llvm.org GIT mirror llvm / release_39 lib / CodeGen / ScheduleDAGInstrs.cpp
release_39

Tree @release_39 (Download .tar.gz)

ScheduleDAGInstrs.cpp @release_39raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
//===---- ScheduleDAGInstrs.cpp - MachineInstr Rescheduling ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the ScheduleDAGInstrs class, which implements re-scheduling
// of MachineInstrs.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/ScheduleDAGInstrs.h"
#include "llvm/ADT/IntEqClasses.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/RegisterPressure.h"
#include "llvm/CodeGen/ScheduleDFS.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/IR/Operator.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSubtargetInfo.h"

using namespace llvm;

#define DEBUG_TYPE "misched"

static cl::opt<bool> EnableAASchedMI("enable-aa-sched-mi", cl::Hidden,
    cl::ZeroOrMore, cl::init(false),
    cl::desc("Enable use of AA during MI DAG construction"));

static cl::opt<bool> UseTBAA("use-tbaa-in-sched-mi", cl::Hidden,
    cl::init(true), cl::desc("Enable use of TBAA during MI DAG construction"));

// Note: the two options below might be used in tuning compile time vs
// output quality. Setting HugeRegion so large that it will never be
// reached means best-effort, but may be slow.

// When Stores and Loads maps (or NonAliasStores and NonAliasLoads)
// together hold this many SUs, a reduction of maps will be done.
static cl::opt<unsigned> HugeRegion("dag-maps-huge-region", cl::Hidden,
    cl::init(1000), cl::desc("The limit to use while constructing the DAG "
                             "prior to scheduling, at which point a trade-off "
                             "is made to avoid excessive compile time."));

static cl::opt<unsigned> ReductionSize(
    "dag-maps-reduction-size", cl::Hidden,
    cl::desc("A huge scheduling region will have maps reduced by this many "
             "nodes at a time. Defaults to HugeRegion / 2."));

static unsigned getReductionSize() {
  // Always reduce a huge region with half of the elements, except
  // when user sets this number explicitly.
  if (ReductionSize.getNumOccurrences() == 0)
    return HugeRegion / 2;
  return ReductionSize;
}

static void dumpSUList(ScheduleDAGInstrs::SUList &L) {
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  dbgs() << "{ ";
  for (auto *su : L) {
    dbgs() << "SU(" << su->NodeNum << ")";
    if (su != L.back())
      dbgs() << ", ";
  }
  dbgs() << "}\n";
#endif
}

ScheduleDAGInstrs::ScheduleDAGInstrs(MachineFunction &mf,
                                     const MachineLoopInfo *mli,
                                     bool RemoveKillFlags)
    : ScheduleDAG(mf), MLI(mli), MFI(mf.getFrameInfo()),
      RemoveKillFlags(RemoveKillFlags), CanHandleTerminators(false),
      TrackLaneMasks(false), AAForDep(nullptr), BarrierChain(nullptr),
      UnknownValue(UndefValue::get(
                     Type::getVoidTy(mf.getFunction()->getContext()))),
      FirstDbgValue(nullptr) {
  DbgValues.clear();

  const TargetSubtargetInfo &ST = mf.getSubtarget();
  SchedModel.init(ST.getSchedModel(), &ST, TII);
}

/// getUnderlyingObjectFromInt - This is the function that does the work of
/// looking through basic ptrtoint+arithmetic+inttoptr sequences.
static const Value *getUnderlyingObjectFromInt(const Value *V) {
  do {
    if (const Operator *U = dyn_cast<Operator>(V)) {
      // If we find a ptrtoint, we can transfer control back to the
      // regular getUnderlyingObjectFromInt.
      if (U->getOpcode() == Instruction::PtrToInt)
        return U->getOperand(0);
      // If we find an add of a constant, a multiplied value, or a phi, it's
      // likely that the other operand will lead us to the base
      // object. We don't have to worry about the case where the
      // object address is somehow being computed by the multiply,
      // because our callers only care when the result is an
      // identifiable object.
      if (U->getOpcode() != Instruction::Add ||
          (!isa<ConstantInt>(U->getOperand(1)) &&
           Operator::getOpcode(U->getOperand(1)) != Instruction::Mul &&
           !isa<PHINode>(U->getOperand(1))))
        return V;
      V = U->getOperand(0);
    } else {
      return V;
    }
    assert(V->getType()->isIntegerTy() && "Unexpected operand type!");
  } while (1);
}

/// getUnderlyingObjects - This is a wrapper around GetUnderlyingObjects
/// and adds support for basic ptrtoint+arithmetic+inttoptr sequences.
static void getUnderlyingObjects(const Value *V,
                                 SmallVectorImpl<Value *> &Objects,
                                 const DataLayout &DL) {
  SmallPtrSet<const Value *, 16> Visited;
  SmallVector<const Value *, 4> Working(1, V);
  do {
    V = Working.pop_back_val();

    SmallVector<Value *, 4> Objs;
    GetUnderlyingObjects(const_cast<Value *>(V), Objs, DL);

    for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), IE = Objs.end();
         I != IE; ++I) {
      V = *I;
      if (!Visited.insert(V).second)
        continue;
      if (Operator::getOpcode(V) == Instruction::IntToPtr) {
        const Value *O =
          getUnderlyingObjectFromInt(cast<User>(V)->getOperand(0));
        if (O->getType()->isPointerTy()) {
          Working.push_back(O);
          continue;
        }
      }
      Objects.push_back(const_cast<Value *>(V));
    }
  } while (!Working.empty());
}

/// getUnderlyingObjectsForInstr - If this machine instr has memory reference
/// information and it can be tracked to a normal reference to a known
/// object, return the Value for that object.
static void getUnderlyingObjectsForInstr(const MachineInstr *MI,
                                         const MachineFrameInfo *MFI,
                                         UnderlyingObjectsVector &Objects,
                                         const DataLayout &DL) {
  auto allMMOsOkay = [&]() {
    for (const MachineMemOperand *MMO : MI->memoperands()) {
      if (MMO->isVolatile())
        return false;

      if (const PseudoSourceValue *PSV = MMO->getPseudoValue()) {
        // Function that contain tail calls don't have unique PseudoSourceValue
        // objects. Two PseudoSourceValues might refer to the same or
        // overlapping locations. The client code calling this function assumes
        // this is not the case. So return a conservative answer of no known
        // object.
        if (MFI->hasTailCall())
          return false;

        // For now, ignore PseudoSourceValues which may alias LLVM IR values
        // because the code that uses this function has no way to cope with
        // such aliases.
        if (PSV->isAliased(MFI))
          return false;

        bool MayAlias = PSV->mayAlias(MFI);
        Objects.push_back(UnderlyingObjectsVector::value_type(PSV, MayAlias));
      } else if (const Value *V = MMO->getValue()) {
        SmallVector<Value *, 4> Objs;
        getUnderlyingObjects(V, Objs, DL);

        for (Value *V : Objs) {
          if (!isIdentifiedObject(V))
            return false;

          Objects.push_back(UnderlyingObjectsVector::value_type(V, true));
        }
      } else
        return false;
    }
    return true;
  };

  if (!allMMOsOkay())
    Objects.clear();
}

void ScheduleDAGInstrs::startBlock(MachineBasicBlock *bb) {
  BB = bb;
}

void ScheduleDAGInstrs::finishBlock() {
  // Subclasses should no longer refer to the old block.
  BB = nullptr;
}

/// Initialize the DAG and common scheduler state for the current scheduling
/// region. This does not actually create the DAG, only clears it. The
/// scheduling driver may call BuildSchedGraph multiple times per scheduling
/// region.
void ScheduleDAGInstrs::enterRegion(MachineBasicBlock *bb,
                                    MachineBasicBlock::iterator begin,
                                    MachineBasicBlock::iterator end,
                                    unsigned regioninstrs) {
  assert(bb == BB && "startBlock should set BB");
  RegionBegin = begin;
  RegionEnd = end;
  NumRegionInstrs = regioninstrs;
}

/// Close the current scheduling region. Don't clear any state in case the
/// driver wants to refer to the previous scheduling region.
void ScheduleDAGInstrs::exitRegion() {
  // Nothing to do.
}

/// addSchedBarrierDeps - Add dependencies from instructions in the current
/// list of instructions being scheduled to scheduling barrier by adding
/// the exit SU to the register defs and use list. This is because we want to
/// make sure instructions which define registers that are either used by
/// the terminator or are live-out are properly scheduled. This is
/// especially important when the definition latency of the return value(s)
/// are too high to be hidden by the branch or when the liveout registers
/// used by instructions in the fallthrough block.
void ScheduleDAGInstrs::addSchedBarrierDeps() {
  MachineInstr *ExitMI = RegionEnd != BB->end() ? &*RegionEnd : nullptr;
  ExitSU.setInstr(ExitMI);
  bool AllDepKnown = ExitMI &&
    (ExitMI->isCall() || ExitMI->isBarrier());
  if (ExitMI && AllDepKnown) {
    // If it's a call or a barrier, add dependencies on the defs and uses of
    // instruction.
    for (unsigned i = 0, e = ExitMI->getNumOperands(); i != e; ++i) {
      const MachineOperand &MO = ExitMI->getOperand(i);
      if (!MO.isReg() || MO.isDef()) continue;
      unsigned Reg = MO.getReg();
      if (Reg == 0) continue;

      if (TRI->isPhysicalRegister(Reg))
        Uses.insert(PhysRegSUOper(&ExitSU, -1, Reg));
      else if (MO.readsReg()) // ignore undef operands
        addVRegUseDeps(&ExitSU, i);
    }
  } else {
    // For others, e.g. fallthrough, conditional branch, assume the exit
    // uses all the registers that are livein to the successor blocks.
    assert(Uses.empty() && "Uses in set before adding deps?");
    for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
           SE = BB->succ_end(); SI != SE; ++SI)
      for (const auto &LI : (*SI)->liveins()) {
        if (!Uses.contains(LI.PhysReg))
          Uses.insert(PhysRegSUOper(&ExitSU, -1, LI.PhysReg));
      }
  }
}

/// MO is an operand of SU's instruction that defines a physical register. Add
/// data dependencies from SU to any uses of the physical register.
void ScheduleDAGInstrs::addPhysRegDataDeps(SUnit *SU, unsigned OperIdx) {
  const MachineOperand &MO = SU->getInstr()->getOperand(OperIdx);
  assert(MO.isDef() && "expect physreg def");

  // Ask the target if address-backscheduling is desirable, and if so how much.
  const TargetSubtargetInfo &ST = MF.getSubtarget();

  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
       Alias.isValid(); ++Alias) {
    if (!Uses.contains(*Alias))
      continue;
    for (Reg2SUnitsMap::iterator I = Uses.find(*Alias); I != Uses.end(); ++I) {
      SUnit *UseSU = I->SU;
      if (UseSU == SU)
        continue;

      // Adjust the dependence latency using operand def/use information,
      // then allow the target to perform its own adjustments.
      int UseOp = I->OpIdx;
      MachineInstr *RegUse = nullptr;
      SDep Dep;
      if (UseOp < 0)
        Dep = SDep(SU, SDep::Artificial);
      else {
        // Set the hasPhysRegDefs only for physreg defs that have a use within
        // the scheduling region.
        SU->hasPhysRegDefs = true;
        Dep = SDep(SU, SDep::Data, *Alias);
        RegUse = UseSU->getInstr();
      }
      Dep.setLatency(
        SchedModel.computeOperandLatency(SU->getInstr(), OperIdx, RegUse,
                                         UseOp));

      ST.adjustSchedDependency(SU, UseSU, Dep);
      UseSU->addPred(Dep);
    }
  }
}

/// addPhysRegDeps - Add register dependencies (data, anti, and output) from
/// this SUnit to following instructions in the same scheduling region that
/// depend the physical register referenced at OperIdx.
void ScheduleDAGInstrs::addPhysRegDeps(SUnit *SU, unsigned OperIdx) {
  MachineInstr *MI = SU->getInstr();
  MachineOperand &MO = MI->getOperand(OperIdx);

  // Optionally add output and anti dependencies. For anti
  // dependencies we use a latency of 0 because for a multi-issue
  // target we want to allow the defining instruction to issue
  // in the same cycle as the using instruction.
  // TODO: Using a latency of 1 here for output dependencies assumes
  //       there's no cost for reusing registers.
  SDep::Kind Kind = MO.isUse() ? SDep::Anti : SDep::Output;
  for (MCRegAliasIterator Alias(MO.getReg(), TRI, true);
       Alias.isValid(); ++Alias) {
    if (!Defs.contains(*Alias))
      continue;
    for (Reg2SUnitsMap::iterator I = Defs.find(*Alias); I != Defs.end(); ++I) {
      SUnit *DefSU = I->SU;
      if (DefSU == &ExitSU)
        continue;
      if (DefSU != SU &&
          (Kind != SDep::Output || !MO.isDead() ||
           !DefSU->getInstr()->registerDefIsDead(*Alias))) {
        if (Kind == SDep::Anti)
          DefSU->addPred(SDep(SU, Kind, /*Reg=*/*Alias));
        else {
          SDep Dep(SU, Kind, /*Reg=*/*Alias);
          Dep.setLatency(
            SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
          DefSU->addPred(Dep);
        }
      }
    }
  }

  if (!MO.isDef()) {
    SU->hasPhysRegUses = true;
    // Either insert a new Reg2SUnits entry with an empty SUnits list, or
    // retrieve the existing SUnits list for this register's uses.
    // Push this SUnit on the use list.
    Uses.insert(PhysRegSUOper(SU, OperIdx, MO.getReg()));
    if (RemoveKillFlags)
      MO.setIsKill(false);
  }
  else {
    addPhysRegDataDeps(SU, OperIdx);
    unsigned Reg = MO.getReg();

    // clear this register's use list
    if (Uses.contains(Reg))
      Uses.eraseAll(Reg);

    if (!MO.isDead()) {
      Defs.eraseAll(Reg);
    } else if (SU->isCall) {
      // Calls will not be reordered because of chain dependencies (see
      // below). Since call operands are dead, calls may continue to be added
      // to the DefList making dependence checking quadratic in the size of
      // the block. Instead, we leave only one call at the back of the
      // DefList.
      Reg2SUnitsMap::RangePair P = Defs.equal_range(Reg);
      Reg2SUnitsMap::iterator B = P.first;
      Reg2SUnitsMap::iterator I = P.second;
      for (bool isBegin = I == B; !isBegin; /* empty */) {
        isBegin = (--I) == B;
        if (!I->SU->isCall)
          break;
        I = Defs.erase(I);
      }
    }

    // Defs are pushed in the order they are visited and never reordered.
    Defs.insert(PhysRegSUOper(SU, OperIdx, Reg));
  }
}

LaneBitmask ScheduleDAGInstrs::getLaneMaskForMO(const MachineOperand &MO) const
{
  unsigned Reg = MO.getReg();
  // No point in tracking lanemasks if we don't have interesting subregisters.
  const TargetRegisterClass &RC = *MRI.getRegClass(Reg);
  if (!RC.HasDisjunctSubRegs)
    return ~0u;

  unsigned SubReg = MO.getSubReg();
  if (SubReg == 0)
    return RC.getLaneMask();
  return TRI->getSubRegIndexLaneMask(SubReg);
}

/// addVRegDefDeps - Add register output and data dependencies from this SUnit
/// to instructions that occur later in the same scheduling region if they read
/// from or write to the virtual register defined at OperIdx.
///
/// TODO: Hoist loop induction variable increments. This has to be
/// reevaluated. Generally, IV scheduling should be done before coalescing.
void ScheduleDAGInstrs::addVRegDefDeps(SUnit *SU, unsigned OperIdx) {
  MachineInstr *MI = SU->getInstr();
  MachineOperand &MO = MI->getOperand(OperIdx);
  unsigned Reg = MO.getReg();

  LaneBitmask DefLaneMask;
  LaneBitmask KillLaneMask;
  if (TrackLaneMasks) {
    bool IsKill = MO.getSubReg() == 0 || MO.isUndef();
    DefLaneMask = getLaneMaskForMO(MO);
    // If we have a <read-undef> flag, none of the lane values comes from an
    // earlier instruction.
    KillLaneMask = IsKill ? ~0u : DefLaneMask;

    // Clear undef flag, we'll re-add it later once we know which subregister
    // Def is first.
    MO.setIsUndef(false);
  } else {
    DefLaneMask = ~0u;
    KillLaneMask = ~0u;
  }

  if (MO.isDead()) {
    assert(CurrentVRegUses.find(Reg) == CurrentVRegUses.end() &&
           "Dead defs should have no uses");
  } else {
    // Add data dependence to all uses we found so far.
    const TargetSubtargetInfo &ST = MF.getSubtarget();
    for (VReg2SUnitOperIdxMultiMap::iterator I = CurrentVRegUses.find(Reg),
         E = CurrentVRegUses.end(); I != E; /*empty*/) {
      LaneBitmask LaneMask = I->LaneMask;
      // Ignore uses of other lanes.
      if ((LaneMask & KillLaneMask) == 0) {
        ++I;
        continue;
      }

      if ((LaneMask & DefLaneMask) != 0) {
        SUnit *UseSU = I->SU;
        MachineInstr *Use = UseSU->getInstr();
        SDep Dep(SU, SDep::Data, Reg);
        Dep.setLatency(SchedModel.computeOperandLatency(MI, OperIdx, Use,
                                                        I->OperandIndex));
        ST.adjustSchedDependency(SU, UseSU, Dep);
        UseSU->addPred(Dep);
      }

      LaneMask &= ~KillLaneMask;
      // If we found a Def for all lanes of this use, remove it from the list.
      if (LaneMask != 0) {
        I->LaneMask = LaneMask;
        ++I;
      } else
        I = CurrentVRegUses.erase(I);
    }
  }

  // Shortcut: Singly defined vregs do not have output/anti dependencies.
  if (MRI.hasOneDef(Reg))
    return;

  // Add output dependence to the next nearest defs of this vreg.
  //
  // Unless this definition is dead, the output dependence should be
  // transitively redundant with antidependencies from this definition's
  // uses. We're conservative for now until we have a way to guarantee the uses
  // are not eliminated sometime during scheduling. The output dependence edge
  // is also useful if output latency exceeds def-use latency.
  LaneBitmask LaneMask = DefLaneMask;
  for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
                                     CurrentVRegDefs.end())) {
    // Ignore defs for other lanes.
    if ((V2SU.LaneMask & LaneMask) == 0)
      continue;
    // Add an output dependence.
    SUnit *DefSU = V2SU.SU;
    // Ignore additional defs of the same lanes in one instruction. This can
    // happen because lanemasks are shared for targets with too many
    // subregisters. We also use some representration tricks/hacks where we
    // add super-register defs/uses, to imply that although we only access parts
    // of the reg we care about the full one.
    if (DefSU == SU)
      continue;
    SDep Dep(SU, SDep::Output, Reg);
    Dep.setLatency(
      SchedModel.computeOutputLatency(MI, OperIdx, DefSU->getInstr()));
    DefSU->addPred(Dep);

    // Update current definition. This can get tricky if the def was about a
    // bigger lanemask before. We then have to shrink it and create a new
    // VReg2SUnit for the non-overlapping part.
    LaneBitmask OverlapMask = V2SU.LaneMask & LaneMask;
    LaneBitmask NonOverlapMask = V2SU.LaneMask & ~LaneMask;
    V2SU.SU = SU;
    V2SU.LaneMask = OverlapMask;
    if (NonOverlapMask != 0)
      CurrentVRegDefs.insert(VReg2SUnit(Reg, NonOverlapMask, DefSU));
  }
  // If there was no CurrentVRegDefs entry for some lanes yet, create one.
  if (LaneMask != 0)
    CurrentVRegDefs.insert(VReg2SUnit(Reg, LaneMask, SU));
}

/// addVRegUseDeps - Add a register data dependency if the instruction that
/// defines the virtual register used at OperIdx is mapped to an SUnit. Add a
/// register antidependency from this SUnit to instructions that occur later in
/// the same scheduling region if they write the virtual register.
///
/// TODO: Handle ExitSU "uses" properly.
void ScheduleDAGInstrs::addVRegUseDeps(SUnit *SU, unsigned OperIdx) {
  const MachineInstr *MI = SU->getInstr();
  const MachineOperand &MO = MI->getOperand(OperIdx);
  unsigned Reg = MO.getReg();

  // Remember the use. Data dependencies will be added when we find the def.
  LaneBitmask LaneMask = TrackLaneMasks ? getLaneMaskForMO(MO) : ~0u;
  CurrentVRegUses.insert(VReg2SUnitOperIdx(Reg, LaneMask, OperIdx, SU));

  // Add antidependences to the following defs of the vreg.
  for (VReg2SUnit &V2SU : make_range(CurrentVRegDefs.find(Reg),
                                     CurrentVRegDefs.end())) {
    // Ignore defs for unrelated lanes.
    LaneBitmask PrevDefLaneMask = V2SU.LaneMask;
    if ((PrevDefLaneMask & LaneMask) == 0)
      continue;
    if (V2SU.SU == SU)
      continue;

    V2SU.SU->addPred(SDep(SU, SDep::Anti, Reg));
  }
}

/// Return true if MI is an instruction we are unable to reason about
/// (like a call or something with unmodeled side effects).
static inline bool isGlobalMemoryObject(AliasAnalysis *AA, MachineInstr *MI) {
  return MI->isCall() || MI->hasUnmodeledSideEffects() ||
         (MI->hasOrderedMemoryRef() && !MI->isInvariantLoad(AA));
}

/// This returns true if the two MIs need a chain edge between them.
/// This is called on normal stores and loads.
static bool MIsNeedChainEdge(AliasAnalysis *AA, const MachineFrameInfo *MFI,
                             const DataLayout &DL, MachineInstr *MIa,
                             MachineInstr *MIb) {
  const MachineFunction *MF = MIa->getParent()->getParent();
  const TargetInstrInfo *TII = MF->getSubtarget().getInstrInfo();

  assert ((MIa->mayStore() || MIb->mayStore()) &&
          "Dependency checked between two loads");

  // Let the target decide if memory accesses cannot possibly overlap.
  if (TII->areMemAccessesTriviallyDisjoint(*MIa, *MIb, AA))
    return false;

  // To this point analysis is generic. From here on we do need AA.
  if (!AA)
    return true;

  // FIXME: Need to handle multiple memory operands to support all targets.
  if (!MIa->hasOneMemOperand() || !MIb->hasOneMemOperand())
    return true;

  MachineMemOperand *MMOa = *MIa->memoperands_begin();
  MachineMemOperand *MMOb = *MIb->memoperands_begin();

  if (!MMOa->getValue() || !MMOb->getValue())
    return true;

  // The following interface to AA is fashioned after DAGCombiner::isAlias
  // and operates with MachineMemOperand offset with some important
  // assumptions:
  //   - LLVM fundamentally assumes flat address spaces.
  //   - MachineOperand offset can *only* result from legalization and
  //     cannot affect queries other than the trivial case of overlap
  //     checking.
  //   - These offsets never wrap and never step outside
  //     of allocated objects.
  //   - There should never be any negative offsets here.
  //
  // FIXME: Modify API to hide this math from "user"
  // FIXME: Even before we go to AA we can reason locally about some
  // memory objects. It can save compile time, and possibly catch some
  // corner cases not currently covered.

  assert ((MMOa->getOffset() >= 0) && "Negative MachineMemOperand offset");
  assert ((MMOb->getOffset() >= 0) && "Negative MachineMemOperand offset");

  int64_t MinOffset = std::min(MMOa->getOffset(), MMOb->getOffset());
  int64_t Overlapa = MMOa->getSize() + MMOa->getOffset() - MinOffset;
  int64_t Overlapb = MMOb->getSize() + MMOb->getOffset() - MinOffset;

  AliasResult AAResult =
      AA->alias(MemoryLocation(MMOa->getValue(), Overlapa,
                               UseTBAA ? MMOa->getAAInfo() : AAMDNodes()),
                MemoryLocation(MMOb->getValue(), Overlapb,
                               UseTBAA ? MMOb->getAAInfo() : AAMDNodes()));

  return (AAResult != NoAlias);
}

/// Check whether two objects need a chain edge and add it if needed.
void ScheduleDAGInstrs::addChainDependency (SUnit *SUa, SUnit *SUb,
                                            unsigned Latency) {
  if (MIsNeedChainEdge(AAForDep, MFI, MF.getDataLayout(), SUa->getInstr(),
		       SUb->getInstr())) {
    SDep Dep(SUa, SDep::MayAliasMem);
    Dep.setLatency(Latency);
    SUb->addPred(Dep);
  }
}

/// Create an SUnit for each real instruction, numbered in top-down topological
/// order. The instruction order A < B, implies that no edge exists from B to A.
///
/// Map each real instruction to its SUnit.
///
/// After initSUnits, the SUnits vector cannot be resized and the scheduler may
/// hang onto SUnit pointers. We may relax this in the future by using SUnit IDs
/// instead of pointers.
///
/// MachineScheduler relies on initSUnits numbering the nodes by their order in
/// the original instruction list.
void ScheduleDAGInstrs::initSUnits() {
  // We'll be allocating one SUnit for each real instruction in the region,
  // which is contained within a basic block.
  SUnits.reserve(NumRegionInstrs);

  for (MachineInstr &MI : llvm::make_range(RegionBegin, RegionEnd)) {
    if (MI.isDebugValue())
      continue;

    SUnit *SU = newSUnit(&MI);
    MISUnitMap[&MI] = SU;

    SU->isCall = MI.isCall();
    SU->isCommutable = MI.isCommutable();

    // Assign the Latency field of SU using target-provided information.
    SU->Latency = SchedModel.computeInstrLatency(SU->getInstr());

    // If this SUnit uses a reserved or unbuffered resource, mark it as such.
    //
    // Reserved resources block an instruction from issuing and stall the
    // entire pipeline. These are identified by BufferSize=0.
    //
    // Unbuffered resources prevent execution of subsequent instructions that
    // require the same resources. This is used for in-order execution pipelines
    // within an out-of-order core. These are identified by BufferSize=1.
    if (SchedModel.hasInstrSchedModel()) {
      const MCSchedClassDesc *SC = getSchedClass(SU);
      for (TargetSchedModel::ProcResIter
             PI = SchedModel.getWriteProcResBegin(SC),
             PE = SchedModel.getWriteProcResEnd(SC); PI != PE; ++PI) {
        switch (SchedModel.getProcResource(PI->ProcResourceIdx)->BufferSize) {
        case 0:
          SU->hasReservedResource = true;
          break;
        case 1:
          SU->isUnbuffered = true;
          break;
        default:
          break;
        }
      }
    }
  }
}

void ScheduleDAGInstrs::collectVRegUses(SUnit *SU) {
  const MachineInstr *MI = SU->getInstr();
  for (const MachineOperand &MO : MI->operands()) {
    if (!MO.isReg())
      continue;
    if (!MO.readsReg())
      continue;
    if (TrackLaneMasks && !MO.isUse())
      continue;

    unsigned Reg = MO.getReg();
    if (!TargetRegisterInfo::isVirtualRegister(Reg))
      continue;

    // Ignore re-defs.
    if (TrackLaneMasks) {
      bool FoundDef = false;
      for (const MachineOperand &MO2 : MI->operands()) {
        if (MO2.isReg() && MO2.isDef() && MO2.getReg() == Reg && !MO2.isDead()) {
          FoundDef = true;
          break;
        }
      }
      if (FoundDef)
        continue;
    }

    // Record this local VReg use.
    VReg2SUnitMultiMap::iterator UI = VRegUses.find(Reg);
    for (; UI != VRegUses.end(); ++UI) {
      if (UI->SU == SU)
        break;
    }
    if (UI == VRegUses.end())
      VRegUses.insert(VReg2SUnit(Reg, 0, SU));
  }
}

class ScheduleDAGInstrs::Value2SUsMap : public MapVector<ValueType, SUList> {

  /// Current total number of SUs in map.
  unsigned NumNodes;

  /// 1 for loads, 0 for stores. (see comment in SUList)
  unsigned TrueMemOrderLatency;
public:

  Value2SUsMap(unsigned lat = 0) : NumNodes(0), TrueMemOrderLatency(lat) {}

  /// To keep NumNodes up to date, insert() is used instead of
  /// this operator w/ push_back().
  ValueType &operator[](const SUList &Key) {
    llvm_unreachable("Don't use. Use insert() instead."); };

  /// Add SU to the SUList of V. If Map grows huge, reduce its size
  /// by calling reduce().
  void inline insert(SUnit *SU, ValueType V) {
    MapVector::operator[](V).push_back(SU);
    NumNodes++;
  }

  /// Clears the list of SUs mapped to V.
  void inline clearList(ValueType V) {
    iterator Itr = find(V);
    if (Itr != end()) {
      assert (NumNodes >= Itr->second.size());
      NumNodes -= Itr->second.size();

      Itr->second.clear();
    }
  }

  /// Clears map from all contents.
  void clear() {
    MapVector<ValueType, SUList>::clear();
    NumNodes = 0;
  }

  unsigned inline size() const { return NumNodes; }

  /// Count the number of SUs in this map after a reduction.
  void reComputeSize(void) {
    NumNodes = 0;
    for (auto &I : *this)
      NumNodes += I.second.size();
  }

  unsigned inline getTrueMemOrderLatency() const {
    return TrueMemOrderLatency;
  }

  void dump();
};

void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
                                             Value2SUsMap &Val2SUsMap) {
  for (auto &I : Val2SUsMap)
    addChainDependencies(SU, I.second,
                         Val2SUsMap.getTrueMemOrderLatency());
}

void ScheduleDAGInstrs::addChainDependencies(SUnit *SU,
                                             Value2SUsMap &Val2SUsMap,
                                             ValueType V) {
  Value2SUsMap::iterator Itr = Val2SUsMap.find(V);
  if (Itr != Val2SUsMap.end())
    addChainDependencies(SU, Itr->second,
                         Val2SUsMap.getTrueMemOrderLatency());
}

void ScheduleDAGInstrs::addBarrierChain(Value2SUsMap &map) {
  assert (BarrierChain != nullptr);

  for (auto &I : map) {
    SUList &sus = I.second;
    for (auto *SU : sus)
      SU->addPredBarrier(BarrierChain);
  }
  map.clear();
}

void ScheduleDAGInstrs::insertBarrierChain(Value2SUsMap &map) {
  assert (BarrierChain != nullptr);

  // Go through all lists of SUs.
  for (Value2SUsMap::iterator I = map.begin(), EE = map.end(); I != EE;) {
    Value2SUsMap::iterator CurrItr = I++;
    SUList &sus = CurrItr->second;
    SUList::iterator SUItr = sus.begin(), SUEE = sus.end();
    for (; SUItr != SUEE; ++SUItr) {
      // Stop on BarrierChain or any instruction above it.
      if ((*SUItr)->NodeNum <= BarrierChain->NodeNum)
        break;

      (*SUItr)->addPredBarrier(BarrierChain);
    }

    // Remove also the BarrierChain from list if present.
    if (SUItr != SUEE && *SUItr == BarrierChain)
      SUItr++;

    // Remove all SUs that are now successors of BarrierChain.
    if (SUItr != sus.begin())
      sus.erase(sus.begin(), SUItr);
  }

  // Remove all entries with empty su lists.
  map.remove_if([&](std::pair<ValueType, SUList> &mapEntry) {
      return (mapEntry.second.empty()); });

  // Recompute the size of the map (NumNodes).
  map.reComputeSize();
}

/// If RegPressure is non-null, compute register pressure as a side effect. The
/// DAG builder is an efficient place to do it because it already visits
/// operands.
void ScheduleDAGInstrs::buildSchedGraph(AliasAnalysis *AA,
                                        RegPressureTracker *RPTracker,
                                        PressureDiffs *PDiffs,
                                        LiveIntervals *LIS,
                                        bool TrackLaneMasks) {
  const TargetSubtargetInfo &ST = MF.getSubtarget();
  bool UseAA = EnableAASchedMI.getNumOccurrences() > 0 ? EnableAASchedMI
                                                       : ST.useAA();
  AAForDep = UseAA ? AA : nullptr;

  BarrierChain = nullptr;

  this->TrackLaneMasks = TrackLaneMasks;
  MISUnitMap.clear();
  ScheduleDAG::clearDAG();

  // Create an SUnit for each real instruction.
  initSUnits();

  if (PDiffs)
    PDiffs->init(SUnits.size());

  // We build scheduling units by walking a block's instruction list
  // from bottom to top.

  // Each MIs' memory operand(s) is analyzed to a list of underlying
  // objects. The SU is then inserted in the SUList(s) mapped from the
  // Value(s). Each Value thus gets mapped to lists of SUs depending
  // on it, stores and loads kept separately. Two SUs are trivially
  // non-aliasing if they both depend on only identified Values and do
  // not share any common Value.
  Value2SUsMap Stores, Loads(1 /*TrueMemOrderLatency*/);

  // Certain memory accesses are known to not alias any SU in Stores
  // or Loads, and have therefore their own 'NonAlias'
  // domain. E.g. spill / reload instructions never alias LLVM I/R
  // Values. It would be nice to assume that this type of memory
  // accesses always have a proper memory operand modelling, and are
  // therefore never unanalyzable, but this is conservatively not
  // done.
  Value2SUsMap NonAliasStores, NonAliasLoads(1 /*TrueMemOrderLatency*/);

  // Remove any stale debug info; sometimes BuildSchedGraph is called again
  // without emitting the info from the previous call.
  DbgValues.clear();
  FirstDbgValue = nullptr;

  assert(Defs.empty() && Uses.empty() &&
         "Only BuildGraph should update Defs/Uses");
  Defs.setUniverse(TRI->getNumRegs());
  Uses.setUniverse(TRI->getNumRegs());

  assert(CurrentVRegDefs.empty() && "nobody else should use CurrentVRegDefs");
  assert(CurrentVRegUses.empty() && "nobody else should use CurrentVRegUses");
  unsigned NumVirtRegs = MRI.getNumVirtRegs();
  CurrentVRegDefs.setUniverse(NumVirtRegs);
  CurrentVRegUses.setUniverse(NumVirtRegs);

  VRegUses.clear();
  VRegUses.setUniverse(NumVirtRegs);

  // Model data dependencies between instructions being scheduled and the
  // ExitSU.
  addSchedBarrierDeps();

  // Walk the list of instructions, from bottom moving up.
  MachineInstr *DbgMI = nullptr;
  for (MachineBasicBlock::iterator MII = RegionEnd, MIE = RegionBegin;
       MII != MIE; --MII) {
    MachineInstr &MI = *std::prev(MII);
    if (DbgMI) {
      DbgValues.push_back(std::make_pair(DbgMI, &MI));
      DbgMI = nullptr;
    }

    if (MI.isDebugValue()) {
      DbgMI = &MI;
      continue;
    }
    SUnit *SU = MISUnitMap[&MI];
    assert(SU && "No SUnit mapped to this MI");

    if (RPTracker) {
      collectVRegUses(SU);

      RegisterOperands RegOpers;
      RegOpers.collect(MI, *TRI, MRI, TrackLaneMasks, false);
      if (TrackLaneMasks) {
        SlotIndex SlotIdx = LIS->getInstructionIndex(MI);
        RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx);
      }
      if (PDiffs != nullptr)
        PDiffs->addInstruction(SU->NodeNum, RegOpers, MRI);

      RPTracker->recedeSkipDebugValues();
      assert(&*RPTracker->getPos() == &MI && "RPTracker in sync");
      RPTracker->recede(RegOpers);
    }

    assert(
        (CanHandleTerminators || (!MI.isTerminator() && !MI.isPosition())) &&
        "Cannot schedule terminators or labels!");

    // Add register-based dependencies (data, anti, and output).
    // For some instructions (calls, returns, inline-asm, etc.) there can
    // be explicit uses and implicit defs, in which case the use will appear
    // on the operand list before the def. Do two passes over the operand
    // list to make sure that defs are processed before any uses.
    bool HasVRegDef = false;
    for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
      const MachineOperand &MO = MI.getOperand(j);
      if (!MO.isReg() || !MO.isDef())
        continue;
      unsigned Reg = MO.getReg();
      if (Reg == 0)
        continue;

      if (TRI->isPhysicalRegister(Reg))
        addPhysRegDeps(SU, j);
      else {
        HasVRegDef = true;
        addVRegDefDeps(SU, j);
      }
    }
    // Now process all uses.
    for (unsigned j = 0, n = MI.getNumOperands(); j != n; ++j) {
      const MachineOperand &MO = MI.getOperand(j);
      // Only look at use operands.
      // We do not need to check for MO.readsReg() here because subsequent
      // subregister defs will get output dependence edges and need no
      // additional use dependencies.
      if (!MO.isReg() || !MO.isUse())
        continue;
      unsigned Reg = MO.getReg();
      if (Reg == 0)
        continue;

      if (TRI->isPhysicalRegister(Reg))
        addPhysRegDeps(SU, j);
      else if (MO.readsReg()) // ignore undef operands
        addVRegUseDeps(SU, j);
    }

    // If we haven't seen any uses in this scheduling region, create a
    // dependence edge to ExitSU to model the live-out latency. This is required
    // for vreg defs with no in-region use, and prefetches with no vreg def.
    //
    // FIXME: NumDataSuccs would be more precise than NumSuccs here. This
    // check currently relies on being called before adding chain deps.
    if (SU->NumSuccs == 0 && SU->Latency > 1 && (HasVRegDef || MI.mayLoad())) {
      SDep Dep(SU, SDep::Artificial);
      Dep.setLatency(SU->Latency - 1);
      ExitSU.addPred(Dep);
    }

    // Add memory dependencies (Note: isStoreToStackSlot and
    // isLoadFromStackSLot are not usable after stack slots are lowered to
    // actual addresses).

    // This is a barrier event that acts as a pivotal node in the DAG.
    if (isGlobalMemoryObject(AA, &MI)) {

      // Become the barrier chain.
      if (BarrierChain)
        BarrierChain->addPredBarrier(SU);
      BarrierChain = SU;

      DEBUG(dbgs() << "Global memory object and new barrier chain: SU("
            << BarrierChain->NodeNum << ").\n";);

      // Add dependencies against everything below it and clear maps.
      addBarrierChain(Stores);
      addBarrierChain(Loads);
      addBarrierChain(NonAliasStores);
      addBarrierChain(NonAliasLoads);

      continue;
    }

    // If it's not a store or a variant load, we're done.
    if (!MI.mayStore() && !(MI.mayLoad() && !MI.isInvariantLoad(AA)))
      continue;

    // Always add dependecy edge to BarrierChain if present.
    if (BarrierChain)
      BarrierChain->addPredBarrier(SU);

    // Find the underlying objects for MI. The Objs vector is either
    // empty, or filled with the Values of memory locations which this
    // SU depends on. An empty vector means the memory location is
    // unknown, and may alias anything.
    UnderlyingObjectsVector Objs;
    getUnderlyingObjectsForInstr(&MI, MFI, Objs, MF.getDataLayout());

    if (MI.mayStore()) {
      if (Objs.empty()) {
        // An unknown store depends on all stores and loads.
        addChainDependencies(SU, Stores);
        addChainDependencies(SU, NonAliasStores);
        addChainDependencies(SU, Loads);
        addChainDependencies(SU, NonAliasLoads);

        // Map this store to 'UnknownValue'.
        Stores.insert(SU, UnknownValue);
      } else {
        // Add precise dependencies against all previously seen memory
        // accesses mapped to the same Value(s).
        for (const UnderlyingObject &UnderlObj : Objs) {
          ValueType V = UnderlObj.getValue();
          bool ThisMayAlias = UnderlObj.mayAlias();

          // Add dependencies to previous stores and loads mapped to V.
          addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);
          addChainDependencies(SU, (ThisMayAlias ? Loads : NonAliasLoads), V);
        }
        // Update the store map after all chains have been added to avoid adding
        // self-loop edge if multiple underlying objects are present.
        for (const UnderlyingObject &UnderlObj : Objs) {
          ValueType V = UnderlObj.getValue();
          bool ThisMayAlias = UnderlObj.mayAlias();

          // Map this store to V.
          (ThisMayAlias ? Stores : NonAliasStores).insert(SU, V);
        }
        // The store may have dependencies to unanalyzable loads and
        // stores.
        addChainDependencies(SU, Loads, UnknownValue);
        addChainDependencies(SU, Stores, UnknownValue);
      }
    } else { // SU is a load.
      if (Objs.empty()) {
        // An unknown load depends on all stores.
        addChainDependencies(SU, Stores);
        addChainDependencies(SU, NonAliasStores);

        Loads.insert(SU, UnknownValue);
      } else {
        for (const UnderlyingObject &UnderlObj : Objs) {
          ValueType V = UnderlObj.getValue();
          bool ThisMayAlias = UnderlObj.mayAlias();

          // Add precise dependencies against all previously seen stores
          // mapping to the same Value(s).
          addChainDependencies(SU, (ThisMayAlias ? Stores : NonAliasStores), V);

          // Map this load to V.
          (ThisMayAlias ? Loads : NonAliasLoads).insert(SU, V);
        }
        // The load may have dependencies to unanalyzable stores.
        addChainDependencies(SU, Stores, UnknownValue);
      }
    }

    // Reduce maps if they grow huge.
    if (Stores.size() + Loads.size() >= HugeRegion) {
      DEBUG(dbgs() << "Reducing Stores and Loads maps.\n";);
      reduceHugeMemNodeMaps(Stores, Loads, getReductionSize());
    }
    if (NonAliasStores.size() + NonAliasLoads.size() >= HugeRegion) {
      DEBUG(dbgs() << "Reducing NonAliasStores and NonAliasLoads maps.\n";);
      reduceHugeMemNodeMaps(NonAliasStores, NonAliasLoads, getReductionSize());
    }
  }

  if (DbgMI)
    FirstDbgValue = DbgMI;

  Defs.clear();
  Uses.clear();
  CurrentVRegDefs.clear();
  CurrentVRegUses.clear();
}

raw_ostream &llvm::operator<<(raw_ostream &OS, const PseudoSourceValue* PSV) {
  PSV->printCustom(OS);
  return OS;
}

void ScheduleDAGInstrs::Value2SUsMap::dump() {
  for (auto &Itr : *this) {
    if (Itr.first.is<const Value*>()) {
      const Value *V = Itr.first.get<const Value*>();
      if (isa<UndefValue>(V))
        dbgs() << "Unknown";
      else
        V->printAsOperand(dbgs());
    }
    else if (Itr.first.is<const PseudoSourceValue*>())
      dbgs() <<  Itr.first.get<const PseudoSourceValue*>();
    else
      llvm_unreachable("Unknown Value type.");

    dbgs() << " : ";
    dumpSUList(Itr.second);
  }
}

/// Reduce maps in FIFO order, by N SUs. This is better than turning
/// every Nth memory SU into BarrierChain in buildSchedGraph(), since
/// it avoids unnecessary edges between seen SUs above the new
/// BarrierChain, and those below it.
void ScheduleDAGInstrs::reduceHugeMemNodeMaps(Value2SUsMap &stores,
                                              Value2SUsMap &loads, unsigned N) {
  DEBUG(dbgs() << "Before reduction:\nStoring SUnits:\n";
        stores.dump();
        dbgs() << "Loading SUnits:\n";
        loads.dump());

  // Insert all SU's NodeNums into a vector and sort it.
  std::vector<unsigned> NodeNums;
  NodeNums.reserve(stores.size() + loads.size());
  for (auto &I : stores)
    for (auto *SU : I.second)
      NodeNums.push_back(SU->NodeNum);
  for (auto &I : loads)
    for (auto *SU : I.second)
      NodeNums.push_back(SU->NodeNum);
  std::sort(NodeNums.begin(), NodeNums.end());

  // The N last elements in NodeNums will be removed, and the SU with
  // the lowest NodeNum of them will become the new BarrierChain to
  // let the not yet seen SUs have a dependency to the removed SUs.
  assert (N <= NodeNums.size());
  SUnit *newBarrierChain = &SUnits[*(NodeNums.end() - N)];
  if (BarrierChain) {
    // The aliasing and non-aliasing maps reduce independently of each
    // other, but share a common BarrierChain. Check if the
    // newBarrierChain is above the former one. If it is not, it may
    // introduce a loop to use newBarrierChain, so keep the old one.
    if (newBarrierChain->NodeNum < BarrierChain->NodeNum) {
      BarrierChain->addPredBarrier(newBarrierChain);
      BarrierChain = newBarrierChain;
      DEBUG(dbgs() << "Inserting new barrier chain: SU("
            << BarrierChain->NodeNum << ").\n";);
    }
    else
      DEBUG(dbgs() << "Keeping old barrier chain: SU("
            << BarrierChain->NodeNum << ").\n";);
  }
  else
    BarrierChain = newBarrierChain;

  insertBarrierChain(stores);
  insertBarrierChain(loads);

  DEBUG(dbgs() << "After reduction:\nStoring SUnits:\n";
        stores.dump();
        dbgs() << "Loading SUnits:\n";
        loads.dump());
}

/// \brief Initialize register live-range state for updating kills.
void ScheduleDAGInstrs::startBlockForKills(MachineBasicBlock *BB) {
  // Start with no live registers.
  LiveRegs.reset();

  // Examine the live-in regs of all successors.
  for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
       SE = BB->succ_end(); SI != SE; ++SI) {
    for (const auto &LI : (*SI)->liveins()) {
      // Repeat, for reg and all subregs.
      for (MCSubRegIterator SubRegs(LI.PhysReg, TRI, /*IncludeSelf=*/true);
           SubRegs.isValid(); ++SubRegs)
        LiveRegs.set(*SubRegs);
    }
  }
}

/// \brief If we change a kill flag on the bundle instruction implicit register
/// operands, then we also need to propagate that to any instructions inside
/// the bundle which had the same kill state.
static void toggleBundleKillFlag(MachineInstr *MI, unsigned Reg,
                                 bool NewKillState,
                                 const TargetRegisterInfo *TRI) {
  if (MI->getOpcode() != TargetOpcode::BUNDLE)
    return;

  // Walk backwards from the last instruction in the bundle to the first.
  // Once we set a kill flag on an instruction, we bail out, as otherwise we
  // might set it on too many operands.  We will clear as many flags as we
  // can though.
  MachineBasicBlock::instr_iterator Begin = MI->getIterator();
  MachineBasicBlock::instr_iterator End = getBundleEnd(*MI);
  while (Begin != End) {
    if (NewKillState) {
      if ((--End)->addRegisterKilled(Reg, TRI, /* addIfNotFound= */ false))
         return;
    } else
        (--End)->clearRegisterKills(Reg, TRI);
  }
}

bool ScheduleDAGInstrs::toggleKillFlag(MachineInstr *MI, MachineOperand &MO) {
  // Setting kill flag...
  if (!MO.isKill()) {
    MO.setIsKill(true);
    toggleBundleKillFlag(MI, MO.getReg(), true, TRI);
    return false;
  }

  // If MO itself is live, clear the kill flag...
  if (LiveRegs.test(MO.getReg())) {
    MO.setIsKill(false);
    toggleBundleKillFlag(MI, MO.getReg(), false, TRI);
    return false;
  }

  // If any subreg of MO is live, then create an imp-def for that
  // subreg and keep MO marked as killed.
  MO.setIsKill(false);
  toggleBundleKillFlag(MI, MO.getReg(), false, TRI);
  bool AllDead = true;
  const unsigned SuperReg = MO.getReg();
  MachineInstrBuilder MIB(MF, MI);
  for (MCSubRegIterator SubRegs(SuperReg, TRI); SubRegs.isValid(); ++SubRegs) {
    if (LiveRegs.test(*SubRegs)) {
      MIB.addReg(*SubRegs, RegState::ImplicitDefine);
      AllDead = false;
    }
  }

  if(AllDead) {
    MO.setIsKill(true);
    toggleBundleKillFlag(MI, MO.getReg(), true, TRI);
  }
  return false;
}

// FIXME: Reuse the LivePhysRegs utility for this.
void ScheduleDAGInstrs::fixupKills(MachineBasicBlock *MBB) {
  DEBUG(dbgs() << "Fixup kills for BB#" << MBB->getNumber() << '\n');

  LiveRegs.resize(TRI->getNumRegs());
  BitVector killedRegs(TRI->getNumRegs());

  startBlockForKills(MBB);

  // Examine block from end to start...
  unsigned Count = MBB->size();
  for (MachineBasicBlock::iterator I = MBB->end(), E = MBB->begin();
       I != E; --Count) {
    MachineInstr &MI = *--I;
    if (MI.isDebugValue())
      continue;

    // Update liveness.  Registers that are defed but not used in this
    // instruction are now dead. Mark register and all subregs as they
    // are completely defined.
    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI.getOperand(i);
      if (MO.isRegMask())
        LiveRegs.clearBitsNotInMask(MO.getRegMask());
      if (!MO.isReg()) continue;
      unsigned Reg = MO.getReg();
      if (Reg == 0) continue;
      if (!MO.isDef()) continue;
      // Ignore two-addr defs.
      if (MI.isRegTiedToUseOperand(i)) continue;

      // Repeat for reg and all subregs.
      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
           SubRegs.isValid(); ++SubRegs)
        LiveRegs.reset(*SubRegs);
    }

    // Examine all used registers and set/clear kill flag. When a
    // register is used multiple times we only set the kill flag on
    // the first use. Don't set kill flags on undef operands.
    killedRegs.reset();
    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI.getOperand(i);
      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
      unsigned Reg = MO.getReg();
      if ((Reg == 0) || MRI.isReserved(Reg)) continue;

      bool kill = false;
      if (!killedRegs.test(Reg)) {
        kill = true;
        // A register is not killed if any subregs are live...
        for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
          if (LiveRegs.test(*SubRegs)) {
            kill = false;
            break;
          }
        }

        // If subreg is not live, then register is killed if it became
        // live in this instruction
        if (kill)
          kill = !LiveRegs.test(Reg);
      }

      if (MO.isKill() != kill) {
        DEBUG(dbgs() << "Fixing " << MO << " in ");
        // Warning: toggleKillFlag may invalidate MO.
        toggleKillFlag(&MI, MO);
        DEBUG(MI.dump());
        DEBUG({
          if (MI.getOpcode() == TargetOpcode::BUNDLE) {
            MachineBasicBlock::instr_iterator Begin = MI.getIterator();
            MachineBasicBlock::instr_iterator End = getBundleEnd(MI);
            while (++Begin != End)
              DEBUG(Begin->dump());
          }
        });
      }

      killedRegs.set(Reg);
    }

    // Mark any used register (that is not using undef) and subregs as
    // now live...
    for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
      MachineOperand &MO = MI.getOperand(i);
      if (!MO.isReg() || !MO.isUse() || MO.isUndef()) continue;
      unsigned Reg = MO.getReg();
      if ((Reg == 0) || MRI.isReserved(Reg)) continue;

      for (MCSubRegIterator SubRegs(Reg, TRI, /*IncludeSelf=*/true);
           SubRegs.isValid(); ++SubRegs)
        LiveRegs.set(*SubRegs);
    }
  }
}

void ScheduleDAGInstrs::dumpNode(const SUnit *SU) const {
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
  SU->getInstr()->dump();
#endif
}

std::string ScheduleDAGInstrs::getGraphNodeLabel(const SUnit *SU) const {
  std::string s;
  raw_string_ostream oss(s);
  if (SU == &EntrySU)
    oss << "<entry>";
  else if (SU == &ExitSU)
    oss << "<exit>";
  else
    SU->getInstr()->print(oss, /*SkipOpers=*/true);
  return oss.str();
}

/// Return the basic block label. It is not necessarilly unique because a block
/// contains multiple scheduling regions. But it is fine for visualization.
std::string ScheduleDAGInstrs::getDAGName() const {
  return "dag." + BB->getFullName();
}

//===----------------------------------------------------------------------===//
// SchedDFSResult Implementation
//===----------------------------------------------------------------------===//

namespace llvm {
/// \brief Internal state used to compute SchedDFSResult.
class SchedDFSImpl {
  SchedDFSResult &R;

  /// Join DAG nodes into equivalence classes by their subtree.
  IntEqClasses SubtreeClasses;
  /// List PredSU, SuccSU pairs that represent data edges between subtrees.
  std::vector<std::pair<const SUnit*, const SUnit*> > ConnectionPairs;

  struct RootData {
    unsigned NodeID;
    unsigned ParentNodeID;  // Parent node (member of the parent subtree).
    unsigned SubInstrCount; // Instr count in this tree only, not children.

    RootData(unsigned id): NodeID(id),
                           ParentNodeID(SchedDFSResult::InvalidSubtreeID),
                           SubInstrCount(0) {}

    unsigned getSparseSetIndex() const { return NodeID; }
  };

  SparseSet<RootData> RootSet;

public:
  SchedDFSImpl(SchedDFSResult &r): R(r), SubtreeClasses(R.DFSNodeData.size()) {
    RootSet.setUniverse(R.DFSNodeData.size());
  }

  /// Return true if this node been visited by the DFS traversal.
  ///
  /// During visitPostorderNode the Node's SubtreeID is assigned to the Node
  /// ID. Later, SubtreeID is updated but remains valid.
  bool isVisited(const SUnit *SU) const {
    return R.DFSNodeData[SU->NodeNum].SubtreeID
      != SchedDFSResult::InvalidSubtreeID;
  }

  /// Initialize this node's instruction count. We don't need to flag the node
  /// visited until visitPostorder because the DAG cannot have cycles.
  void visitPreorder(const SUnit *SU) {
    R.DFSNodeData[SU->NodeNum].InstrCount =
      SU->getInstr()->isTransient() ? 0 : 1;
  }

  /// Called once for each node after all predecessors are visited. Revisit this
  /// node's predecessors and potentially join them now that we know the ILP of
  /// the other predecessors.
  void visitPostorderNode(const SUnit *SU) {
    // Mark this node as the root of a subtree. It may be joined with its
    // successors later.
    R.DFSNodeData[SU->NodeNum].SubtreeID = SU->NodeNum;
    RootData RData(SU->NodeNum);
    RData.SubInstrCount = SU->getInstr()->isTransient() ? 0 : 1;

    // If any predecessors are still in their own subtree, they either cannot be
    // joined or are large enough to remain separate. If this parent node's
    // total instruction count is not greater than a child subtree by at least
    // the subtree limit, then try to join it now since splitting subtrees is
    // only useful if multiple high-pressure paths are possible.
    unsigned InstrCount = R.DFSNodeData[SU->NodeNum].InstrCount;
    for (SUnit::const_pred_iterator
           PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
      if (PI->getKind() != SDep::Data)
        continue;
      unsigned PredNum = PI->getSUnit()->NodeNum;
      if ((InstrCount - R.DFSNodeData[PredNum].InstrCount) < R.SubtreeLimit)
        joinPredSubtree(*PI, SU, /*CheckLimit=*/false);

      // Either link or merge the TreeData entry from the child to the parent.
      if (R.DFSNodeData[PredNum].SubtreeID == PredNum) {
        // If the predecessor's parent is invalid, this is a tree edge and the
        // current node is the parent.
        if (RootSet[PredNum].ParentNodeID == SchedDFSResult::InvalidSubtreeID)
          RootSet[PredNum].ParentNodeID = SU->NodeNum;
      }
      else if (RootSet.count(PredNum)) {
        // The predecessor is not a root, but is still in the root set. This
        // must be the new parent that it was just joined to. Note that
        // RootSet[PredNum].ParentNodeID may either be invalid or may still be
        // set to the original parent.
        RData.SubInstrCount += RootSet[PredNum].SubInstrCount;
        RootSet.erase(PredNum);
      }
    }
    RootSet[SU->NodeNum] = RData;
  }

  /// Called once for each tree edge after calling visitPostOrderNode on the
  /// predecessor. Increment the parent node's instruction count and
  /// preemptively join this subtree to its parent's if it is small enough.
  void visitPostorderEdge(const SDep &PredDep, const SUnit *Succ) {
    R.DFSNodeData[Succ->NodeNum].InstrCount
      += R.DFSNodeData[PredDep.getSUnit()->NodeNum].InstrCount;
    joinPredSubtree(PredDep, Succ);
  }

  /// Add a connection for cross edges.
  void visitCrossEdge(const SDep &PredDep, const SUnit *Succ) {
    ConnectionPairs.push_back(std::make_pair(PredDep.getSUnit(), Succ));
  }

  /// Set each node's subtree ID to the representative ID and record connections
  /// between trees.
  void finalize() {
    SubtreeClasses.compress();
    R.DFSTreeData.resize(SubtreeClasses.getNumClasses());
    assert(SubtreeClasses.getNumClasses() == RootSet.size()
           && "number of roots should match trees");
    for (SparseSet<RootData>::const_iterator
           RI = RootSet.begin(), RE = RootSet.end(); RI != RE; ++RI) {
      unsigned TreeID = SubtreeClasses[RI->NodeID];
      if (RI->ParentNodeID != SchedDFSResult::InvalidSubtreeID)
        R.DFSTreeData[TreeID].ParentTreeID = SubtreeClasses[RI->ParentNodeID];
      R.DFSTreeData[TreeID].SubInstrCount = RI->SubInstrCount;
      // Note that SubInstrCount may be greater than InstrCount if we joined
      // subtrees across a cross edge. InstrCount will be attributed to the
      // original parent, while SubInstrCount will be attributed to the joined
      // parent.
    }
    R.SubtreeConnections.resize(SubtreeClasses.getNumClasses());
    R.SubtreeConnectLevels.resize(SubtreeClasses.getNumClasses());
    DEBUG(dbgs() << R.getNumSubtrees() << " subtrees:\n");
    for (unsigned Idx = 0, End = R.DFSNodeData.size(); Idx != End; ++Idx) {
      R.DFSNodeData[Idx].SubtreeID = SubtreeClasses[Idx];
      DEBUG(dbgs() << "  SU(" << Idx << ") in tree "
            << R.DFSNodeData[Idx].SubtreeID << '\n');
    }
    for (std::vector<std::pair<const SUnit*, const SUnit*> >::const_iterator
           I = ConnectionPairs.begin(), E = ConnectionPairs.end();
         I != E; ++I) {
      unsigned PredTree = SubtreeClasses[I->first->NodeNum];
      unsigned SuccTree = SubtreeClasses[I->second->NodeNum];
      if (PredTree == SuccTree)
        continue;
      unsigned Depth = I->first->getDepth();
      addConnection(PredTree, SuccTree, Depth);
      addConnection(SuccTree, PredTree, Depth);
    }
  }

protected:
  /// Join the predecessor subtree with the successor that is its DFS
  /// parent. Apply some heuristics before joining.
  bool joinPredSubtree(const SDep &PredDep, const SUnit *Succ,
                       bool CheckLimit = true) {
    assert(PredDep.getKind() == SDep::Data && "Subtrees are for data edges");

    // Check if the predecessor is already joined.
    const SUnit *PredSU = PredDep.getSUnit();
    unsigned PredNum = PredSU->NodeNum;
    if (R.DFSNodeData[PredNum].SubtreeID != PredNum)
      return false;

    // Four is the magic number of successors before a node is considered a
    // pinch point.
    unsigned NumDataSucs = 0;
    for (SUnit::const_succ_iterator SI = PredSU->Succs.begin(),
           SE = PredSU->Succs.end(); SI != SE; ++SI) {
      if (SI->getKind() == SDep::Data) {
        if (++NumDataSucs >= 4)
          return false;
      }
    }
    if (CheckLimit && R.DFSNodeData[PredNum].InstrCount > R.SubtreeLimit)
      return false;
    R.DFSNodeData[PredNum].SubtreeID = Succ->NodeNum;
    SubtreeClasses.join(Succ->NodeNum, PredNum);
    return true;
  }

  /// Called by finalize() to record a connection between trees.
  void addConnection(unsigned FromTree, unsigned ToTree, unsigned Depth) {
    if (!Depth)
      return;

    do {
      SmallVectorImpl<SchedDFSResult::Connection> &Connections =
        R.SubtreeConnections[FromTree];
      for (SmallVectorImpl<SchedDFSResult::Connection>::iterator
             I = Connections.begin(), E = Connections.end(); I != E; ++I) {
        if (I->TreeID == ToTree) {
          I->Level = std::max(I->Level, Depth);
          return;
        }
      }
      Connections.push_back(SchedDFSResult::Connection(ToTree, Depth));
      FromTree = R.DFSTreeData[FromTree].ParentTreeID;
    } while (FromTree != SchedDFSResult::InvalidSubtreeID);
  }
};
} // namespace llvm

namespace {
/// \brief Manage the stack used by a reverse depth-first search over the DAG.
class SchedDAGReverseDFS {
  std::vector<std::pair<const SUnit*, SUnit::const_pred_iterator> > DFSStack;
public:
  bool isComplete() const { return DFSStack.empty(); }

  void follow(const SUnit *SU) {
    DFSStack.push_back(std::make_pair(SU, SU->Preds.begin()));
  }
  void advance() { ++DFSStack.back().second; }

  const SDep *backtrack() {
    DFSStack.pop_back();
    return DFSStack.empty() ? nullptr : std::prev(DFSStack.back().second);
  }

  const SUnit *getCurr() const { return DFSStack.back().first; }

  SUnit::const_pred_iterator getPred() const { return DFSStack.back().second; }

  SUnit::const_pred_iterator getPredEnd() const {
    return getCurr()->Preds.end();
  }
};
} // anonymous

static bool hasDataSucc(const SUnit *SU) {
  for (SUnit::const_succ_iterator
         SI = SU->Succs.begin(), SE = SU->Succs.end(); SI != SE; ++SI) {
    if (SI->getKind() == SDep::Data && !SI->getSUnit()->isBoundaryNode())
      return true;
  }
  return false;
}

/// Compute an ILP metric for all nodes in the subDAG reachable via depth-first
/// search from this root.
void SchedDFSResult::compute(ArrayRef<SUnit> SUnits) {
  if (!IsBottomUp)
    llvm_unreachable("Top-down ILP metric is unimplemnted");

  SchedDFSImpl Impl(*this);
  for (ArrayRef<SUnit>::const_iterator
         SI = SUnits.begin(), SE = SUnits.end(); SI != SE; ++SI) {
    const SUnit *SU = &*SI;
    if (Impl.isVisited(SU) || hasDataSucc(SU))
      continue;

    SchedDAGReverseDFS DFS;
    Impl.visitPreorder(SU);
    DFS.follow(SU);
    for (;;) {
      // Traverse the leftmost path as far as possible.
      while (DFS.getPred() != DFS.getPredEnd()) {
        const SDep &PredDep = *DFS.getPred();
        DFS.advance();
        // Ignore non-data edges.
        if (PredDep.getKind() != SDep::Data
            || PredDep.getSUnit()->isBoundaryNode()) {
          continue;
        }
        // An already visited edge is a cross edge, assuming an acyclic DAG.
        if (Impl.isVisited(PredDep.getSUnit())) {
          Impl.visitCrossEdge(PredDep, DFS.getCurr());
          continue;
        }
        Impl.visitPreorder(PredDep.getSUnit());
        DFS.follow(PredDep.getSUnit());
      }
      // Visit the top of the stack in postorder and backtrack.
      const SUnit *Child = DFS.getCurr();
      const SDep *PredDep = DFS.backtrack();
      Impl.visitPostorderNode(Child);
      if (PredDep)
        Impl.visitPostorderEdge(*PredDep, DFS.getCurr());
      if (DFS.isComplete())
        break;
    }
  }
  Impl.finalize();
}

/// The root of the given SubtreeID was just scheduled. For all subtrees
/// connected to this tree, record the depth of the connection so that the
/// nearest connected subtrees can be prioritized.
void SchedDFSResult::scheduleTree(unsigned SubtreeID) {
  for (SmallVectorImpl<Connection>::const_iterator
         I = SubtreeConnections[SubtreeID].begin(),
         E = SubtreeConnections[SubtreeID].end(); I != E; ++I) {
    SubtreeConnectLevels[I->TreeID] =
      std::max(SubtreeConnectLevels[I->TreeID], I->Level);
    DEBUG(dbgs() << "  Tree: " << I->TreeID
          << " @" << SubtreeConnectLevels[I->TreeID] << '\n');
  }
}

LLVM_DUMP_METHOD
void ILPValue::print(raw_ostream &OS) const {
  OS << InstrCount << " / " << Length << " = ";
  if (!Length)
    OS << "BADILP";
  else
    OS << format("%g", ((double)InstrCount / Length));
}

LLVM_DUMP_METHOD
void ILPValue::dump() const {
  dbgs() << *this << '\n';
}

namespace llvm {

LLVM_DUMP_METHOD
raw_ostream &operator<<(raw_ostream &OS, const ILPValue &Val) {
  Val.print(OS);
  return OS;
}

} // namespace llvm