8_t *)&F, sizeof(F)));

    // Include the hash for every module we import functions from
    for (auto &Entry : ImportList) {
      auto ModHash = Index.getModuleHash(Entry.first());
      Hasher.update(ArrayRef<uint8_t>((uint8_t *)&ModHash[0], sizeof(ModHash)));
    }

    // Include the hash for the resolved ODR.
    for (auto &Entry : ResolvedODR) {
      Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.first,
                                      sizeof(GlobalValue::GUID)));
      Hasher.update(ArrayRef<uint8_t>((const uint8_t *)&Entry.second,
                                      sizeof(GlobalValue::LinkageTypes)));
    }

    // Include the hash for the preserved symbols.
    for (auto &Entry : PreservedSymbols) {
      if (DefinedFunctions.count(Entry))
        Hasher.update(
            ArrayRef<uint8_t>((const uint8_t *)&Entry, sizeof(GlobalValue::GUID)));
    }

    sys::path::append(EntryPath, CachePath, toHex(Hasher.result()));
  }

  // Access the path to this entry in the cache.
  StringRef getEntryPath() { return EntryPath; }

  // Try loading the buffer for this cache entry.
  ErrorOr<std::unique_ptr<MemoryBuffer>> tryLoadingBuffer() {
    if (EntryPath.empty())
      return std::error_code();
    return MemoryBuffer::getFile(EntryPath);
  }

  // Cache the Produced object file
  std::unique_ptr<MemoryBuffer>
  write(std::unique_ptr<MemoryBuffer> OutputBuffer) {
    if (EntryPath.empty())
      return OutputBuffer;

    // Write to a temporary to avoid race condition
    SmallString<128> TempFilename;
    int TempFD;
    std::error_code EC =
        sys::fs::createTemporaryFile("Thin", "tmp.o", TempFD, TempFilename);
    if (EC) {
      errs() << "Error: " << EC.message() << "\n";
      report_fatal_error("ThinLTO: Can't get a temporary file");
    }
    {
      raw_fd_ostream OS(TempFD, /* ShouldClose */ true);
      OS << OutputBuffer->getBuffer();
    }
    // Rename to final destination (hopefully race condition won't matter here)
    EC = sys::fs::rename(TempFilename, EntryPath);
    if (EC) {
      sys::fs::remove(TempFilename);
      raw_fd_ostream OS(EntryPath, EC, sys::fs::F_None);
      if (EC)
        report_fatal_error(Twine("Failed to open ") + EntryPath +
                           " to save cached entry\n");
      OS << OutputBuffer->getBuffer();
    }
    auto ReloadedBufferOrErr = MemoryBuffer::getFile(EntryPath);
    if (auto EC = ReloadedBufferOrErr.getError()) {
      // FIXME diagnose
      errs() << "error: can't reload cached file '" << EntryPath
             << "': " << EC.message() << "\n";
      return OutputBuffer;
    }
    return std::move(*ReloadedBufferOrErr);
  }
};

static std::unique_ptr<MemoryBuffer>
ProcessThinLTOModule(Module &TheModule, ModuleSummaryIndex &Index,
                     StringMap<MemoryBufferRef> &ModuleMap, TargetMachine &TM,
                     const FunctionImporter::ImportMapTy &ImportList,
                     const FunctionImporter::ExportSetTy &ExportList,
                     const DenseSet<GlobalValue::GUID> &GUIDPreservedSymbols,
                     const GVSummaryMapTy &DefinedGlobals,
                     const ThinLTOCodeGenerator::CachingOptions &CacheOptions,
                     bool DisableCodeGen, StringRef SaveTempsDir,
                     unsigned count) {

  // "Benchmark"-like optimization: single-source case
  bool SingleModule = (ModuleMap.size() == 1);

  if (!SingleModule) {
    promoteModule(TheModule, Index);

    // Apply summary-based LinkOnce/Weak resolution decisions.
    thinLTOResolveWeakForLinkerModule(TheModule, DefinedGlobals);

    // Save temps: after promotion.
    saveTempBitcode(TheModule, SaveTempsDir, count, ".1.promoted.bc");
  }

  // Be friendly and don't nuke totally the module when the client didn't
  // supply anything to preserve.
  if (!ExportList.empty() || !GUIDPreservedSymbols.empty()) {
    // Apply summary-based internalization decisions.
    thinLTOInternalizeModule(TheModule, DefinedGlobals);
  }

  // Save internalized bitcode
  saveTempBitcode(TheModule, SaveTempsDir, count, ".2.internalized.bc");

  if (!SingleModule) {
    crossImportIntoModule(TheModule, Index, ModuleMap, ImportList);

    // Save temps: after cross-module import.
    saveTempBitcode(TheModule, SaveTempsDir, count, ".3.imported.bc");
  }

  optimizeModule(TheModule, TM);

  saveTempBitcode(TheModule, SaveTempsDir, count, ".4.opt.bc");

  if (DisableCodeGen) {
    // Configured to stop before CodeGen, serialize the bitcode and return.
    SmallVector<char, 128> OutputBuffer;
    {
      raw_svector_ostream OS(OutputBuffer);
      ModuleSummaryIndexBuilder IndexBuilder(&TheModule);
      WriteBitcodeToFile(&TheModule, OS, true, &IndexBuilder.getIndex());
    }
    return make_unique<ObjectMemoryBuffer>(std::move(OutputBuffer));
  }

  return codegenModule(TheModule, TM);
}

/// Resolve LinkOnce/Weak symbols. Record resolutions in the \p ResolvedODR map
/// for caching, and in the \p Index for application during the ThinLTO
/// backends. This is needed for correctness for exported symbols (ensure
/// at least one copy kept) and a compile-time optimization (to drop duplicate
/// copies when possible).
static void resolveWeakForLinkerInIndex(
    ModuleSummaryIndex &Index,
    StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>>
        &ResolvedODR) {

  DenseMap<GlobalValue::GUID, const GlobalValueSummary *> PrevailingCopy;
  computePrevailingCopies(Index, PrevailingCopy);

  auto isPrevailing = [&](GlobalValue::GUID GUID, const GlobalValueSummary *S) {
    const auto &Prevailing = PrevailingCopy.find(GUID);
    // Not in map means that there was only one copy, which must be prevailing.
    if (Prevailing == PrevailingCopy.end())
      return true;
    return Prevailing->second == S;
  };

  auto recordNewLinkage = [&](StringRef ModuleIdentifier,
                              GlobalValue::GUID GUID,
                              GlobalValue::LinkageTypes NewLinkage) {
    ResolvedODR[ModuleIdentifier][GUID] = NewLinkage;
  };

  thinLTOResolveWeakForLinkerInIndex(Index, isPrevailing, recordNewLinkage);
}

// Initialize the TargetMachine builder for a given Triple
static void initTMBuilder(TargetMachineBuilder &TMBuilder,
                          const Triple &TheTriple) {
  // Set a default CPU for Darwin triples (copied from LTOCodeGenerator).
  // FIXME this looks pretty terrible...
  if (TMBuilder.MCpu.empty() && TheTriple.isOSDarwin()) {
    if (TheTriple.getArch() == llvm::Triple::x86_64)
      TMBuilder.MCpu = "core2";
    else if (TheTriple.getArch() == llvm::Triple::x86)
      TMBuilder.MCpu = "yonah";
    else if (TheTriple.getArch() == llvm::Triple::aarch64)
      TMBuilder.MCpu = "cyclone";
  }
  TMBuilder.TheTriple = std::move(TheTriple);
}

} // end anonymous namespace

void ThinLTOCodeGenerator::addModule(StringRef Identifier, StringRef Data) {
  MemoryBufferRef Buffer(Data, Identifier);
  if (Modules.empty()) {
    // First module added, so initialize the triple and some options
    LLVMContext Context;
    Triple TheTriple(getBitcodeTargetTriple(Buffer, Context));
    initTMBuilder(TMBuilder, Triple(TheTriple));
  }
#ifndef NDEBUG
  else {
    LLVMContext Context;
    assert(TMBuilder.TheTriple.str() ==
               getBitcodeTargetTriple(Buffer, Context) &&
           "ThinLTO modules with different triple not supported");
  }
#endif
  Modules.push_back(Buffer);
}

void ThinLTOCodeGenerator::preserveSymbol(StringRef Name) {
  PreservedSymbols.insert(Name);
}

void ThinLTOCodeGenerator::crossReferenceSymbol(StringRef Name) {
  // FIXME: At the moment, we don't take advantage of this extra information,
  // we're conservatively considering cross-references as preserved.
  //  CrossReferencedSymbols.insert(Name);
  PreservedSymbols.insert(Name);
}

// TargetMachine factory
std::unique_ptr<TargetMachine> TargetMachineBuilder::create() const {
  std::string ErrMsg;
  const Target *TheTarget =
      TargetRegistry::lookupTarget(TheTriple.str(), ErrMsg);
  if (!TheTarget) {
    report_fatal_error("Can't load target for this Triple: " + ErrMsg);
  }

  // Use MAttr as the default set of features.
  SubtargetFeatures Features(MAttr);
  Features.getDefaultSubtargetFeatures(TheTriple);
  std::string FeatureStr = Features.getString();
  return std::unique_ptr<TargetMachine>(TheTarget->createTargetMachine(
      TheTriple.str(), MCpu, FeatureStr, Options, RelocModel,
      CodeModel::Default, CGOptLevel));
}

/**
 * Produce the combined summary index from all the bitcode files:
 * "thin-link".
 */
std::unique_ptr<ModuleSummaryIndex> ThinLTOCodeGenerator::linkCombinedIndex() {
  std::unique_ptr<ModuleSummaryIndex> CombinedIndex;
  uint64_t NextModuleId = 0;
  for (auto &ModuleBuffer : Modules) {
    ErrorOr<std::unique_ptr<object::ModuleSummaryIndexObjectFile>> ObjOrErr =
        object::ModuleSummaryIndexObjectFile::create(ModuleBuffer,
                                                     diagnosticHandler);
    if (std::error_code EC = ObjOrErr.getError()) {
      // FIXME diagnose
      errs() << "error: can't create ModuleSummaryIndexObjectFile for buffer: "
             << EC.message() << "\n";
      return nullptr;
    }
    auto Index = (*ObjOrErr)->takeIndex();
    if (CombinedIndex) {
      CombinedIndex->mergeFrom(std::move(Index), ++NextModuleId);
    } else {
      CombinedIndex = std::move(Index);
    }
  }
  return CombinedIndex;
}

/**
 * Perform promotion and renaming of exported internal functions.
 * Index is updated to reflect linkage changes from weak resolution.
 */
void ThinLTOCodeGenerator::promote(Module &TheModule,
                                   ModuleSummaryIndex &Index) {
  auto ModuleCount = Index.modulePaths().size();
  auto ModuleIdentifier = TheModule.getModuleIdentifier();
  // Collect for each module the list of function it defines (GUID -> Summary).
  StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries;
  Index.collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);

  // Generate import/export list
  StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount);
  StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount);
  ComputeCrossModuleImport(Index, ModuleToDefinedGVSummaries, ImportLists,
                           ExportLists);

  // Resolve LinkOnce/Weak symbols.
  StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR;
  resolveWeakForLinkerInIndex(Index, ResolvedODR);

  thinLTOResolveWeakForLinkerModule(
      TheModule, ModuleToDefinedGVSummaries[ModuleIdentifier]);

  promoteModule(TheModule, Index);
}

/**
 * Perform cross-module importing for the module identified by ModuleIdentifier.
 */
void ThinLTOCodeGenerator::crossModuleImport(Module &TheModule,
                                             ModuleSummaryIndex &Index) {
  auto ModuleMap = generateModuleMap(Modules);
  auto ModuleCount = Index.modulePaths().size();

  // Collect for each module the list of function it defines (GUID -> Summary).
  StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries(ModuleCount);
  Index.collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);

  // Generate import/export list
  StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount);
  StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount);
  ComputeCrossModuleImport(Index, ModuleToDefinedGVSummaries, ImportLists,
                           ExportLists);
  auto &ImportList = ImportLists[TheModule.getModuleIdentifier()];

  crossImportIntoModule(TheModule, Index, ModuleMap, ImportList);
}

/**
 * Compute the list of summaries needed for importing into module.
 */
void ThinLTOCodeGenerator::gatherImportedSummariesForModule(
    StringRef ModulePath, ModuleSummaryIndex &Index,
    std::map<std::string, GVSummaryMapTy> &ModuleToSummariesForIndex) {
  auto ModuleCount = Index.modulePaths().size();

  // Collect for each module the list of function it defines (GUID -> Summary).
  StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries(ModuleCount);
  Index.collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);

  // Generate import/export list
  StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount);
  StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount);
  ComputeCrossModuleImport(Index, ModuleToDefinedGVSummaries, ImportLists,
                           ExportLists);

  llvm::gatherImportedSummariesForModule(ModulePath, ModuleToDefinedGVSummaries,
                                         ImportLists,
                                         ModuleToSummariesForIndex);
}

/**
 * Emit the list of files needed for importing into module.
 */
void ThinLTOCodeGenerator::emitImports(StringRef ModulePath,
                                       StringRef OutputName,
                                       ModuleSummaryIndex &Index) {
  auto ModuleCount = Index.modulePaths().size();

  // Collect for each module the list of function it defines (GUID -> Summary).
  StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries(ModuleCount);
  Index.collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);

  // Generate import/export list
  StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount);
  StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount);
  ComputeCrossModuleImport(Index, ModuleToDefinedGVSummaries, ImportLists,
                           ExportLists);

  std::error_code EC;
  if ((EC = EmitImportsFiles(ModulePath, OutputName, ImportLists)))
    report_fatal_error(Twine("Failed to open ") + OutputName +
                       " to save imports lists\n");
}

/**
 * Perform internalization. Index is updated to reflect linkage changes.
 */
void ThinLTOCodeGenerator::internalize(Module &TheModule,
                                       ModuleSummaryIndex &Index) {
  initTMBuilder(TMBuilder, Triple(TheModule.getTargetTriple()));
  auto ModuleCount = Index.modulePaths().size();
  auto ModuleIdentifier = TheModule.getModuleIdentifier();

  // Convert the preserved symbols set from string to GUID
  auto GUIDPreservedSymbols =
      computeGUIDPreservedSymbols(PreservedSymbols, TMBuilder.TheTriple);

  // Collect for each module the list of function it defines (GUID -> Summary).
  StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries(ModuleCount);
  Index.collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);

  // Generate import/export list
  StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount);
  StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount);
  ComputeCrossModuleImport(Index, ModuleToDefinedGVSummaries, ImportLists,
                           ExportLists);
  auto &ExportList = ExportLists[ModuleIdentifier];

  // Be friendly and don't nuke totally the module when the client didn't
  // supply anything to preserve.
  if (ExportList.empty() && GUIDPreservedSymbols.empty())
    return;

  // Internalization
  auto isExported = [&](StringRef ModuleIdentifier, GlobalValue::GUID GUID) {
    const auto &ExportList = ExportLists.find(ModuleIdentifier);
    return (ExportList != ExportLists.end() &&
            ExportList->second.count(GUID)) ||
           GUIDPreservedSymbols.count(GUID);
  };
  thinLTOInternalizeAndPromoteInIndex(Index, isExported);
  thinLTOInternalizeModule(TheModule,
                           ModuleToDefinedGVSummaries[ModuleIdentifier]);
}

/**
 * Perform post-importing ThinLTO optimizations.
 */
void ThinLTOCodeGenerator::optimize(Module &TheModule) {
  initTMBuilder(TMBuilder, Triple(TheModule.getTargetTriple()));

  // Optimize now
  optimizeModule(TheModule, *TMBuilder.create());
}

/**
 * Perform ThinLTO CodeGen.
 */
std::unique_ptr<MemoryBuffer> ThinLTOCodeGenerator::codegen(Module &TheModule) {
  initTMBuilder(TMBuilder, Triple(TheModule.getTargetTriple()));
  return codegenModule(TheModule, *TMBuilder.create());
}

// Main entry point for the ThinLTO processing
void ThinLTOCodeGenerator::run() {
  if (CodeGenOnly) {
    // Perform only parallel codegen and return.
    ThreadPool Pool;
    assert(ProducedBinaries.empty() && "The generator should not be reused");
    ProducedBinaries.resize(Modules.size());
    int count = 0;
    for (auto &ModuleBuffer : Modules) {
      Pool.async([&](int count) {
        LLVMContext Context;
        Context.setDiscardValueNames(LTODiscardValueNames);

        // Parse module now
        auto TheModule = loadModuleFromBuffer(ModuleBuffer, Context, false);

        // CodeGen
        ProducedBinaries[count] = codegen(*TheModule);
      }, count++);
    }

    return;
  }

  // Sequential linking phase
  auto Index = linkCombinedIndex();

  // Save temps: index.
  if (!SaveTempsDir.empty()) {
    auto SaveTempPath = SaveTempsDir + "index.bc";
    std::error_code EC;
    raw_fd_ostream OS(SaveTempPath, EC, sys::fs::F_None);
    if (EC)
      report_fatal_error(Twine("Failed to open ") + SaveTempPath +
                         " to save optimized bitcode\n");
    WriteIndexToFile(*Index, OS);
  }

  // Prepare the resulting object vector
  assert(ProducedBinaries.empty() && "The generator should not be reused");
  ProducedBinaries.resize(Modules.size());

  // Prepare the module map.
  auto ModuleMap = generateModuleMap(Modules);
  auto ModuleCount = Modules.size();

  // Collect for each module the list of function it defines (GUID -> Summary).
  StringMap<GVSummaryMapTy> ModuleToDefinedGVSummaries(ModuleCount);
  Index->collectDefinedGVSummariesPerModule(ModuleToDefinedGVSummaries);

  // Collect the import/export lists for all modules from the call-graph in the
  // combined index.
  StringMap<FunctionImporter::ImportMapTy> ImportLists(ModuleCount);
  StringMap<FunctionImporter::ExportSetTy> ExportLists(ModuleCount);
  ComputeCrossModuleImport(*Index, ModuleToDefinedGVSummaries, ImportLists,
                           ExportLists);

  // Convert the preserved symbols set from string to GUID, this is needed for
  // computing the caching hash and the internalization.
  auto GUIDPreservedSymbols =
      computeGUIDPreservedSymbols(PreservedSymbols, TMBuilder.TheTriple);

  // We use a std::map here to be able to have a defined ordering when
  // producing a hash for the cache entry.
  // FIXME: we should be able to compute the caching hash for the entry based
  // on the index, and nuke this map.
  StringMap<std::map<GlobalValue::GUID, GlobalValue::LinkageTypes>> ResolvedODR;

  // Resolve LinkOnce/Weak symbols, this has to be computed early because it
  // impacts the caching.
  resolveWeakForLinkerInIndex(*Index, ResolvedODR);

  auto isExported = [&](StringRef ModuleIdentifier, GlobalValue::GUID GUID) {
    const auto &ExportList = ExportLists.find(ModuleIdentifier);
    return (ExportList != ExportLists.end() &&
            ExportList->second.count(GUID)) ||
           GUIDPreservedSymbols.count(GUID);
  };

  // Use global summary-based analysis to identify symbols that can be
  // internalized (because they aren't exported or preserved as per callback).
  // Changes are made in the index, consumed in the ThinLTO backends.
  thinLTOInternalizeAndPromoteInIndex(*Index, isExported);

  // Make sure that every module has an entry in the ExportLists and
  // ResolvedODR maps to enable threaded access to these maps below.
  for (auto &DefinedGVSummaries : ModuleToDefinedGVSummaries) {
    ExportLists[DefinedGVSummaries.first()];
    ResolvedODR[DefinedGVSummaries.first()];
  }

  // Compute the ordering we will process the inputs: the rough heuristic here
  // is to sort them per size so that the largest module get schedule as soon as
  // possible. This is purely a compile-time optimization.
  std::vector<int> ModulesOrdering;
  ModulesOrdering.resize(Modules.size());
  std::iota(ModulesOrdering.begin(), ModulesOrdering.end(), 0);
  std::sort(ModulesOrdering.begin(), ModulesOrdering.end(),
            [&](int LeftIndex, int RightIndex) {
              auto LSize = Modules[LeftIndex].getBufferSize();
              auto RSize = Modules[RightIndex].getBufferSize();
              return LSize > RSize;
            });

  // Parallel optimizer + codegen
  {
    ThreadPool Pool(ThreadCount);
    for (auto IndexCount : ModulesOrdering) {
      auto &ModuleBuffer = Modules[IndexCount];
      Pool.async([&](int count) {
        auto ModuleIdentifier = ModuleBuffer.getBufferIdentifier();
        auto &ExportList = ExportLists[ModuleIdentifier];

        auto &DefinedFunctions = ModuleToDefinedGVSummaries[ModuleIdentifier];

        // The module may be cached, this helps handling it.
        ModuleCacheEntry CacheEntry(CacheOptions.Path, *Index, ModuleIdentifier,
                                    ImportLists[ModuleIdentifier], ExportList,
                                    ResolvedODR[ModuleIdentifier],
                                    DefinedFunctions, GUIDPreservedSymbols);

        {
          auto ErrOrBuffer = CacheEntry.tryLoadingBuffer();
          DEBUG(dbgs() << "Cache " << (ErrOrBuffer ? "hit" : "miss") << " '"
                       << CacheEntry.getEntryPath() << "' for buffer " << count
                       << " " << ModuleIdentifier << "\n");

          if (ErrOrBuffer) {
            // Cache Hit!
            ProducedBinaries[count] = std::move(ErrOrBuffer.get());
            return;
          }
        }

        LLVMContext Context;
        Context.setDiscardValueNames(LTODiscardValueNames);
        Context.enableDebugTypeODRUniquing();

        // Parse module now
        auto TheModule = loadModuleFromBuffer(ModuleBuffer, Context, false);

        // Save temps: original file.
        saveTempBitcode(*TheModule, SaveTempsDir, count, ".0.original.bc");

        auto &ImportList = ImportLists[ModuleIdentifier];
        // Run the main process now, and generates a binary
        auto OutputBuffer = ProcessThinLTOModule(
            *TheModule, *Index, ModuleMap, *TMBuilder.create(), ImportList,
            ExportList, GUIDPreservedSymbols,
            ModuleToDefinedGVSummaries[ModuleIdentifier], CacheOptions,
            DisableCodeGen, SaveTempsDir, count);

        OutputBuffer = CacheEntry.write(std::move(OutputBuffer));
        ProducedBinaries[count] = std::move(OutputBuffer);
      }, IndexCount);
    }
  }

  CachePruning(CacheOptions.Path)
      .setPruningInterval(CacheOptions.PruningInterval)
      .setEntryExpiration(CacheOptions.Expiration)
      .setMaxSize(CacheOptions.MaxPercentageOfAvailableSpace)
      .prune();

  // If statistics were requested, print them out now.
  if (llvm::AreStatisticsEnabled())
    llvm::PrintStatistics();
}