llvm.org GIT mirror llvm / release_39 lib / Analysis / BasicAliasAnalysis.cpp
release_39

Tree @release_39 (Download .tar.gz)

BasicAliasAnalysis.cpp @release_39raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
//===- BasicAliasAnalysis.cpp - Stateless Alias Analysis Impl -------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the primary stateless implementation of the
// Alias Analysis interface that implements identities (two different
// globals cannot alias, etc), but does no stateful analysis.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/MemoryBuiltins.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Analysis/AssumptionCache.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Operator.h"
#include "llvm/Pass.h"
#include "llvm/Support/ErrorHandling.h"
#include <algorithm>

#define DEBUG_TYPE "basicaa"

using namespace llvm;

/// Enable analysis of recursive PHI nodes.
static cl::opt<bool> EnableRecPhiAnalysis("basicaa-recphi", cl::Hidden,
                                          cl::init(false));
/// SearchLimitReached / SearchTimes shows how often the limit of
/// to decompose GEPs is reached. It will affect the precision
/// of basic alias analysis.
STATISTIC(SearchLimitReached, "Number of times the limit to "
                              "decompose GEPs is reached");
STATISTIC(SearchTimes, "Number of times a GEP is decomposed");

/// Cutoff after which to stop analysing a set of phi nodes potentially involved
/// in a cycle. Because we are analysing 'through' phi nodes, we need to be
/// careful with value equivalence. We use reachability to make sure a value
/// cannot be involved in a cycle.
const unsigned MaxNumPhiBBsValueReachabilityCheck = 20;

// The max limit of the search depth in DecomposeGEPExpression() and
// GetUnderlyingObject(), both functions need to use the same search
// depth otherwise the algorithm in aliasGEP will assert.
static const unsigned MaxLookupSearchDepth = 6;

//===----------------------------------------------------------------------===//
// Useful predicates
//===----------------------------------------------------------------------===//

/// Returns true if the pointer is to a function-local object that never
/// escapes from the function.
static bool isNonEscapingLocalObject(const Value *V) {
  // If this is a local allocation, check to see if it escapes.
  if (isa<AllocaInst>(V) || isNoAliasCall(V))
    // Set StoreCaptures to True so that we can assume in our callers that the
    // pointer is not the result of a load instruction. Currently
    // PointerMayBeCaptured doesn't have any special analysis for the
    // StoreCaptures=false case; if it did, our callers could be refined to be
    // more precise.
    return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);

  // If this is an argument that corresponds to a byval or noalias argument,
  // then it has not escaped before entering the function.  Check if it escapes
  // inside the function.
  if (const Argument *A = dyn_cast<Argument>(V))
    if (A->hasByValAttr() || A->hasNoAliasAttr())
      // Note even if the argument is marked nocapture, we still need to check
      // for copies made inside the function. The nocapture attribute only
      // specifies that there are no copies made that outlive the function.
      return !PointerMayBeCaptured(V, false, /*StoreCaptures=*/true);

  return false;
}

/// Returns true if the pointer is one which would have been considered an
/// escape by isNonEscapingLocalObject.
static bool isEscapeSource(const Value *V) {
  if (isa<CallInst>(V) || isa<InvokeInst>(V) || isa<Argument>(V))
    return true;

  // The load case works because isNonEscapingLocalObject considers all
  // stores to be escapes (it passes true for the StoreCaptures argument
  // to PointerMayBeCaptured).
  if (isa<LoadInst>(V))
    return true;

  return false;
}

/// Returns the size of the object specified by V or UnknownSize if unknown.
static uint64_t getObjectSize(const Value *V, const DataLayout &DL,
                              const TargetLibraryInfo &TLI,
                              bool RoundToAlign = false) {
  uint64_t Size;
  if (getObjectSize(V, Size, DL, &TLI, RoundToAlign))
    return Size;
  return MemoryLocation::UnknownSize;
}

/// Returns true if we can prove that the object specified by V is smaller than
/// Size.
static bool isObjectSmallerThan(const Value *V, uint64_t Size,
                                const DataLayout &DL,
                                const TargetLibraryInfo &TLI) {
  // Note that the meanings of the "object" are slightly different in the
  // following contexts:
  //    c1: llvm::getObjectSize()
  //    c2: llvm.objectsize() intrinsic
  //    c3: isObjectSmallerThan()
  // c1 and c2 share the same meaning; however, the meaning of "object" in c3
  // refers to the "entire object".
  //
  //  Consider this example:
  //     char *p = (char*)malloc(100)
  //     char *q = p+80;
  //
  //  In the context of c1 and c2, the "object" pointed by q refers to the
  // stretch of memory of q[0:19]. So, getObjectSize(q) should return 20.
  //
  //  However, in the context of c3, the "object" refers to the chunk of memory
  // being allocated. So, the "object" has 100 bytes, and q points to the middle
  // the "object". In case q is passed to isObjectSmallerThan() as the 1st
  // parameter, before the llvm::getObjectSize() is called to get the size of
  // entire object, we should:
  //    - either rewind the pointer q to the base-address of the object in
  //      question (in this case rewind to p), or
  //    - just give up. It is up to caller to make sure the pointer is pointing
  //      to the base address the object.
  //
  // We go for 2nd option for simplicity.
  if (!isIdentifiedObject(V))
    return false;

  // This function needs to use the aligned object size because we allow
  // reads a bit past the end given sufficient alignment.
  uint64_t ObjectSize = getObjectSize(V, DL, TLI, /*RoundToAlign*/ true);

  return ObjectSize != MemoryLocation::UnknownSize && ObjectSize < Size;
}

/// Returns true if we can prove that the object specified by V has size Size.
static bool isObjectSize(const Value *V, uint64_t Size, const DataLayout &DL,
                         const TargetLibraryInfo &TLI) {
  uint64_t ObjectSize = getObjectSize(V, DL, TLI);
  return ObjectSize != MemoryLocation::UnknownSize && ObjectSize == Size;
}

//===----------------------------------------------------------------------===//
// GetElementPtr Instruction Decomposition and Analysis
//===----------------------------------------------------------------------===//

/// Analyzes the specified value as a linear expression: "A*V + B", where A and
/// B are constant integers.
///
/// Returns the scale and offset values as APInts and return V as a Value*, and
/// return whether we looked through any sign or zero extends.  The incoming
/// Value is known to have IntegerType, and it may already be sign or zero
/// extended.
///
/// Note that this looks through extends, so the high bits may not be
/// represented in the result.
/*static*/ const Value *BasicAAResult::GetLinearExpression(
    const Value *V, APInt &Scale, APInt &Offset, unsigned &ZExtBits,
    unsigned &SExtBits, const DataLayout &DL, unsigned Depth,
    AssumptionCache *AC, DominatorTree *DT, bool &NSW, bool &NUW) {
  assert(V->getType()->isIntegerTy() && "Not an integer value");

  // Limit our recursion depth.
  if (Depth == 6) {
    Scale = 1;
    Offset = 0;
    return V;
  }

  if (const ConstantInt *Const = dyn_cast<ConstantInt>(V)) {
    // If it's a constant, just convert it to an offset and remove the variable.
    // If we've been called recursively, the Offset bit width will be greater
    // than the constant's (the Offset's always as wide as the outermost call),
    // so we'll zext here and process any extension in the isa<SExtInst> &
    // isa<ZExtInst> cases below.
    Offset += Const->getValue().zextOrSelf(Offset.getBitWidth());
    assert(Scale == 0 && "Constant values don't have a scale");
    return V;
  }

  if (const BinaryOperator *BOp = dyn_cast<BinaryOperator>(V)) {
    if (ConstantInt *RHSC = dyn_cast<ConstantInt>(BOp->getOperand(1))) {

      // If we've been called recursively, then Offset and Scale will be wider
      // than the BOp operands. We'll always zext it here as we'll process sign
      // extensions below (see the isa<SExtInst> / isa<ZExtInst> cases).
      APInt RHS = RHSC->getValue().zextOrSelf(Offset.getBitWidth());

      switch (BOp->getOpcode()) {
      default:
        // We don't understand this instruction, so we can't decompose it any
        // further.
        Scale = 1;
        Offset = 0;
        return V;
      case Instruction::Or:
        // X|C == X+C if all the bits in C are unset in X.  Otherwise we can't
        // analyze it.
        if (!MaskedValueIsZero(BOp->getOperand(0), RHSC->getValue(), DL, 0, AC,
                               BOp, DT)) {
          Scale = 1;
          Offset = 0;
          return V;
        }
      // FALL THROUGH.
      case Instruction::Add:
        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
        Offset += RHS;
        break;
      case Instruction::Sub:
        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
        Offset -= RHS;
        break;
      case Instruction::Mul:
        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
        Offset *= RHS;
        Scale *= RHS;
        break;
      case Instruction::Shl:
        V = GetLinearExpression(BOp->getOperand(0), Scale, Offset, ZExtBits,
                                SExtBits, DL, Depth + 1, AC, DT, NSW, NUW);
        Offset <<= RHS.getLimitedValue();
        Scale <<= RHS.getLimitedValue();
        // the semantics of nsw and nuw for left shifts don't match those of
        // multiplications, so we won't propagate them.
        NSW = NUW = false;
        return V;
      }

      if (isa<OverflowingBinaryOperator>(BOp)) {
        NUW &= BOp->hasNoUnsignedWrap();
        NSW &= BOp->hasNoSignedWrap();
      }
      return V;
    }
  }

  // Since GEP indices are sign extended anyway, we don't care about the high
  // bits of a sign or zero extended value - just scales and offsets.  The
  // extensions have to be consistent though.
  if (isa<SExtInst>(V) || isa<ZExtInst>(V)) {
    Value *CastOp = cast<CastInst>(V)->getOperand(0);
    unsigned NewWidth = V->getType()->getPrimitiveSizeInBits();
    unsigned SmallWidth = CastOp->getType()->getPrimitiveSizeInBits();
    unsigned OldZExtBits = ZExtBits, OldSExtBits = SExtBits;
    const Value *Result =
        GetLinearExpression(CastOp, Scale, Offset, ZExtBits, SExtBits, DL,
                            Depth + 1, AC, DT, NSW, NUW);

    // zext(zext(%x)) == zext(%x), and similiarly for sext; we'll handle this
    // by just incrementing the number of bits we've extended by.
    unsigned ExtendedBy = NewWidth - SmallWidth;

    if (isa<SExtInst>(V) && ZExtBits == 0) {
      // sext(sext(%x, a), b) == sext(%x, a + b)

      if (NSW) {
        // We haven't sign-wrapped, so it's valid to decompose sext(%x + c)
        // into sext(%x) + sext(c). We'll sext the Offset ourselves:
        unsigned OldWidth = Offset.getBitWidth();
        Offset = Offset.trunc(SmallWidth).sext(NewWidth).zextOrSelf(OldWidth);
      } else {
        // We may have signed-wrapped, so don't decompose sext(%x + c) into
        // sext(%x) + sext(c)
        Scale = 1;
        Offset = 0;
        Result = CastOp;
        ZExtBits = OldZExtBits;
        SExtBits = OldSExtBits;
      }
      SExtBits += ExtendedBy;
    } else {
      // sext(zext(%x, a), b) = zext(zext(%x, a), b) = zext(%x, a + b)

      if (!NUW) {
        // We may have unsigned-wrapped, so don't decompose zext(%x + c) into
        // zext(%x) + zext(c)
        Scale = 1;
        Offset = 0;
        Result = CastOp;
        ZExtBits = OldZExtBits;
        SExtBits = OldSExtBits;
      }
      ZExtBits += ExtendedBy;
    }

    return Result;
  }

  Scale = 1;
  Offset = 0;
  return V;
}

/// To ensure a pointer offset fits in an integer of size PointerSize
/// (in bits) when that size is smaller than 64. This is an issue in
/// particular for 32b programs with negative indices that rely on two's
/// complement wrap-arounds for precise alias information.
static int64_t adjustToPointerSize(int64_t Offset, unsigned PointerSize) {
  assert(PointerSize <= 64 && "Invalid PointerSize!");
  unsigned ShiftBits = 64 - PointerSize;
  return (int64_t)((uint64_t)Offset << ShiftBits) >> ShiftBits;
}

/// If V is a symbolic pointer expression, decompose it into a base pointer
/// with a constant offset and a number of scaled symbolic offsets.
///
/// The scaled symbolic offsets (represented by pairs of a Value* and a scale
/// in the VarIndices vector) are Value*'s that are known to be scaled by the
/// specified amount, but which may have other unrepresented high bits. As
/// such, the gep cannot necessarily be reconstructed from its decomposed form.
///
/// When DataLayout is around, this function is capable of analyzing everything
/// that GetUnderlyingObject can look through. To be able to do that
/// GetUnderlyingObject and DecomposeGEPExpression must use the same search
/// depth (MaxLookupSearchDepth). When DataLayout not is around, it just looks
/// through pointer casts.
bool BasicAAResult::DecomposeGEPExpression(const Value *V,
       DecomposedGEP &Decomposed, const DataLayout &DL, AssumptionCache *AC,
       DominatorTree *DT) {
  // Limit recursion depth to limit compile time in crazy cases.
  unsigned MaxLookup = MaxLookupSearchDepth;
  SearchTimes++;

  Decomposed.StructOffset = 0;
  Decomposed.OtherOffset = 0;
  Decomposed.VarIndices.clear();
  do {
    // See if this is a bitcast or GEP.
    const Operator *Op = dyn_cast<Operator>(V);
    if (!Op) {
      // The only non-operator case we can handle are GlobalAliases.
      if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V)) {
        if (!GA->isInterposable()) {
          V = GA->getAliasee();
          continue;
        }
      }
      Decomposed.Base = V;
      return false;
    }

    if (Op->getOpcode() == Instruction::BitCast ||
        Op->getOpcode() == Instruction::AddrSpaceCast) {
      V = Op->getOperand(0);
      continue;
    }

    const GEPOperator *GEPOp = dyn_cast<GEPOperator>(Op);
    if (!GEPOp) {
      if (auto CS = ImmutableCallSite(V))
        if (const Value *RV = CS.getReturnedArgOperand()) {
          V = RV;
          continue;
        }

      // If it's not a GEP, hand it off to SimplifyInstruction to see if it
      // can come up with something. This matches what GetUnderlyingObject does.
      if (const Instruction *I = dyn_cast<Instruction>(V))
        // TODO: Get a DominatorTree and AssumptionCache and use them here
        // (these are both now available in this function, but this should be
        // updated when GetUnderlyingObject is updated). TLI should be
        // provided also.
        if (const Value *Simplified =
                SimplifyInstruction(const_cast<Instruction *>(I), DL)) {
          V = Simplified;
          continue;
        }

      Decomposed.Base = V;
      return false;
    }

    // Don't attempt to analyze GEPs over unsized objects.
    if (!GEPOp->getSourceElementType()->isSized()) {
      Decomposed.Base = V;
      return false;
    }

    unsigned AS = GEPOp->getPointerAddressSpace();
    // Walk the indices of the GEP, accumulating them into BaseOff/VarIndices.
    gep_type_iterator GTI = gep_type_begin(GEPOp);
    unsigned PointerSize = DL.getPointerSizeInBits(AS);
    for (User::const_op_iterator I = GEPOp->op_begin() + 1, E = GEPOp->op_end();
         I != E; ++I) {
      const Value *Index = *I;
      // Compute the (potentially symbolic) offset in bytes for this index.
      if (StructType *STy = dyn_cast<StructType>(*GTI++)) {
        // For a struct, add the member offset.
        unsigned FieldNo = cast<ConstantInt>(Index)->getZExtValue();
        if (FieldNo == 0)
          continue;

        Decomposed.StructOffset +=
          DL.getStructLayout(STy)->getElementOffset(FieldNo);
        continue;
      }

      // For an array/pointer, add the element offset, explicitly scaled.
      if (const ConstantInt *CIdx = dyn_cast<ConstantInt>(Index)) {
        if (CIdx->isZero())
          continue;
        Decomposed.OtherOffset +=
          DL.getTypeAllocSize(*GTI) * CIdx->getSExtValue();
        continue;
      }

      uint64_t Scale = DL.getTypeAllocSize(*GTI);
      unsigned ZExtBits = 0, SExtBits = 0;

      // If the integer type is smaller than the pointer size, it is implicitly
      // sign extended to pointer size.
      unsigned Width = Index->getType()->getIntegerBitWidth();
      if (PointerSize > Width)
        SExtBits += PointerSize - Width;

      // Use GetLinearExpression to decompose the index into a C1*V+C2 form.
      APInt IndexScale(Width, 0), IndexOffset(Width, 0);
      bool NSW = true, NUW = true;
      Index = GetLinearExpression(Index, IndexScale, IndexOffset, ZExtBits,
                                  SExtBits, DL, 0, AC, DT, NSW, NUW);

      // The GEP index scale ("Scale") scales C1*V+C2, yielding (C1*V+C2)*Scale.
      // This gives us an aggregate computation of (C1*Scale)*V + C2*Scale.
      Decomposed.OtherOffset += IndexOffset.getSExtValue() * Scale;
      Scale *= IndexScale.getSExtValue();

      // If we already had an occurrence of this index variable, merge this
      // scale into it.  For example, we want to handle:
      //   A[x][x] -> x*16 + x*4 -> x*20
      // This also ensures that 'x' only appears in the index list once.
      for (unsigned i = 0, e = Decomposed.VarIndices.size(); i != e; ++i) {
        if (Decomposed.VarIndices[i].V == Index && 
            Decomposed.VarIndices[i].ZExtBits == ZExtBits &&
            Decomposed.VarIndices[i].SExtBits == SExtBits) {
          Scale += Decomposed.VarIndices[i].Scale;
          Decomposed.VarIndices.erase(Decomposed.VarIndices.begin() + i);
          break;
        }
      }

      // Make sure that we have a scale that makes sense for this target's
      // pointer size.
      Scale = adjustToPointerSize(Scale, PointerSize);

      if (Scale) {
        VariableGEPIndex Entry = {Index, ZExtBits, SExtBits,
                                  static_cast<int64_t>(Scale)};
        Decomposed.VarIndices.push_back(Entry);
      }
    }

    // Take care of wrap-arounds
    Decomposed.StructOffset =
      adjustToPointerSize(Decomposed.StructOffset, PointerSize);
    Decomposed.OtherOffset =
      adjustToPointerSize(Decomposed.OtherOffset, PointerSize);

    // Analyze the base pointer next.
    V = GEPOp->getOperand(0);
  } while (--MaxLookup);

  // If the chain of expressions is too deep, just return early.
  Decomposed.Base = V;
  SearchLimitReached++;
  return true;
}

/// Returns whether the given pointer value points to memory that is local to
/// the function, with global constants being considered local to all
/// functions.
bool BasicAAResult::pointsToConstantMemory(const MemoryLocation &Loc,
                                           bool OrLocal) {
  assert(Visited.empty() && "Visited must be cleared after use!");

  unsigned MaxLookup = 8;
  SmallVector<const Value *, 16> Worklist;
  Worklist.push_back(Loc.Ptr);
  do {
    const Value *V = GetUnderlyingObject(Worklist.pop_back_val(), DL);
    if (!Visited.insert(V).second) {
      Visited.clear();
      return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
    }

    // An alloca instruction defines local memory.
    if (OrLocal && isa<AllocaInst>(V))
      continue;

    // A global constant counts as local memory for our purposes.
    if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V)) {
      // Note: this doesn't require GV to be "ODR" because it isn't legal for a
      // global to be marked constant in some modules and non-constant in
      // others.  GV may even be a declaration, not a definition.
      if (!GV->isConstant()) {
        Visited.clear();
        return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
      }
      continue;
    }

    // If both select values point to local memory, then so does the select.
    if (const SelectInst *SI = dyn_cast<SelectInst>(V)) {
      Worklist.push_back(SI->getTrueValue());
      Worklist.push_back(SI->getFalseValue());
      continue;
    }

    // If all values incoming to a phi node point to local memory, then so does
    // the phi.
    if (const PHINode *PN = dyn_cast<PHINode>(V)) {
      // Don't bother inspecting phi nodes with many operands.
      if (PN->getNumIncomingValues() > MaxLookup) {
        Visited.clear();
        return AAResultBase::pointsToConstantMemory(Loc, OrLocal);
      }
      for (Value *IncValue : PN->incoming_values())
        Worklist.push_back(IncValue);
      continue;
    }

    // Otherwise be conservative.
    Visited.clear();
    return AAResultBase::pointsToConstantMemory(Loc, OrLocal);

  } while (!Worklist.empty() && --MaxLookup);

  Visited.clear();
  return Worklist.empty();
}

/// Returns the behavior when calling the given call site.
FunctionModRefBehavior BasicAAResult::getModRefBehavior(ImmutableCallSite CS) {
  if (CS.doesNotAccessMemory())
    // Can't do better than this.
    return FMRB_DoesNotAccessMemory;

  FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;

  // If the callsite knows it only reads memory, don't return worse
  // than that.
  if (CS.onlyReadsMemory())
    Min = FMRB_OnlyReadsMemory;
  else if (CS.doesNotReadMemory())
    Min = FMRB_DoesNotReadMemory;

  if (CS.onlyAccessesArgMemory())
    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);

  // If CS has operand bundles then aliasing attributes from the function it
  // calls do not directly apply to the CallSite.  This can be made more
  // precise in the future.
  if (!CS.hasOperandBundles())
    if (const Function *F = CS.getCalledFunction())
      Min =
          FunctionModRefBehavior(Min & getBestAAResults().getModRefBehavior(F));

  return Min;
}

/// Returns the behavior when calling the given function. For use when the call
/// site is not known.
FunctionModRefBehavior BasicAAResult::getModRefBehavior(const Function *F) {
  // If the function declares it doesn't access memory, we can't do better.
  if (F->doesNotAccessMemory())
    return FMRB_DoesNotAccessMemory;

  FunctionModRefBehavior Min = FMRB_UnknownModRefBehavior;

  // If the function declares it only reads memory, go with that.
  if (F->onlyReadsMemory())
    Min = FMRB_OnlyReadsMemory;
  else if (F->doesNotReadMemory())
    Min = FMRB_DoesNotReadMemory;

  if (F->onlyAccessesArgMemory())
    Min = FunctionModRefBehavior(Min & FMRB_OnlyAccessesArgumentPointees);

  return Min;
}

/// Returns true if this is a writeonly (i.e Mod only) parameter.
static bool isWriteOnlyParam(ImmutableCallSite CS, unsigned ArgIdx,
                             const TargetLibraryInfo &TLI) {
  if (CS.paramHasAttr(ArgIdx + 1, Attribute::WriteOnly))
    return true;

  // We can bound the aliasing properties of memset_pattern16 just as we can
  // for memcpy/memset.  This is particularly important because the
  // LoopIdiomRecognizer likes to turn loops into calls to memset_pattern16
  // whenever possible.
  // FIXME Consider handling this in InferFunctionAttr.cpp together with other
  // attributes.
  LibFunc::Func F;
  if (CS.getCalledFunction() && TLI.getLibFunc(*CS.getCalledFunction(), F) &&
      F == LibFunc::memset_pattern16 && TLI.has(F))
    if (ArgIdx == 0)
      return true;

  // TODO: memset_pattern4, memset_pattern8
  // TODO: _chk variants
  // TODO: strcmp, strcpy

  return false;
}

ModRefInfo BasicAAResult::getArgModRefInfo(ImmutableCallSite CS,
                                           unsigned ArgIdx) {

  // Checking for known builtin intrinsics and target library functions.
  if (isWriteOnlyParam(CS, ArgIdx, TLI))
    return MRI_Mod;

  if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadOnly))
    return MRI_Ref;

  if (CS.paramHasAttr(ArgIdx + 1, Attribute::ReadNone))
    return MRI_NoModRef;

  return AAResultBase::getArgModRefInfo(CS, ArgIdx);
}

static bool isIntrinsicCall(ImmutableCallSite CS, Intrinsic::ID IID) {
  const IntrinsicInst *II = dyn_cast<IntrinsicInst>(CS.getInstruction());
  return II && II->getIntrinsicID() == IID;
}

#ifndef NDEBUG
static const Function *getParent(const Value *V) {
  if (const Instruction *inst = dyn_cast<Instruction>(V))
    return inst->getParent()->getParent();

  if (const Argument *arg = dyn_cast<Argument>(V))
    return arg->getParent();

  return nullptr;
}

static bool notDifferentParent(const Value *O1, const Value *O2) {

  const Function *F1 = getParent(O1);
  const Function *F2 = getParent(O2);

  return !F1 || !F2 || F1 == F2;
}
#endif

AliasResult BasicAAResult::alias(const MemoryLocation &LocA,
                                 const MemoryLocation &LocB) {
  assert(notDifferentParent(LocA.Ptr, LocB.Ptr) &&
         "BasicAliasAnalysis doesn't support interprocedural queries.");

  // If we have a directly cached entry for these locations, we have recursed
  // through this once, so just return the cached results. Notably, when this
  // happens, we don't clear the cache.
  auto CacheIt = AliasCache.find(LocPair(LocA, LocB));
  if (CacheIt != AliasCache.end())
    return CacheIt->second;

  AliasResult Alias = aliasCheck(LocA.Ptr, LocA.Size, LocA.AATags, LocB.Ptr,
                                 LocB.Size, LocB.AATags);
  // AliasCache rarely has more than 1 or 2 elements, always use
  // shrink_and_clear so it quickly returns to the inline capacity of the
  // SmallDenseMap if it ever grows larger.
  // FIXME: This should really be shrink_to_inline_capacity_and_clear().
  AliasCache.shrink_and_clear();
  VisitedPhiBBs.clear();
  return Alias;
}

/// Checks to see if the specified callsite can clobber the specified memory
/// object.
///
/// Since we only look at local properties of this function, we really can't
/// say much about this query.  We do, however, use simple "address taken"
/// analysis on local objects.
ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS,
                                        const MemoryLocation &Loc) {
  assert(notDifferentParent(CS.getInstruction(), Loc.Ptr) &&
         "AliasAnalysis query involving multiple functions!");

  const Value *Object = GetUnderlyingObject(Loc.Ptr, DL);

  // If this is a tail call and Loc.Ptr points to a stack location, we know that
  // the tail call cannot access or modify the local stack.
  // We cannot exclude byval arguments here; these belong to the caller of
  // the current function not to the current function, and a tail callee
  // may reference them.
  if (isa<AllocaInst>(Object))
    if (const CallInst *CI = dyn_cast<CallInst>(CS.getInstruction()))
      if (CI->isTailCall())
        return MRI_NoModRef;

  // If the pointer is to a locally allocated object that does not escape,
  // then the call can not mod/ref the pointer unless the call takes the pointer
  // as an argument, and itself doesn't capture it.
  if (!isa<Constant>(Object) && CS.getInstruction() != Object &&
      isNonEscapingLocalObject(Object)) {
    bool PassedAsArg = false;
    unsigned OperandNo = 0;
    for (auto CI = CS.data_operands_begin(), CE = CS.data_operands_end();
         CI != CE; ++CI, ++OperandNo) {
      // Only look at the no-capture or byval pointer arguments.  If this
      // pointer were passed to arguments that were neither of these, then it
      // couldn't be no-capture.
      if (!(*CI)->getType()->isPointerTy() ||
          (!CS.doesNotCapture(OperandNo) && !CS.isByValArgument(OperandNo)))
        continue;

      // If this is a no-capture pointer argument, see if we can tell that it
      // is impossible to alias the pointer we're checking.  If not, we have to
      // assume that the call could touch the pointer, even though it doesn't
      // escape.
      AliasResult AR =
          getBestAAResults().alias(MemoryLocation(*CI), MemoryLocation(Object));
      if (AR) {
        PassedAsArg = true;
        break;
      }
    }

    if (!PassedAsArg)
      return MRI_NoModRef;
  }

  // If the CallSite is to malloc or calloc, we can assume that it doesn't
  // modify any IR visible value.  This is only valid because we assume these
  // routines do not read values visible in the IR.  TODO: Consider special
  // casing realloc and strdup routines which access only their arguments as
  // well.  Or alternatively, replace all of this with inaccessiblememonly once
  // that's implemented fully. 
  auto *Inst = CS.getInstruction();
  if (isMallocLikeFn(Inst, &TLI) || isCallocLikeFn(Inst, &TLI)) {
    // Be conservative if the accessed pointer may alias the allocation -
    // fallback to the generic handling below.
    if (getBestAAResults().alias(MemoryLocation(Inst), Loc) == NoAlias)
      return MRI_NoModRef;
  }

  // While the assume intrinsic is marked as arbitrarily writing so that
  // proper control dependencies will be maintained, it never aliases any
  // particular memory location.
  if (isIntrinsicCall(CS, Intrinsic::assume))
    return MRI_NoModRef;

  // Like assumes, guard intrinsics are also marked as arbitrarily writing so
  // that proper control dependencies are maintained but they never mods any
  // particular memory location.
  //
  // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
  // heap state at the point the guard is issued needs to be consistent in case
  // the guard invokes the "deopt" continuation.
  if (isIntrinsicCall(CS, Intrinsic::experimental_guard))
    return MRI_Ref;

  // The AAResultBase base class has some smarts, lets use them.
  return AAResultBase::getModRefInfo(CS, Loc);
}

ModRefInfo BasicAAResult::getModRefInfo(ImmutableCallSite CS1,
                                        ImmutableCallSite CS2) {
  // While the assume intrinsic is marked as arbitrarily writing so that
  // proper control dependencies will be maintained, it never aliases any
  // particular memory location.
  if (isIntrinsicCall(CS1, Intrinsic::assume) ||
      isIntrinsicCall(CS2, Intrinsic::assume))
    return MRI_NoModRef;

  // Like assumes, guard intrinsics are also marked as arbitrarily writing so
  // that proper control dependencies are maintained but they never mod any
  // particular memory location.
  //
  // *Unlike* assumes, guard intrinsics are modeled as reading memory since the
  // heap state at the point the guard is issued needs to be consistent in case
  // the guard invokes the "deopt" continuation.

  // NB! This function is *not* commutative, so we specical case two
  // possibilities for guard intrinsics.

  if (isIntrinsicCall(CS1, Intrinsic::experimental_guard))
    return getModRefBehavior(CS2) & MRI_Mod ? MRI_Ref : MRI_NoModRef;

  if (isIntrinsicCall(CS2, Intrinsic::experimental_guard))
    return getModRefBehavior(CS1) & MRI_Mod ? MRI_Mod : MRI_NoModRef;

  // The AAResultBase base class has some smarts, lets use them.
  return AAResultBase::getModRefInfo(CS1, CS2);
}

/// Provide ad-hoc rules to disambiguate accesses through two GEP operators,
/// both having the exact same pointer operand.
static AliasResult aliasSameBasePointerGEPs(const GEPOperator *GEP1,
                                            uint64_t V1Size,
                                            const GEPOperator *GEP2,
                                            uint64_t V2Size,
                                            const DataLayout &DL) {

  assert(GEP1->getPointerOperand()->stripPointerCasts() ==
         GEP2->getPointerOperand()->stripPointerCasts() &&
         GEP1->getPointerOperand()->getType() ==
         GEP2->getPointerOperand()->getType() &&
         "Expected GEPs with the same pointer operand");

  // Try to determine whether GEP1 and GEP2 index through arrays, into structs,
  // such that the struct field accesses provably cannot alias.
  // We also need at least two indices (the pointer, and the struct field).
  if (GEP1->getNumIndices() != GEP2->getNumIndices() ||
      GEP1->getNumIndices() < 2)
    return MayAlias;

  // If we don't know the size of the accesses through both GEPs, we can't
  // determine whether the struct fields accessed can't alias.
  if (V1Size == MemoryLocation::UnknownSize ||
      V2Size == MemoryLocation::UnknownSize)
    return MayAlias;

  ConstantInt *C1 =
      dyn_cast<ConstantInt>(GEP1->getOperand(GEP1->getNumOperands() - 1));
  ConstantInt *C2 =
      dyn_cast<ConstantInt>(GEP2->getOperand(GEP2->getNumOperands() - 1));

  // If the last (struct) indices are constants and are equal, the other indices
  // might be also be dynamically equal, so the GEPs can alias.
  if (C1 && C2 && C1->getSExtValue() == C2->getSExtValue())
    return MayAlias;

  // Find the last-indexed type of the GEP, i.e., the type you'd get if
  // you stripped the last index.
  // On the way, look at each indexed type.  If there's something other
  // than an array, different indices can lead to different final types.
  SmallVector<Value *, 8> IntermediateIndices;

  // Insert the first index; we don't need to check the type indexed
  // through it as it only drops the pointer indirection.
  assert(GEP1->getNumIndices() > 1 && "Not enough GEP indices to examine");
  IntermediateIndices.push_back(GEP1->getOperand(1));

  // Insert all the remaining indices but the last one.
  // Also, check that they all index through arrays.
  for (unsigned i = 1, e = GEP1->getNumIndices() - 1; i != e; ++i) {
    if (!isa<ArrayType>(GetElementPtrInst::getIndexedType(
            GEP1->getSourceElementType(), IntermediateIndices)))
      return MayAlias;
    IntermediateIndices.push_back(GEP1->getOperand(i + 1));
  }

  auto *Ty = GetElementPtrInst::getIndexedType(
    GEP1->getSourceElementType(), IntermediateIndices);
  StructType *LastIndexedStruct = dyn_cast<StructType>(Ty);

  if (isa<SequentialType>(Ty)) {
    // We know that:
    // - both GEPs begin indexing from the exact same pointer;
    // - the last indices in both GEPs are constants, indexing into a sequential
    //   type (array or pointer);
    // - both GEPs only index through arrays prior to that.
    //
    // Because array indices greater than the number of elements are valid in
    // GEPs, unless we know the intermediate indices are identical between
    // GEP1 and GEP2 we cannot guarantee that the last indexed arrays don't
    // partially overlap. We also need to check that the loaded size matches
    // the element size, otherwise we could still have overlap.
    const uint64_t ElementSize =
        DL.getTypeStoreSize(cast<SequentialType>(Ty)->getElementType());
    if (V1Size != ElementSize || V2Size != ElementSize)
      return MayAlias;

    for (unsigned i = 0, e = GEP1->getNumIndices() - 1; i != e; ++i)
      if (GEP1->getOperand(i + 1) != GEP2->getOperand(i + 1))
        return MayAlias;

    // Now we know that the array/pointer that GEP1 indexes into and that
    // that GEP2 indexes into must either precisely overlap or be disjoint.
    // Because they cannot partially overlap and because fields in an array
    // cannot overlap, if we can prove the final indices are different between
    // GEP1 and GEP2, we can conclude GEP1 and GEP2 don't alias.
    
    // If the last indices are constants, we've already checked they don't
    // equal each other so we can exit early.
    if (C1 && C2)
      return NoAlias;
    if (isKnownNonEqual(GEP1->getOperand(GEP1->getNumOperands() - 1),
                        GEP2->getOperand(GEP2->getNumOperands() - 1),
                        DL))
      return NoAlias;
    return MayAlias;
  } else if (!LastIndexedStruct || !C1 || !C2) {
    return MayAlias;
  }

  // We know that:
  // - both GEPs begin indexing from the exact same pointer;
  // - the last indices in both GEPs are constants, indexing into a struct;
  // - said indices are different, hence, the pointed-to fields are different;
  // - both GEPs only index through arrays prior to that.
  //
  // This lets us determine that the struct that GEP1 indexes into and the
  // struct that GEP2 indexes into must either precisely overlap or be
  // completely disjoint.  Because they cannot partially overlap, indexing into
  // different non-overlapping fields of the struct will never alias.

  // Therefore, the only remaining thing needed to show that both GEPs can't
  // alias is that the fields are not overlapping.
  const StructLayout *SL = DL.getStructLayout(LastIndexedStruct);
  const uint64_t StructSize = SL->getSizeInBytes();
  const uint64_t V1Off = SL->getElementOffset(C1->getZExtValue());
  const uint64_t V2Off = SL->getElementOffset(C2->getZExtValue());

  auto EltsDontOverlap = [StructSize](uint64_t V1Off, uint64_t V1Size,
                                      uint64_t V2Off, uint64_t V2Size) {
    return V1Off < V2Off && V1Off + V1Size <= V2Off &&
           ((V2Off + V2Size <= StructSize) ||
            (V2Off + V2Size - StructSize <= V1Off));
  };

  if (EltsDontOverlap(V1Off, V1Size, V2Off, V2Size) ||
      EltsDontOverlap(V2Off, V2Size, V1Off, V1Size))
    return NoAlias;

  return MayAlias;
}

// If a we have (a) a GEP and (b) a pointer based on an alloca, and the
// beginning of the object the GEP points would have a negative offset with
// repsect to the alloca, that means the GEP can not alias pointer (b).
// Note that the pointer based on the alloca may not be a GEP. For
// example, it may be the alloca itself.
// The same applies if (b) is based on a GlobalVariable. Note that just being
// based on isIdentifiedObject() is not enough - we need an identified object
// that does not permit access to negative offsets. For example, a negative
// offset from a noalias argument or call can be inbounds w.r.t the actual
// underlying object.
//
// For example, consider:
//
//   struct { int f0, int f1, ...} foo;
//   foo alloca;
//   foo* random = bar(alloca);
//   int *f0 = &alloca.f0
//   int *f1 = &random->f1;
//
// Which is lowered, approximately, to:
//
//  %alloca = alloca %struct.foo
//  %random = call %struct.foo* @random(%struct.foo* %alloca)
//  %f0 = getelementptr inbounds %struct, %struct.foo* %alloca, i32 0, i32 0
//  %f1 = getelementptr inbounds %struct, %struct.foo* %random, i32 0, i32 1
//
// Assume %f1 and %f0 alias. Then %f1 would point into the object allocated
// by %alloca. Since the %f1 GEP is inbounds, that means %random must also
// point into the same object. But since %f0 points to the beginning of %alloca,
// the highest %f1 can be is (%alloca + 3). This means %random can not be higher
// than (%alloca - 1), and so is not inbounds, a contradiction.
bool BasicAAResult::isGEPBaseAtNegativeOffset(const GEPOperator *GEPOp,
      const DecomposedGEP &DecompGEP, const DecomposedGEP &DecompObject, 
      uint64_t ObjectAccessSize) {
  // If the object access size is unknown, or the GEP isn't inbounds, bail.
  if (ObjectAccessSize == MemoryLocation::UnknownSize || !GEPOp->isInBounds())
    return false;

  // We need the object to be an alloca or a globalvariable, and want to know
  // the offset of the pointer from the object precisely, so no variable
  // indices are allowed.
  if (!(isa<AllocaInst>(DecompObject.Base) ||
        isa<GlobalVariable>(DecompObject.Base)) ||
      !DecompObject.VarIndices.empty())
    return false;

  int64_t ObjectBaseOffset = DecompObject.StructOffset +
                             DecompObject.OtherOffset;

  // If the GEP has no variable indices, we know the precise offset
  // from the base, then use it. If the GEP has variable indices, we're in
  // a bit more trouble: we can't count on the constant offsets that come
  // from non-struct sources, since these can be "rewound" by a negative
  // variable offset. So use only offsets that came from structs.
  int64_t GEPBaseOffset = DecompGEP.StructOffset;
  if (DecompGEP.VarIndices.empty())
    GEPBaseOffset += DecompGEP.OtherOffset;

  return (GEPBaseOffset >= ObjectBaseOffset + (int64_t)ObjectAccessSize);
}

/// Provides a bunch of ad-hoc rules to disambiguate a GEP instruction against
/// another pointer.
///
/// We know that V1 is a GEP, but we don't know anything about V2.
/// UnderlyingV1 is GetUnderlyingObject(GEP1, DL), UnderlyingV2 is the same for
/// V2.
AliasResult BasicAAResult::aliasGEP(const GEPOperator *GEP1, uint64_t V1Size,
                                    const AAMDNodes &V1AAInfo, const Value *V2,
                                    uint64_t V2Size, const AAMDNodes &V2AAInfo,
                                    const Value *UnderlyingV1,
                                    const Value *UnderlyingV2) {
  DecomposedGEP DecompGEP1, DecompGEP2;
  bool GEP1MaxLookupReached =
    DecomposeGEPExpression(GEP1, DecompGEP1, DL, &AC, DT);
  bool GEP2MaxLookupReached =
    DecomposeGEPExpression(V2, DecompGEP2, DL, &AC, DT);

  int64_t GEP1BaseOffset = DecompGEP1.StructOffset + DecompGEP1.OtherOffset;
  int64_t GEP2BaseOffset = DecompGEP2.StructOffset + DecompGEP2.OtherOffset;

  assert(DecompGEP1.Base == UnderlyingV1 && DecompGEP2.Base == UnderlyingV2 &&
         "DecomposeGEPExpression returned a result different from "
         "GetUnderlyingObject");

  // If the GEP's offset relative to its base is such that the base would
  // fall below the start of the object underlying V2, then the GEP and V2
  // cannot alias.
  if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
      isGEPBaseAtNegativeOffset(GEP1, DecompGEP1, DecompGEP2, V2Size))
    return NoAlias;
  // If we have two gep instructions with must-alias or not-alias'ing base
  // pointers, figure out if the indexes to the GEP tell us anything about the
  // derived pointer.
  if (const GEPOperator *GEP2 = dyn_cast<GEPOperator>(V2)) {
    // Check for the GEP base being at a negative offset, this time in the other
    // direction.
    if (!GEP1MaxLookupReached && !GEP2MaxLookupReached &&
        isGEPBaseAtNegativeOffset(GEP2, DecompGEP2, DecompGEP1, V1Size))
      return NoAlias;
    // Do the base pointers alias?
    AliasResult BaseAlias =
        aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize, AAMDNodes(),
                   UnderlyingV2, MemoryLocation::UnknownSize, AAMDNodes());

    // Check for geps of non-aliasing underlying pointers where the offsets are
    // identical.
    if ((BaseAlias == MayAlias) && V1Size == V2Size) {
      // Do the base pointers alias assuming type and size.
      AliasResult PreciseBaseAlias = aliasCheck(UnderlyingV1, V1Size, V1AAInfo,
                                                UnderlyingV2, V2Size, V2AAInfo);
      if (PreciseBaseAlias == NoAlias) {
        // See if the computed offset from the common pointer tells us about the
        // relation of the resulting pointer.
        // If the max search depth is reached the result is undefined
        if (GEP2MaxLookupReached || GEP1MaxLookupReached)
          return MayAlias;

        // Same offsets.
        if (GEP1BaseOffset == GEP2BaseOffset &&
            DecompGEP1.VarIndices == DecompGEP2.VarIndices)
          return NoAlias;
      }
    }

    // If we get a No or May, then return it immediately, no amount of analysis
    // will improve this situation.
    if (BaseAlias != MustAlias)
      return BaseAlias;

    // Otherwise, we have a MustAlias.  Since the base pointers alias each other
    // exactly, see if the computed offset from the common pointer tells us
    // about the relation of the resulting pointer.
    // If we know the two GEPs are based off of the exact same pointer (and not
    // just the same underlying object), see if that tells us anything about
    // the resulting pointers.
    if (GEP1->getPointerOperand()->stripPointerCasts() ==
        GEP2->getPointerOperand()->stripPointerCasts() &&
        GEP1->getPointerOperand()->getType() ==
        GEP2->getPointerOperand()->getType()) {
      AliasResult R = aliasSameBasePointerGEPs(GEP1, V1Size, GEP2, V2Size, DL);
      // If we couldn't find anything interesting, don't abandon just yet.
      if (R != MayAlias)
        return R;
    }

    // If the max search depth is reached, the result is undefined
    if (GEP2MaxLookupReached || GEP1MaxLookupReached)
      return MayAlias;

    // Subtract the GEP2 pointer from the GEP1 pointer to find out their
    // symbolic difference.
    GEP1BaseOffset -= GEP2BaseOffset;
    GetIndexDifference(DecompGEP1.VarIndices, DecompGEP2.VarIndices);

  } else {
    // Check to see if these two pointers are related by the getelementptr
    // instruction.  If one pointer is a GEP with a non-zero index of the other
    // pointer, we know they cannot alias.

    // If both accesses are unknown size, we can't do anything useful here.
    if (V1Size == MemoryLocation::UnknownSize &&
        V2Size == MemoryLocation::UnknownSize)
      return MayAlias;

    AliasResult R = aliasCheck(UnderlyingV1, MemoryLocation::UnknownSize,
                               AAMDNodes(), V2, V2Size, V2AAInfo);
    if (R != MustAlias)
      // If V2 may alias GEP base pointer, conservatively returns MayAlias.
      // If V2 is known not to alias GEP base pointer, then the two values
      // cannot alias per GEP semantics: "A pointer value formed from a
      // getelementptr instruction is associated with the addresses associated
      // with the first operand of the getelementptr".
      return R;

    // If the max search depth is reached the result is undefined
    if (GEP1MaxLookupReached)
      return MayAlias;
  }

  // In the two GEP Case, if there is no difference in the offsets of the
  // computed pointers, the resultant pointers are a must alias.  This
  // happens when we have two lexically identical GEP's (for example).
  //
  // In the other case, if we have getelementptr <ptr>, 0, 0, 0, 0, ... and V2
  // must aliases the GEP, the end result is a must alias also.
  if (GEP1BaseOffset == 0 && DecompGEP1.VarIndices.empty())
    return MustAlias;

  // If there is a constant difference between the pointers, but the difference
  // is less than the size of the associated memory object, then we know
  // that the objects are partially overlapping.  If the difference is
  // greater, we know they do not overlap.
  if (GEP1BaseOffset != 0 && DecompGEP1.VarIndices.empty()) {
    if (GEP1BaseOffset >= 0) {
      if (V2Size != MemoryLocation::UnknownSize) {
        if ((uint64_t)GEP1BaseOffset < V2Size)
          return PartialAlias;
        return NoAlias;
      }
    } else {
      // We have the situation where:
      // +                +
      // | BaseOffset     |
      // ---------------->|
      // |-->V1Size       |-------> V2Size
      // GEP1             V2
      // We need to know that V2Size is not unknown, otherwise we might have
      // stripped a gep with negative index ('gep <ptr>, -1, ...).
      if (V1Size != MemoryLocation::UnknownSize &&
          V2Size != MemoryLocation::UnknownSize) {
        if (-(uint64_t)GEP1BaseOffset < V1Size)
          return PartialAlias;
        return NoAlias;
      }
    }
  }

  if (!DecompGEP1.VarIndices.empty()) {
    uint64_t Modulo = 0;
    bool AllPositive = true;
    for (unsigned i = 0, e = DecompGEP1.VarIndices.size(); i != e; ++i) {

      // Try to distinguish something like &A[i][1] against &A[42][0].
      // Grab the least significant bit set in any of the scales. We
      // don't need std::abs here (even if the scale's negative) as we'll
      // be ^'ing Modulo with itself later.
      Modulo |= (uint64_t)DecompGEP1.VarIndices[i].Scale;

      if (AllPositive) {
        // If the Value could change between cycles, then any reasoning about
        // the Value this cycle may not hold in the next cycle. We'll just
        // give up if we can't determine conditions that hold for every cycle:
        const Value *V = DecompGEP1.VarIndices[i].V;

        bool SignKnownZero, SignKnownOne;
        ComputeSignBit(const_cast<Value *>(V), SignKnownZero, SignKnownOne, DL,
                       0, &AC, nullptr, DT);

        // Zero-extension widens the variable, and so forces the sign
        // bit to zero.
        bool IsZExt = DecompGEP1.VarIndices[i].ZExtBits > 0 || isa<ZExtInst>(V);
        SignKnownZero |= IsZExt;
        SignKnownOne &= !IsZExt;

        // If the variable begins with a zero then we know it's
        // positive, regardless of whether the value is signed or
        // unsigned.
        int64_t Scale = DecompGEP1.VarIndices[i].Scale;
        AllPositive =
            (SignKnownZero && Scale >= 0) || (SignKnownOne && Scale < 0);
      }
    }

    Modulo = Modulo ^ (Modulo & (Modulo - 1));

    // We can compute the difference between the two addresses
    // mod Modulo. Check whether that difference guarantees that the
    // two locations do not alias.
    uint64_t ModOffset = (uint64_t)GEP1BaseOffset & (Modulo - 1);
    if (V1Size != MemoryLocation::UnknownSize &&
        V2Size != MemoryLocation::UnknownSize && ModOffset >= V2Size &&
        V1Size <= Modulo - ModOffset)
      return NoAlias;

    // If we know all the variables are positive, then GEP1 >= GEP1BasePtr.
    // If GEP1BasePtr > V2 (GEP1BaseOffset > 0) then we know the pointers
    // don't alias if V2Size can fit in the gap between V2 and GEP1BasePtr.
    if (AllPositive && GEP1BaseOffset > 0 && V2Size <= (uint64_t)GEP1BaseOffset)
      return NoAlias;

    if (constantOffsetHeuristic(DecompGEP1.VarIndices, V1Size, V2Size,
                                GEP1BaseOffset, &AC, DT))
      return NoAlias;
  }

  // Statically, we can see that the base objects are the same, but the
  // pointers have dynamic offsets which we can't resolve. And none of our
  // little tricks above worked.
  //
  // TODO: Returning PartialAlias instead of MayAlias is a mild hack; the
  // practical effect of this is protecting TBAA in the case of dynamic
  // indices into arrays of unions or malloc'd memory.
  return PartialAlias;
}

static AliasResult MergeAliasResults(AliasResult A, AliasResult B) {
  // If the results agree, take it.
  if (A == B)
    return A;
  // A mix of PartialAlias and MustAlias is PartialAlias.
  if ((A == PartialAlias && B == MustAlias) ||
      (B == PartialAlias && A == MustAlias))
    return PartialAlias;
  // Otherwise, we don't know anything.
  return MayAlias;
}

/// Provides a bunch of ad-hoc rules to disambiguate a Select instruction
/// against another.
AliasResult BasicAAResult::aliasSelect(const SelectInst *SI, uint64_t SISize,
                                       const AAMDNodes &SIAAInfo,
                                       const Value *V2, uint64_t V2Size,
                                       const AAMDNodes &V2AAInfo) {
  // If the values are Selects with the same condition, we can do a more precise
  // check: just check for aliases between the values on corresponding arms.
  if (const SelectInst *SI2 = dyn_cast<SelectInst>(V2))
    if (SI->getCondition() == SI2->getCondition()) {
      AliasResult Alias = aliasCheck(SI->getTrueValue(), SISize, SIAAInfo,
                                     SI2->getTrueValue(), V2Size, V2AAInfo);
      if (Alias == MayAlias)
        return MayAlias;
      AliasResult ThisAlias =
          aliasCheck(SI->getFalseValue(), SISize, SIAAInfo,
                     SI2->getFalseValue(), V2Size, V2AAInfo);
      return MergeAliasResults(ThisAlias, Alias);
    }

  // If both arms of the Select node NoAlias or MustAlias V2, then returns
  // NoAlias / MustAlias. Otherwise, returns MayAlias.
  AliasResult Alias =
      aliasCheck(V2, V2Size, V2AAInfo, SI->getTrueValue(), SISize, SIAAInfo);
  if (Alias == MayAlias)
    return MayAlias;

  AliasResult ThisAlias =
      aliasCheck(V2, V2Size, V2AAInfo, SI->getFalseValue(), SISize, SIAAInfo);
  return MergeAliasResults(ThisAlias, Alias);
}

/// Provide a bunch of ad-hoc rules to disambiguate a PHI instruction against
/// another.
AliasResult BasicAAResult::aliasPHI(const PHINode *PN, uint64_t PNSize,
                                    const AAMDNodes &PNAAInfo, const Value *V2,
                                    uint64_t V2Size,
                                    const AAMDNodes &V2AAInfo) {
  // Track phi nodes we have visited. We use this information when we determine
  // value equivalence.
  VisitedPhiBBs.insert(PN->getParent());

  // If the values are PHIs in the same block, we can do a more precise
  // as well as efficient check: just check for aliases between the values
  // on corresponding edges.
  if (const PHINode *PN2 = dyn_cast<PHINode>(V2))
    if (PN2->getParent() == PN->getParent()) {
      LocPair Locs(MemoryLocation(PN, PNSize, PNAAInfo),
                   MemoryLocation(V2, V2Size, V2AAInfo));
      if (PN > V2)
        std::swap(Locs.first, Locs.second);
      // Analyse the PHIs' inputs under the assumption that the PHIs are
      // NoAlias.
      // If the PHIs are May/MustAlias there must be (recursively) an input
      // operand from outside the PHIs' cycle that is MayAlias/MustAlias or
      // there must be an operation on the PHIs within the PHIs' value cycle
      // that causes a MayAlias.
      // Pretend the phis do not alias.
      AliasResult Alias = NoAlias;
      assert(AliasCache.count(Locs) &&
             "There must exist an entry for the phi node");
      AliasResult OrigAliasResult = AliasCache[Locs];
      AliasCache[Locs] = NoAlias;

      for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
        AliasResult ThisAlias =
            aliasCheck(PN->getIncomingValue(i), PNSize, PNAAInfo,
                       PN2->getIncomingValueForBlock(PN->getIncomingBlock(i)),
                       V2Size, V2AAInfo);
        Alias = MergeAliasResults(ThisAlias, Alias);
        if (Alias == MayAlias)
          break;
      }

      // Reset if speculation failed.
      if (Alias != NoAlias)
        AliasCache[Locs] = OrigAliasResult;

      return Alias;
    }

  SmallPtrSet<Value *, 4> UniqueSrc;
  SmallVector<Value *, 4> V1Srcs;
  bool isRecursive = false;
  for (Value *PV1 : PN->incoming_values()) {
    if (isa<PHINode>(PV1))
      // If any of the source itself is a PHI, return MayAlias conservatively
      // to avoid compile time explosion. The worst possible case is if both
      // sides are PHI nodes. In which case, this is O(m x n) time where 'm'
      // and 'n' are the number of PHI sources.
      return MayAlias;

    if (EnableRecPhiAnalysis)
      if (GEPOperator *PV1GEP = dyn_cast<GEPOperator>(PV1)) {
        // Check whether the incoming value is a GEP that advances the pointer
        // result of this PHI node (e.g. in a loop). If this is the case, we
        // would recurse and always get a MayAlias. Handle this case specially
        // below.
        if (PV1GEP->getPointerOperand() == PN && PV1GEP->getNumIndices() == 1 &&
            isa<ConstantInt>(PV1GEP->idx_begin())) {
          isRecursive = true;
          continue;
        }
      }

    if (UniqueSrc.insert(PV1).second)
      V1Srcs.push_back(PV1);
  }

  // If this PHI node is recursive, set the size of the accessed memory to
  // unknown to represent all the possible values the GEP could advance the
  // pointer to.
  if (isRecursive)
    PNSize = MemoryLocation::UnknownSize;

  AliasResult Alias =
      aliasCheck(V2, V2Size, V2AAInfo, V1Srcs[0], PNSize, PNAAInfo);

  // Early exit if the check of the first PHI source against V2 is MayAlias.
  // Other results are not possible.
  if (Alias == MayAlias)
    return MayAlias;

  // If all sources of the PHI node NoAlias or MustAlias V2, then returns
  // NoAlias / MustAlias. Otherwise, returns MayAlias.
  for (unsigned i = 1, e = V1Srcs.size(); i != e; ++i) {
    Value *V = V1Srcs[i];

    AliasResult ThisAlias =
        aliasCheck(V2, V2Size, V2AAInfo, V, PNSize, PNAAInfo);
    Alias = MergeAliasResults(ThisAlias, Alias);
    if (Alias == MayAlias)
      break;
  }

  return Alias;
}

/// Provides a bunch of ad-hoc rules to disambiguate in common cases, such as
/// array references.
AliasResult BasicAAResult::aliasCheck(const Value *V1, uint64_t V1Size,
                                      AAMDNodes V1AAInfo, const Value *V2,
                                      uint64_t V2Size, AAMDNodes V2AAInfo) {
  // If either of the memory references is empty, it doesn't matter what the
  // pointer values are.
  if (V1Size == 0 || V2Size == 0)
    return NoAlias;

  // Strip off any casts if they exist.
  V1 = V1->stripPointerCasts();
  V2 = V2->stripPointerCasts();

  // If V1 or V2 is undef, the result is NoAlias because we can always pick a
  // value for undef that aliases nothing in the program.
  if (isa<UndefValue>(V1) || isa<UndefValue>(V2))
    return NoAlias;

  // Are we checking for alias of the same value?
  // Because we look 'through' phi nodes, we could look at "Value" pointers from
  // different iterations. We must therefore make sure that this is not the
  // case. The function isValueEqualInPotentialCycles ensures that this cannot
  // happen by looking at the visited phi nodes and making sure they cannot
  // reach the value.
  if (isValueEqualInPotentialCycles(V1, V2))
    return MustAlias;

  if (!V1->getType()->isPointerTy() || !V2->getType()->isPointerTy())
    return NoAlias; // Scalars cannot alias each other

  // Figure out what objects these things are pointing to if we can.
  const Value *O1 = GetUnderlyingObject(V1, DL, MaxLookupSearchDepth);
  const Value *O2 = GetUnderlyingObject(V2, DL, MaxLookupSearchDepth);

  // Null values in the default address space don't point to any object, so they
  // don't alias any other pointer.
  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O1))
    if (CPN->getType()->getAddressSpace() == 0)
      return NoAlias;
  if (const ConstantPointerNull *CPN = dyn_cast<ConstantPointerNull>(O2))
    if (CPN->getType()->getAddressSpace() == 0)
      return NoAlias;

  if (O1 != O2) {
    // If V1/V2 point to two different objects, we know that we have no alias.
    if (isIdentifiedObject(O1) && isIdentifiedObject(O2))
      return NoAlias;

    // Constant pointers can't alias with non-const isIdentifiedObject objects.
    if ((isa<Constant>(O1) && isIdentifiedObject(O2) && !isa<Constant>(O2)) ||
        (isa<Constant>(O2) && isIdentifiedObject(O1) && !isa<Constant>(O1)))
      return NoAlias;

    // Function arguments can't alias with things that are known to be
    // unambigously identified at the function level.
    if ((isa<Argument>(O1) && isIdentifiedFunctionLocal(O2)) ||
        (isa<Argument>(O2) && isIdentifiedFunctionLocal(O1)))
      return NoAlias;

    // Most objects can't alias null.
    if ((isa<ConstantPointerNull>(O2) && isKnownNonNull(O1)) ||
        (isa<ConstantPointerNull>(O1) && isKnownNonNull(O2)))
      return NoAlias;

    // If one pointer is the result of a call/invoke or load and the other is a
    // non-escaping local object within the same function, then we know the
    // object couldn't escape to a point where the call could return it.
    //
    // Note that if the pointers are in different functions, there are a
    // variety of complications. A call with a nocapture argument may still
    // temporary store the nocapture argument's value in a temporary memory
    // location if that memory location doesn't escape. Or it may pass a
    // nocapture value to other functions as long as they don't capture it.
    if (isEscapeSource(O1) && isNonEscapingLocalObject(O2))
      return NoAlias;
    if (isEscapeSource(O2) && isNonEscapingLocalObject(O1))
      return NoAlias;
  }

  // If the size of one access is larger than the entire object on the other
  // side, then we know such behavior is undefined and can assume no alias.
  if ((V1Size != MemoryLocation::UnknownSize &&
       isObjectSmallerThan(O2, V1Size, DL, TLI)) ||
      (V2Size != MemoryLocation::UnknownSize &&
       isObjectSmallerThan(O1, V2Size, DL, TLI)))
    return NoAlias;

  // Check the cache before climbing up use-def chains. This also terminates
  // otherwise infinitely recursive queries.
  LocPair Locs(MemoryLocation(V1, V1Size, V1AAInfo),
               MemoryLocation(V2, V2Size, V2AAInfo));
  if (V1 > V2)
    std::swap(Locs.first, Locs.second);
  std::pair<AliasCacheTy::iterator, bool> Pair =
      AliasCache.insert(std::make_pair(Locs, MayAlias));
  if (!Pair.second)
    return Pair.first->second;

  // FIXME: This isn't aggressively handling alias(GEP, PHI) for example: if the
  // GEP can't simplify, we don't even look at the PHI cases.
  if (!isa<GEPOperator>(V1) && isa<GEPOperator>(V2)) {
    std::swap(V1, V2);
    std::swap(V1Size, V2Size);
    std::swap(O1, O2);
    std::swap(V1AAInfo, V2AAInfo);
  }
  if (const GEPOperator *GV1 = dyn_cast<GEPOperator>(V1)) {
    AliasResult Result =
        aliasGEP(GV1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo, O1, O2);
    if (Result != MayAlias)
      return AliasCache[Locs] = Result;
  }

  if (isa<PHINode>(V2) && !isa<PHINode>(V1)) {
    std::swap(V1, V2);
    std::swap(V1Size, V2Size);
    std::swap(V1AAInfo, V2AAInfo);
  }
  if (const PHINode *PN = dyn_cast<PHINode>(V1)) {
    AliasResult Result = aliasPHI(PN, V1Size, V1AAInfo, V2, V2Size, V2AAInfo);
    if (Result != MayAlias)
      return AliasCache[Locs] = Result;
  }

  if (isa<SelectInst>(V2) && !isa<SelectInst>(V1)) {
    std::swap(V1, V2);
    std::swap(V1Size, V2Size);
    std::swap(V1AAInfo, V2AAInfo);
  }
  if (const SelectInst *S1 = dyn_cast<SelectInst>(V1)) {
    AliasResult Result =
        aliasSelect(S1, V1Size, V1AAInfo, V2, V2Size, V2AAInfo);
    if (Result != MayAlias)
      return AliasCache[Locs] = Result;
  }

  // If both pointers are pointing into the same object and one of them
  // accesses the entire object, then the accesses must overlap in some way.
  if (O1 == O2)
    if ((V1Size != MemoryLocation::UnknownSize &&
         isObjectSize(O1, V1Size, DL, TLI)) ||
        (V2Size != MemoryLocation::UnknownSize &&
         isObjectSize(O2, V2Size, DL, TLI)))
      return AliasCache[Locs] = PartialAlias;

  // Recurse back into the best AA results we have, potentially with refined
  // memory locations. We have already ensured that BasicAA has a MayAlias
  // cache result for these, so any recursion back into BasicAA won't loop.
  AliasResult Result = getBestAAResults().alias(Locs.first, Locs.second);
  return AliasCache[Locs] = Result;
}

/// Check whether two Values can be considered equivalent.
///
/// In addition to pointer equivalence of \p V1 and \p V2 this checks whether
/// they can not be part of a cycle in the value graph by looking at all
/// visited phi nodes an making sure that the phis cannot reach the value. We
/// have to do this because we are looking through phi nodes (That is we say
/// noalias(V, phi(VA, VB)) if noalias(V, VA) and noalias(V, VB).
bool BasicAAResult::isValueEqualInPotentialCycles(const Value *V,
                                                  const Value *V2) {
  if (V != V2)
    return false;

  const Instruction *Inst = dyn_cast<Instruction>(V);
  if (!Inst)
    return true;

  if (VisitedPhiBBs.empty())
    return true;

  if (VisitedPhiBBs.size() > MaxNumPhiBBsValueReachabilityCheck)
    return false;

  // Make sure that the visited phis cannot reach the Value. This ensures that
  // the Values cannot come from different iterations of a potential cycle the
  // phi nodes could be involved in.
  for (auto *P : VisitedPhiBBs)
    if (isPotentiallyReachable(&P->front(), Inst, DT, LI))
      return false;

  return true;
}

/// Computes the symbolic difference between two de-composed GEPs.
///
/// Dest and Src are the variable indices from two decomposed GetElementPtr
/// instructions GEP1 and GEP2 which have common base pointers.
void BasicAAResult::GetIndexDifference(
    SmallVectorImpl<VariableGEPIndex> &Dest,
    const SmallVectorImpl<VariableGEPIndex> &Src) {
  if (Src.empty())
    return;

  for (unsigned i = 0, e = Src.size(); i != e; ++i) {
    const Value *V = Src[i].V;
    unsigned ZExtBits = Src[i].ZExtBits, SExtBits = Src[i].SExtBits;
    int64_t Scale = Src[i].Scale;

    // Find V in Dest.  This is N^2, but pointer indices almost never have more
    // than a few variable indexes.
    for (unsigned j = 0, e = Dest.size(); j != e; ++j) {
      if (!isValueEqualInPotentialCycles(Dest[j].V, V) ||
          Dest[j].ZExtBits != ZExtBits || Dest[j].SExtBits != SExtBits)
        continue;

      // If we found it, subtract off Scale V's from the entry in Dest.  If it
      // goes to zero, remove the entry.
      if (Dest[j].Scale != Scale)
        Dest[j].Scale -= Scale;
      else
        Dest.erase(Dest.begin() + j);
      Scale = 0;
      break;
    }

    // If we didn't consume this entry, add it to the end of the Dest list.
    if (Scale) {
      VariableGEPIndex Entry = {V, ZExtBits, SExtBits, -Scale};
      Dest.push_back(Entry);
    }
  }
}

bool BasicAAResult::constantOffsetHeuristic(
    const SmallVectorImpl<VariableGEPIndex> &VarIndices, uint64_t V1Size,
    uint64_t V2Size, int64_t BaseOffset, AssumptionCache *AC,
    DominatorTree *DT) {
  if (VarIndices.size() != 2 || V1Size == MemoryLocation::UnknownSize ||
      V2Size == MemoryLocation::UnknownSize)
    return false;

  const VariableGEPIndex &Var0 = VarIndices[0], &Var1 = VarIndices[1];

  if (Var0.ZExtBits != Var1.ZExtBits || Var0.SExtBits != Var1.SExtBits ||
      Var0.Scale != -Var1.Scale)
    return false;

  unsigned Width = Var1.V->getType()->getIntegerBitWidth();

  // We'll strip off the Extensions of Var0 and Var1 and do another round
  // of GetLinearExpression decomposition. In the example above, if Var0
  // is zext(%x + 1) we should get V1 == %x and V1Offset == 1.

  APInt V0Scale(Width, 0), V0Offset(Width, 0), V1Scale(Width, 0),
      V1Offset(Width, 0);
  bool NSW = true, NUW = true;
  unsigned V0ZExtBits = 0, V0SExtBits = 0, V1ZExtBits = 0, V1SExtBits = 0;
  const Value *V0 = GetLinearExpression(Var0.V, V0Scale, V0Offset, V0ZExtBits,
                                        V0SExtBits, DL, 0, AC, DT, NSW, NUW);
  NSW = true;
  NUW = true;
  const Value *V1 = GetLinearExpression(Var1.V, V1Scale, V1Offset, V1ZExtBits,
                                        V1SExtBits, DL, 0, AC, DT, NSW, NUW);

  if (V0Scale != V1Scale || V0ZExtBits != V1ZExtBits ||
      V0SExtBits != V1SExtBits || !isValueEqualInPotentialCycles(V0, V1))
    return false;

  // We have a hit - Var0 and Var1 only differ by a constant offset!

  // If we've been sext'ed then zext'd the maximum difference between Var0 and
  // Var1 is possible to calculate, but we're just interested in the absolute
  // minimum difference between the two. The minimum distance may occur due to
  // wrapping; consider "add i3 %i, 5": if %i == 7 then 7 + 5 mod 8 == 4, and so
  // the minimum distance between %i and %i + 5 is 3.
  APInt MinDiff = V0Offset - V1Offset, Wrapped = -MinDiff;
  MinDiff = APIntOps::umin(MinDiff, Wrapped);
  uint64_t MinDiffBytes = MinDiff.getZExtValue() * std::abs(Var0.Scale);

  // We can't definitely say whether GEP1 is before or after V2 due to wrapping
  // arithmetic (i.e. for some values of GEP1 and V2 GEP1 < V2, and for other
  // values GEP1 > V2). We'll therefore only declare NoAlias if both V1Size and
  // V2Size can fit in the MinDiffBytes gap.
  return V1Size + std::abs(BaseOffset) <= MinDiffBytes &&
         V2Size + std::abs(BaseOffset) <= MinDiffBytes;
}

//===----------------------------------------------------------------------===//
// BasicAliasAnalysis Pass
//===----------------------------------------------------------------------===//

char BasicAA::PassID;

BasicAAResult BasicAA::run(Function &F, AnalysisManager<Function> &AM) {
  return BasicAAResult(F.getParent()->getDataLayout(),
                       AM.getResult<TargetLibraryAnalysis>(F),
                       AM.getResult<AssumptionAnalysis>(F),
                       &AM.getResult<DominatorTreeAnalysis>(F),
                       AM.getCachedResult<LoopAnalysis>(F));
}

BasicAAWrapperPass::BasicAAWrapperPass() : FunctionPass(ID) {
    initializeBasicAAWrapperPassPass(*PassRegistry::getPassRegistry());
}

char BasicAAWrapperPass::ID = 0;
void BasicAAWrapperPass::anchor() {}

INITIALIZE_PASS_BEGIN(BasicAAWrapperPass, "basicaa",
                      "Basic Alias Analysis (stateless AA impl)", true, true)
INITIALIZE_PASS_DEPENDENCY(AssumptionCacheTracker)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TargetLibraryInfoWrapperPass)
INITIALIZE_PASS_END(BasicAAWrapperPass, "basicaa",
                    "Basic Alias Analysis (stateless AA impl)", true, true)

FunctionPass *llvm::createBasicAAWrapperPass() {
  return new BasicAAWrapperPass();
}

bool BasicAAWrapperPass::runOnFunction(Function &F) {
  auto &ACT = getAnalysis<AssumptionCacheTracker>();
  auto &TLIWP = getAnalysis<TargetLibraryInfoWrapperPass>();
  auto &DTWP = getAnalysis<DominatorTreeWrapperPass>();
  auto *LIWP = getAnalysisIfAvailable<LoopInfoWrapperPass>();

  Result.reset(new BasicAAResult(F.getParent()->getDataLayout(), TLIWP.getTLI(),
                                 ACT.getAssumptionCache(F), &DTWP.getDomTree(),
                                 LIWP ? &LIWP->getLoopInfo() : nullptr));

  return false;
}

void BasicAAWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
  AU.setPreservesAll();
  AU.addRequired<AssumptionCacheTracker>();
  AU.addRequired<DominatorTreeWrapperPass>();
  AU.addRequired<TargetLibraryInfoWrapperPass>();
}

BasicAAResult llvm::createLegacyPMBasicAAResult(Pass &P, Function &F) {
  return BasicAAResult(
      F.getParent()->getDataLayout(),
      P.getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(),
      P.getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F));
}