llvm.org GIT mirror llvm / release_38 lib / CodeGen / SelectionDAG / LegalizeVectorOps.cpp
release_38

Tree @release_38 (Download .tar.gz)

LegalizeVectorOps.cpp @release_38raw · history · blame

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
//===-- LegalizeVectorOps.cpp - Implement SelectionDAG::LegalizeVectors ---===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the SelectionDAG::LegalizeVectors method.
//
// The vector legalizer looks for vector operations which might need to be
// scalarized and legalizes them. This is a separate step from Legalize because
// scalarizing can introduce illegal types.  For example, suppose we have an
// ISD::SDIV of type v2i64 on x86-32.  The type is legal (for example, addition
// on a v2i64 is legal), but ISD::SDIV isn't legal, so we have to unroll the
// operation, which introduces nodes with the illegal type i64 which must be
// expanded.  Similarly, suppose we have an ISD::SRA of type v16i8 on PowerPC;
// the operation must be unrolled, which introduces nodes with the illegal
// type i8 which must be promoted.
//
// This does not legalize vector manipulations like ISD::BUILD_VECTOR,
// or operations that happen to take a vector which are custom-lowered;
// the legalization for such operations never produces nodes
// with illegal types, so it's okay to put off legalizing them until
// SelectionDAG::Legalize runs.
//
//===----------------------------------------------------------------------===//

#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/Target/TargetLowering.h"
using namespace llvm;

namespace {
class VectorLegalizer {
  SelectionDAG& DAG;
  const TargetLowering &TLI;
  bool Changed; // Keep track of whether anything changed

  /// For nodes that are of legal width, and that have more than one use, this
  /// map indicates what regularized operand to use.  This allows us to avoid
  /// legalizing the same thing more than once.
  SmallDenseMap<SDValue, SDValue, 64> LegalizedNodes;

  /// \brief Adds a node to the translation cache.
  void AddLegalizedOperand(SDValue From, SDValue To) {
    LegalizedNodes.insert(std::make_pair(From, To));
    // If someone requests legalization of the new node, return itself.
    if (From != To)
      LegalizedNodes.insert(std::make_pair(To, To));
  }

  /// \brief Legalizes the given node.
  SDValue LegalizeOp(SDValue Op);

  /// \brief Assuming the node is legal, "legalize" the results.
  SDValue TranslateLegalizeResults(SDValue Op, SDValue Result);

  /// \brief Implements unrolling a VSETCC.
  SDValue UnrollVSETCC(SDValue Op);

  /// \brief Implement expand-based legalization of vector operations.
  ///
  /// This is just a high-level routine to dispatch to specific code paths for
  /// operations to legalize them.
  SDValue Expand(SDValue Op);

  /// \brief Implements expansion for FNEG; falls back to UnrollVectorOp if
  /// FSUB isn't legal.
  ///
  /// Implements expansion for UINT_TO_FLOAT; falls back to UnrollVectorOp if
  /// SINT_TO_FLOAT and SHR on vectors isn't legal.
  SDValue ExpandUINT_TO_FLOAT(SDValue Op);

  /// \brief Implement expansion for SIGN_EXTEND_INREG using SRL and SRA.
  SDValue ExpandSEXTINREG(SDValue Op);

  /// \brief Implement expansion for ANY_EXTEND_VECTOR_INREG.
  ///
  /// Shuffles the low lanes of the operand into place and bitcasts to the proper
  /// type. The contents of the bits in the extended part of each element are
  /// undef.
  SDValue ExpandANY_EXTEND_VECTOR_INREG(SDValue Op);

  /// \brief Implement expansion for SIGN_EXTEND_VECTOR_INREG.
  ///
  /// Shuffles the low lanes of the operand into place, bitcasts to the proper
  /// type, then shifts left and arithmetic shifts right to introduce a sign
  /// extension.
  SDValue ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op);

  /// \brief Implement expansion for ZERO_EXTEND_VECTOR_INREG.
  ///
  /// Shuffles the low lanes of the operand into place and blends zeros into
  /// the remaining lanes, finally bitcasting to the proper type.
  SDValue ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op);

  /// \brief Expand bswap of vectors into a shuffle if legal.
  SDValue ExpandBSWAP(SDValue Op);

  /// \brief Implement vselect in terms of XOR, AND, OR when blend is not
  /// supported by the target.
  SDValue ExpandVSELECT(SDValue Op);
  SDValue ExpandSELECT(SDValue Op);
  SDValue ExpandLoad(SDValue Op);
  SDValue ExpandStore(SDValue Op);
  SDValue ExpandFNEG(SDValue Op);
  SDValue ExpandBITREVERSE(SDValue Op);
  SDValue ExpandCTLZ_CTTZ_ZERO_UNDEF(SDValue Op);

  /// \brief Implements vector promotion.
  ///
  /// This is essentially just bitcasting the operands to a different type and
  /// bitcasting the result back to the original type.
  SDValue Promote(SDValue Op);

  /// \brief Implements [SU]INT_TO_FP vector promotion.
  ///
  /// This is a [zs]ext of the input operand to the next size up.
  SDValue PromoteINT_TO_FP(SDValue Op);

  /// \brief Implements FP_TO_[SU]INT vector promotion of the result type.
  ///
  /// It is promoted to the next size up integer type.  The result is then
  /// truncated back to the original type.
  SDValue PromoteFP_TO_INT(SDValue Op, bool isSigned);

public:
  /// \brief Begin legalizer the vector operations in the DAG.
  bool Run();
  VectorLegalizer(SelectionDAG& dag) :
      DAG(dag), TLI(dag.getTargetLoweringInfo()), Changed(false) {}
};

bool VectorLegalizer::Run() {
  // Before we start legalizing vector nodes, check if there are any vectors.
  bool HasVectors = false;
  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
       E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I) {
    // Check if the values of the nodes contain vectors. We don't need to check
    // the operands because we are going to check their values at some point.
    for (SDNode::value_iterator J = I->value_begin(), E = I->value_end();
         J != E; ++J)
      HasVectors |= J->isVector();

    // If we found a vector node we can start the legalization.
    if (HasVectors)
      break;
  }

  // If this basic block has no vectors then no need to legalize vectors.
  if (!HasVectors)
    return false;

  // The legalize process is inherently a bottom-up recursive process (users
  // legalize their uses before themselves).  Given infinite stack space, we
  // could just start legalizing on the root and traverse the whole graph.  In
  // practice however, this causes us to run out of stack space on large basic
  // blocks.  To avoid this problem, compute an ordering of the nodes where each
  // node is only legalized after all of its operands are legalized.
  DAG.AssignTopologicalOrder();
  for (SelectionDAG::allnodes_iterator I = DAG.allnodes_begin(),
       E = std::prev(DAG.allnodes_end()); I != std::next(E); ++I)
    LegalizeOp(SDValue(&*I, 0));

  // Finally, it's possible the root changed.  Get the new root.
  SDValue OldRoot = DAG.getRoot();
  assert(LegalizedNodes.count(OldRoot) && "Root didn't get legalized?");
  DAG.setRoot(LegalizedNodes[OldRoot]);

  LegalizedNodes.clear();

  // Remove dead nodes now.
  DAG.RemoveDeadNodes();

  return Changed;
}

SDValue VectorLegalizer::TranslateLegalizeResults(SDValue Op, SDValue Result) {
  // Generic legalization: just pass the operand through.
  for (unsigned i = 0, e = Op.getNode()->getNumValues(); i != e; ++i)
    AddLegalizedOperand(Op.getValue(i), Result.getValue(i));
  return Result.getValue(Op.getResNo());
}

SDValue VectorLegalizer::LegalizeOp(SDValue Op) {
  // Note that LegalizeOp may be reentered even from single-use nodes, which
  // means that we always must cache transformed nodes.
  DenseMap<SDValue, SDValue>::iterator I = LegalizedNodes.find(Op);
  if (I != LegalizedNodes.end()) return I->second;

  SDNode* Node = Op.getNode();

  // Legalize the operands
  SmallVector<SDValue, 8> Ops;
  for (const SDValue &Op : Node->op_values())
    Ops.push_back(LegalizeOp(Op));

  SDValue Result = SDValue(DAG.UpdateNodeOperands(Op.getNode(), Ops), 0);

  bool HasVectorValue = false;
  if (Op.getOpcode() == ISD::LOAD) {
    LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
    ISD::LoadExtType ExtType = LD->getExtensionType();
    if (LD->getMemoryVT().isVector() && ExtType != ISD::NON_EXTLOAD)
      switch (TLI.getLoadExtAction(LD->getExtensionType(), LD->getValueType(0),
                                   LD->getMemoryVT())) {
      default: llvm_unreachable("This action is not supported yet!");
      case TargetLowering::Legal:
        return TranslateLegalizeResults(Op, Result);
      case TargetLowering::Custom:
        if (SDValue Lowered = TLI.LowerOperation(Result, DAG)) {
          if (Lowered == Result)
            return TranslateLegalizeResults(Op, Lowered);
          Changed = true;
          if (Lowered->getNumValues() != Op->getNumValues()) {
            // This expanded to something other than the load. Assume the
            // lowering code took care of any chain values, and just handle the
            // returned value.
            assert(Result.getValue(1).use_empty() &&
                   "There are still live users of the old chain!");
            return LegalizeOp(Lowered);
          }
          return TranslateLegalizeResults(Op, Lowered);
        }
      case TargetLowering::Expand:
        Changed = true;
        return LegalizeOp(ExpandLoad(Op));
      }
  } else if (Op.getOpcode() == ISD::STORE) {
    StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
    EVT StVT = ST->getMemoryVT();
    MVT ValVT = ST->getValue().getSimpleValueType();
    if (StVT.isVector() && ST->isTruncatingStore())
      switch (TLI.getTruncStoreAction(ValVT, StVT)) {
      default: llvm_unreachable("This action is not supported yet!");
      case TargetLowering::Legal:
        return TranslateLegalizeResults(Op, Result);
      case TargetLowering::Custom: {
        SDValue Lowered = TLI.LowerOperation(Result, DAG);
        Changed = Lowered != Result;
        return TranslateLegalizeResults(Op, Lowered);
      }
      case TargetLowering::Expand:
        Changed = true;
        return LegalizeOp(ExpandStore(Op));
      }
  } else if (Op.getOpcode() == ISD::MSCATTER || Op.getOpcode() == ISD::MSTORE)
    HasVectorValue = true;

  for (SDNode::value_iterator J = Node->value_begin(), E = Node->value_end();
       J != E;
       ++J)
    HasVectorValue |= J->isVector();
  if (!HasVectorValue)
    return TranslateLegalizeResults(Op, Result);

  EVT QueryType;
  switch (Op.getOpcode()) {
  default:
    return TranslateLegalizeResults(Op, Result);
  case ISD::ADD:
  case ISD::SUB:
  case ISD::MUL:
  case ISD::SDIV:
  case ISD::UDIV:
  case ISD::SREM:
  case ISD::UREM:
  case ISD::SDIVREM:
  case ISD::UDIVREM:
  case ISD::FADD:
  case ISD::FSUB:
  case ISD::FMUL:
  case ISD::FDIV:
  case ISD::FREM:
  case ISD::AND:
  case ISD::OR:
  case ISD::XOR:
  case ISD::SHL:
  case ISD::SRA:
  case ISD::SRL:
  case ISD::ROTL:
  case ISD::ROTR:
  case ISD::BSWAP:
  case ISD::BITREVERSE:
  case ISD::CTLZ:
  case ISD::CTTZ:
  case ISD::CTLZ_ZERO_UNDEF:
  case ISD::CTTZ_ZERO_UNDEF:
  case ISD::CTPOP:
  case ISD::SELECT:
  case ISD::VSELECT:
  case ISD::SELECT_CC:
  case ISD::SETCC:
  case ISD::ZERO_EXTEND:
  case ISD::ANY_EXTEND:
  case ISD::TRUNCATE:
  case ISD::SIGN_EXTEND:
  case ISD::FP_TO_SINT:
  case ISD::FP_TO_UINT:
  case ISD::FNEG:
  case ISD::FABS:
  case ISD::FMINNUM:
  case ISD::FMAXNUM:
  case ISD::FMINNAN:
  case ISD::FMAXNAN:
  case ISD::FCOPYSIGN:
  case ISD::FSQRT:
  case ISD::FSIN:
  case ISD::FCOS:
  case ISD::FPOWI:
  case ISD::FPOW:
  case ISD::FLOG:
  case ISD::FLOG2:
  case ISD::FLOG10:
  case ISD::FEXP:
  case ISD::FEXP2:
  case ISD::FCEIL:
  case ISD::FTRUNC:
  case ISD::FRINT:
  case ISD::FNEARBYINT:
  case ISD::FROUND:
  case ISD::FFLOOR:
  case ISD::FP_ROUND:
  case ISD::FP_EXTEND:
  case ISD::FMA:
  case ISD::SIGN_EXTEND_INREG:
  case ISD::ANY_EXTEND_VECTOR_INREG:
  case ISD::SIGN_EXTEND_VECTOR_INREG:
  case ISD::ZERO_EXTEND_VECTOR_INREG:
  case ISD::SMIN:
  case ISD::SMAX:
  case ISD::UMIN:
  case ISD::UMAX:
    QueryType = Node->getValueType(0);
    break;
  case ISD::FP_ROUND_INREG:
    QueryType = cast<VTSDNode>(Node->getOperand(1))->getVT();
    break;
  case ISD::SINT_TO_FP:
  case ISD::UINT_TO_FP:
    QueryType = Node->getOperand(0).getValueType();
    break;
  case ISD::MSCATTER:
    QueryType = cast<MaskedScatterSDNode>(Node)->getValue().getValueType();
    break;
  case ISD::MSTORE:
    QueryType = cast<MaskedStoreSDNode>(Node)->getValue().getValueType();
    break;
  }

  switch (TLI.getOperationAction(Node->getOpcode(), QueryType)) {
  default: llvm_unreachable("This action is not supported yet!");
  case TargetLowering::Promote:
    Result = Promote(Op);
    Changed = true;
    break;
  case TargetLowering::Legal:
    break;
  case TargetLowering::Custom: {
    SDValue Tmp1 = TLI.LowerOperation(Op, DAG);
    if (Tmp1.getNode()) {
      Result = Tmp1;
      break;
    }
    // FALL THROUGH
  }
  case TargetLowering::Expand:
    Result = Expand(Op);
  }

  // Make sure that the generated code is itself legal.
  if (Result != Op) {
    Result = LegalizeOp(Result);
    Changed = true;
  }

  // Note that LegalizeOp may be reentered even from single-use nodes, which
  // means that we always must cache transformed nodes.
  AddLegalizedOperand(Op, Result);
  return Result;
}

SDValue VectorLegalizer::Promote(SDValue Op) {
  // For a few operations there is a specific concept for promotion based on
  // the operand's type.
  switch (Op.getOpcode()) {
  case ISD::SINT_TO_FP:
  case ISD::UINT_TO_FP:
    // "Promote" the operation by extending the operand.
    return PromoteINT_TO_FP(Op);
  case ISD::FP_TO_UINT:
  case ISD::FP_TO_SINT:
    // Promote the operation by extending the operand.
    return PromoteFP_TO_INT(Op, Op->getOpcode() == ISD::FP_TO_SINT);
  }

  // There are currently two cases of vector promotion:
  // 1) Bitcasting a vector of integers to a different type to a vector of the
  //    same overall length. For example, x86 promotes ISD::AND v2i32 to v1i64.
  // 2) Extending a vector of floats to a vector of the same number of larger
  //    floats. For example, AArch64 promotes ISD::FADD on v4f16 to v4f32.
  MVT VT = Op.getSimpleValueType();
  assert(Op.getNode()->getNumValues() == 1 &&
         "Can't promote a vector with multiple results!");
  MVT NVT = TLI.getTypeToPromoteTo(Op.getOpcode(), VT);
  SDLoc dl(Op);
  SmallVector<SDValue, 4> Operands(Op.getNumOperands());

  for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
    if (Op.getOperand(j).getValueType().isVector())
      if (Op.getOperand(j)
              .getValueType()
              .getVectorElementType()
              .isFloatingPoint() &&
          NVT.isVector() && NVT.getVectorElementType().isFloatingPoint())
        Operands[j] = DAG.getNode(ISD::FP_EXTEND, dl, NVT, Op.getOperand(j));
      else
        Operands[j] = DAG.getNode(ISD::BITCAST, dl, NVT, Op.getOperand(j));
    else
      Operands[j] = Op.getOperand(j);
  }

  Op = DAG.getNode(Op.getOpcode(), dl, NVT, Operands, Op.getNode()->getFlags());
  if ((VT.isFloatingPoint() && NVT.isFloatingPoint()) ||
      (VT.isVector() && VT.getVectorElementType().isFloatingPoint() &&
       NVT.isVector() && NVT.getVectorElementType().isFloatingPoint()))
    return DAG.getNode(ISD::FP_ROUND, dl, VT, Op, DAG.getIntPtrConstant(0, dl));
  else
    return DAG.getNode(ISD::BITCAST, dl, VT, Op);
}

SDValue VectorLegalizer::PromoteINT_TO_FP(SDValue Op) {
  // INT_TO_FP operations may require the input operand be promoted even
  // when the type is otherwise legal.
  EVT VT = Op.getOperand(0).getValueType();
  assert(Op.getNode()->getNumValues() == 1 &&
         "Can't promote a vector with multiple results!");

  // Normal getTypeToPromoteTo() doesn't work here, as that will promote
  // by widening the vector w/ the same element width and twice the number
  // of elements. We want the other way around, the same number of elements,
  // each twice the width.
  //
  // Increase the bitwidth of the element to the next pow-of-two
  // (which is greater than 8 bits).

  EVT NVT = VT.widenIntegerVectorElementType(*DAG.getContext());
  assert(NVT.isSimple() && "Promoting to a non-simple vector type!");
  SDLoc dl(Op);
  SmallVector<SDValue, 4> Operands(Op.getNumOperands());

  unsigned Opc = Op.getOpcode() == ISD::UINT_TO_FP ? ISD::ZERO_EXTEND :
    ISD::SIGN_EXTEND;
  for (unsigned j = 0; j != Op.getNumOperands(); ++j) {
    if (Op.getOperand(j).getValueType().isVector())
      Operands[j] = DAG.getNode(Opc, dl, NVT, Op.getOperand(j));
    else
      Operands[j] = Op.getOperand(j);
  }

  return DAG.getNode(Op.getOpcode(), dl, Op.getValueType(), Operands);
}

// For FP_TO_INT we promote the result type to a vector type with wider
// elements and then truncate the result.  This is different from the default
// PromoteVector which uses bitcast to promote thus assumning that the
// promoted vector type has the same overall size.
SDValue VectorLegalizer::PromoteFP_TO_INT(SDValue Op, bool isSigned) {
  assert(Op.getNode()->getNumValues() == 1 &&
         "Can't promote a vector with multiple results!");
  EVT VT = Op.getValueType();

  EVT NewVT;
  unsigned NewOpc;
  while (1) {
    NewVT = VT.widenIntegerVectorElementType(*DAG.getContext());
    assert(NewVT.isSimple() && "Promoting to a non-simple vector type!");
    if (TLI.isOperationLegalOrCustom(ISD::FP_TO_SINT, NewVT)) {
      NewOpc = ISD::FP_TO_SINT;
      break;
    }
    if (!isSigned && TLI.isOperationLegalOrCustom(ISD::FP_TO_UINT, NewVT)) {
      NewOpc = ISD::FP_TO_UINT;
      break;
    }
  }

  SDLoc loc(Op);
  SDValue promoted  = DAG.getNode(NewOpc, SDLoc(Op), NewVT, Op.getOperand(0));
  return DAG.getNode(ISD::TRUNCATE, SDLoc(Op), VT, promoted);
}


SDValue VectorLegalizer::ExpandLoad(SDValue Op) {
  SDLoc dl(Op);
  LoadSDNode *LD = cast<LoadSDNode>(Op.getNode());
  SDValue Chain = LD->getChain();
  SDValue BasePTR = LD->getBasePtr();
  EVT SrcVT = LD->getMemoryVT();
  ISD::LoadExtType ExtType = LD->getExtensionType();

  SmallVector<SDValue, 8> Vals;
  SmallVector<SDValue, 8> LoadChains;
  unsigned NumElem = SrcVT.getVectorNumElements();

  EVT SrcEltVT = SrcVT.getScalarType();
  EVT DstEltVT = Op.getNode()->getValueType(0).getScalarType();

  if (SrcVT.getVectorNumElements() > 1 && !SrcEltVT.isByteSized()) {
    // When elements in a vector is not byte-addressable, we cannot directly
    // load each element by advancing pointer, which could only address bytes.
    // Instead, we load all significant words, mask bits off, and concatenate
    // them to form each element. Finally, they are extended to destination
    // scalar type to build the destination vector.
    EVT WideVT = TLI.getPointerTy(DAG.getDataLayout());

    assert(WideVT.isRound() &&
           "Could not handle the sophisticated case when the widest integer is"
           " not power of 2.");
    assert(WideVT.bitsGE(SrcEltVT) &&
           "Type is not legalized?");

    unsigned WideBytes = WideVT.getStoreSize();
    unsigned Offset = 0;
    unsigned RemainingBytes = SrcVT.getStoreSize();
    SmallVector<SDValue, 8> LoadVals;

    while (RemainingBytes > 0) {
      SDValue ScalarLoad;
      unsigned LoadBytes = WideBytes;

      if (RemainingBytes >= LoadBytes) {
        ScalarLoad = DAG.getLoad(WideVT, dl, Chain, BasePTR,
                                 LD->getPointerInfo().getWithOffset(Offset),
                                 LD->isVolatile(), LD->isNonTemporal(),
                                 LD->isInvariant(),
                                 MinAlign(LD->getAlignment(), Offset),
                                 LD->getAAInfo());
      } else {
        EVT LoadVT = WideVT;
        while (RemainingBytes < LoadBytes) {
          LoadBytes >>= 1; // Reduce the load size by half.
          LoadVT = EVT::getIntegerVT(*DAG.getContext(), LoadBytes << 3);
        }
        ScalarLoad = DAG.getExtLoad(ISD::EXTLOAD, dl, WideVT, Chain, BasePTR,
                                    LD->getPointerInfo().getWithOffset(Offset),
                                    LoadVT, LD->isVolatile(),
                                    LD->isNonTemporal(), LD->isInvariant(),
                                    MinAlign(LD->getAlignment(), Offset),
                                    LD->getAAInfo());
      }

      RemainingBytes -= LoadBytes;
      Offset += LoadBytes;
      BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
                            DAG.getConstant(LoadBytes, dl,
                                            BasePTR.getValueType()));

      LoadVals.push_back(ScalarLoad.getValue(0));
      LoadChains.push_back(ScalarLoad.getValue(1));
    }

    // Extract bits, pack and extend/trunc them into destination type.
    unsigned SrcEltBits = SrcEltVT.getSizeInBits();
    SDValue SrcEltBitMask = DAG.getConstant((1U << SrcEltBits) - 1, dl, WideVT);

    unsigned BitOffset = 0;
    unsigned WideIdx = 0;
    unsigned WideBits = WideVT.getSizeInBits();

    for (unsigned Idx = 0; Idx != NumElem; ++Idx) {
      SDValue Lo, Hi, ShAmt;

      if (BitOffset < WideBits) {
        ShAmt = DAG.getConstant(
            BitOffset, dl, TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
        Lo = DAG.getNode(ISD::SRL, dl, WideVT, LoadVals[WideIdx], ShAmt);
        Lo = DAG.getNode(ISD::AND, dl, WideVT, Lo, SrcEltBitMask);
      }

      BitOffset += SrcEltBits;
      if (BitOffset >= WideBits) {
        WideIdx++;
        BitOffset -= WideBits;
        if (BitOffset > 0) {
          ShAmt = DAG.getConstant(
              SrcEltBits - BitOffset, dl,
              TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
          Hi = DAG.getNode(ISD::SHL, dl, WideVT, LoadVals[WideIdx], ShAmt);
          Hi = DAG.getNode(ISD::AND, dl, WideVT, Hi, SrcEltBitMask);
        }
      }

      if (Hi.getNode())
        Lo = DAG.getNode(ISD::OR, dl, WideVT, Lo, Hi);

      switch (ExtType) {
      default: llvm_unreachable("Unknown extended-load op!");
      case ISD::EXTLOAD:
        Lo = DAG.getAnyExtOrTrunc(Lo, dl, DstEltVT);
        break;
      case ISD::ZEXTLOAD:
        Lo = DAG.getZExtOrTrunc(Lo, dl, DstEltVT);
        break;
      case ISD::SEXTLOAD:
        ShAmt =
            DAG.getConstant(WideBits - SrcEltBits, dl,
                            TLI.getShiftAmountTy(WideVT, DAG.getDataLayout()));
        Lo = DAG.getNode(ISD::SHL, dl, WideVT, Lo, ShAmt);
        Lo = DAG.getNode(ISD::SRA, dl, WideVT, Lo, ShAmt);
        Lo = DAG.getSExtOrTrunc(Lo, dl, DstEltVT);
        break;
      }
      Vals.push_back(Lo);
    }
  } else {
    unsigned Stride = SrcVT.getScalarType().getSizeInBits()/8;

    for (unsigned Idx=0; Idx<NumElem; Idx++) {
      SDValue ScalarLoad = DAG.getExtLoad(ExtType, dl,
                Op.getNode()->getValueType(0).getScalarType(),
                Chain, BasePTR, LD->getPointerInfo().getWithOffset(Idx * Stride),
                SrcVT.getScalarType(),
                LD->isVolatile(), LD->isNonTemporal(), LD->isInvariant(),
                MinAlign(LD->getAlignment(), Idx * Stride), LD->getAAInfo());

      BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
                         DAG.getConstant(Stride, dl, BasePTR.getValueType()));

      Vals.push_back(ScalarLoad.getValue(0));
      LoadChains.push_back(ScalarLoad.getValue(1));
    }
  }

  SDValue NewChain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other, LoadChains);
  SDValue Value = DAG.getNode(ISD::BUILD_VECTOR, dl,
                              Op.getNode()->getValueType(0), Vals);

  AddLegalizedOperand(Op.getValue(0), Value);
  AddLegalizedOperand(Op.getValue(1), NewChain);

  return (Op.getResNo() ? NewChain : Value);
}

SDValue VectorLegalizer::ExpandStore(SDValue Op) {
  SDLoc dl(Op);
  StoreSDNode *ST = cast<StoreSDNode>(Op.getNode());
  SDValue Chain = ST->getChain();
  SDValue BasePTR = ST->getBasePtr();
  SDValue Value = ST->getValue();
  EVT StVT = ST->getMemoryVT();

  unsigned Alignment = ST->getAlignment();
  bool isVolatile = ST->isVolatile();
  bool isNonTemporal = ST->isNonTemporal();
  AAMDNodes AAInfo = ST->getAAInfo();

  unsigned NumElem = StVT.getVectorNumElements();
  // The type of the data we want to save
  EVT RegVT = Value.getValueType();
  EVT RegSclVT = RegVT.getScalarType();
  // The type of data as saved in memory.
  EVT MemSclVT = StVT.getScalarType();

  // Cast floats into integers
  unsigned ScalarSize = MemSclVT.getSizeInBits();

  // Round odd types to the next pow of two.
  if (!isPowerOf2_32(ScalarSize))
    ScalarSize = NextPowerOf2(ScalarSize);

  // Store Stride in bytes
  unsigned Stride = ScalarSize/8;
  // Extract each of the elements from the original vector
  // and save them into memory individually.
  SmallVector<SDValue, 8> Stores;
  for (unsigned Idx = 0; Idx < NumElem; Idx++) {
    SDValue Ex = DAG.getNode(
        ISD::EXTRACT_VECTOR_ELT, dl, RegSclVT, Value,
        DAG.getConstant(Idx, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));

    // This scalar TruncStore may be illegal, but we legalize it later.
    SDValue Store = DAG.getTruncStore(Chain, dl, Ex, BasePTR,
               ST->getPointerInfo().getWithOffset(Idx*Stride), MemSclVT,
               isVolatile, isNonTemporal, MinAlign(Alignment, Idx*Stride),
               AAInfo);

    BasePTR = DAG.getNode(ISD::ADD, dl, BasePTR.getValueType(), BasePTR,
                          DAG.getConstant(Stride, dl, BasePTR.getValueType()));

    Stores.push_back(Store);
  }
  SDValue TF =  DAG.getNode(ISD::TokenFactor, dl, MVT::Other, Stores);
  AddLegalizedOperand(Op, TF);
  return TF;
}

SDValue VectorLegalizer::Expand(SDValue Op) {
  switch (Op->getOpcode()) {
  case ISD::SIGN_EXTEND_INREG:
    return ExpandSEXTINREG(Op);
  case ISD::ANY_EXTEND_VECTOR_INREG:
    return ExpandANY_EXTEND_VECTOR_INREG(Op);
  case ISD::SIGN_EXTEND_VECTOR_INREG:
    return ExpandSIGN_EXTEND_VECTOR_INREG(Op);
  case ISD::ZERO_EXTEND_VECTOR_INREG:
    return ExpandZERO_EXTEND_VECTOR_INREG(Op);
  case ISD::BSWAP:
    return ExpandBSWAP(Op);
  case ISD::VSELECT:
    return ExpandVSELECT(Op);
  case ISD::SELECT:
    return ExpandSELECT(Op);
  case ISD::UINT_TO_FP:
    return ExpandUINT_TO_FLOAT(Op);
  case ISD::FNEG:
    return ExpandFNEG(Op);
  case ISD::SETCC:
    return UnrollVSETCC(Op);
  case ISD::BITREVERSE:
    return ExpandBITREVERSE(Op);
  case ISD::CTLZ_ZERO_UNDEF:
  case ISD::CTTZ_ZERO_UNDEF:
    return ExpandCTLZ_CTTZ_ZERO_UNDEF(Op);
  default:
    return DAG.UnrollVectorOp(Op.getNode());
  }
}

SDValue VectorLegalizer::ExpandSELECT(SDValue Op) {
  // Lower a select instruction where the condition is a scalar and the
  // operands are vectors. Lower this select to VSELECT and implement it
  // using XOR AND OR. The selector bit is broadcasted.
  EVT VT = Op.getValueType();
  SDLoc DL(Op);

  SDValue Mask = Op.getOperand(0);
  SDValue Op1 = Op.getOperand(1);
  SDValue Op2 = Op.getOperand(2);

  assert(VT.isVector() && !Mask.getValueType().isVector()
         && Op1.getValueType() == Op2.getValueType() && "Invalid type");

  unsigned NumElem = VT.getVectorNumElements();

  // If we can't even use the basic vector operations of
  // AND,OR,XOR, we will have to scalarize the op.
  // Notice that the operation may be 'promoted' which means that it is
  // 'bitcasted' to another type which is handled.
  // Also, we need to be able to construct a splat vector using BUILD_VECTOR.
  if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
      TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
      TLI.getOperationAction(ISD::OR,  VT) == TargetLowering::Expand ||
      TLI.getOperationAction(ISD::BUILD_VECTOR,  VT) == TargetLowering::Expand)
    return DAG.UnrollVectorOp(Op.getNode());

  // Generate a mask operand.
  EVT MaskTy = VT.changeVectorElementTypeToInteger();

  // What is the size of each element in the vector mask.
  EVT BitTy = MaskTy.getScalarType();

  Mask = DAG.getSelect(DL, BitTy, Mask,
          DAG.getConstant(APInt::getAllOnesValue(BitTy.getSizeInBits()), DL,
                          BitTy),
          DAG.getConstant(0, DL, BitTy));

  // Broadcast the mask so that the entire vector is all-one or all zero.
  SmallVector<SDValue, 8> Ops(NumElem, Mask);
  Mask = DAG.getNode(ISD::BUILD_VECTOR, DL, MaskTy, Ops);

  // Bitcast the operands to be the same type as the mask.
  // This is needed when we select between FP types because
  // the mask is a vector of integers.
  Op1 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op1);
  Op2 = DAG.getNode(ISD::BITCAST, DL, MaskTy, Op2);

  SDValue AllOnes = DAG.getConstant(
            APInt::getAllOnesValue(BitTy.getSizeInBits()), DL, MaskTy);
  SDValue NotMask = DAG.getNode(ISD::XOR, DL, MaskTy, Mask, AllOnes);

  Op1 = DAG.getNode(ISD::AND, DL, MaskTy, Op1, Mask);
  Op2 = DAG.getNode(ISD::AND, DL, MaskTy, Op2, NotMask);
  SDValue Val = DAG.getNode(ISD::OR, DL, MaskTy, Op1, Op2);
  return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
}

SDValue VectorLegalizer::ExpandSEXTINREG(SDValue Op) {
  EVT VT = Op.getValueType();

  // Make sure that the SRA and SHL instructions are available.
  if (TLI.getOperationAction(ISD::SRA, VT) == TargetLowering::Expand ||
      TLI.getOperationAction(ISD::SHL, VT) == TargetLowering::Expand)
    return DAG.UnrollVectorOp(Op.getNode());

  SDLoc DL(Op);
  EVT OrigTy = cast<VTSDNode>(Op->getOperand(1))->getVT();

  unsigned BW = VT.getScalarType().getSizeInBits();
  unsigned OrigBW = OrigTy.getScalarType().getSizeInBits();
  SDValue ShiftSz = DAG.getConstant(BW - OrigBW, DL, VT);

  Op = Op.getOperand(0);
  Op =   DAG.getNode(ISD::SHL, DL, VT, Op, ShiftSz);
  return DAG.getNode(ISD::SRA, DL, VT, Op, ShiftSz);
}

// Generically expand a vector anyext in register to a shuffle of the relevant
// lanes into the appropriate locations, with other lanes left undef.
SDValue VectorLegalizer::ExpandANY_EXTEND_VECTOR_INREG(SDValue Op) {
  SDLoc DL(Op);
  EVT VT = Op.getValueType();
  int NumElements = VT.getVectorNumElements();
  SDValue Src = Op.getOperand(0);
  EVT SrcVT = Src.getValueType();
  int NumSrcElements = SrcVT.getVectorNumElements();

  // Build a base mask of undef shuffles.
  SmallVector<int, 16> ShuffleMask;
  ShuffleMask.resize(NumSrcElements, -1);

  // Place the extended lanes into the correct locations.
  int ExtLaneScale = NumSrcElements / NumElements;
  int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
  for (int i = 0; i < NumElements; ++i)
    ShuffleMask[i * ExtLaneScale + EndianOffset] = i;

  return DAG.getNode(
      ISD::BITCAST, DL, VT,
      DAG.getVectorShuffle(SrcVT, DL, Src, DAG.getUNDEF(SrcVT), ShuffleMask));
}

SDValue VectorLegalizer::ExpandSIGN_EXTEND_VECTOR_INREG(SDValue Op) {
  SDLoc DL(Op);
  EVT VT = Op.getValueType();
  SDValue Src = Op.getOperand(0);
  EVT SrcVT = Src.getValueType();

  // First build an any-extend node which can be legalized above when we
  // recurse through it.
  Op = DAG.getAnyExtendVectorInReg(Src, DL, VT);

  // Now we need sign extend. Do this by shifting the elements. Even if these
  // aren't legal operations, they have a better chance of being legalized
  // without full scalarization than the sign extension does.
  unsigned EltWidth = VT.getVectorElementType().getSizeInBits();
  unsigned SrcEltWidth = SrcVT.getVectorElementType().getSizeInBits();
  SDValue ShiftAmount = DAG.getConstant(EltWidth - SrcEltWidth, DL, VT);
  return DAG.getNode(ISD::SRA, DL, VT,
                     DAG.getNode(ISD::SHL, DL, VT, Op, ShiftAmount),
                     ShiftAmount);
}

// Generically expand a vector zext in register to a shuffle of the relevant
// lanes into the appropriate locations, a blend of zero into the high bits,
// and a bitcast to the wider element type.
SDValue VectorLegalizer::ExpandZERO_EXTEND_VECTOR_INREG(SDValue Op) {
  SDLoc DL(Op);
  EVT VT = Op.getValueType();
  int NumElements = VT.getVectorNumElements();
  SDValue Src = Op.getOperand(0);
  EVT SrcVT = Src.getValueType();
  int NumSrcElements = SrcVT.getVectorNumElements();

  // Build up a zero vector to blend into this one.
  EVT SrcScalarVT = SrcVT.getScalarType();
  SDValue ScalarZero = DAG.getTargetConstant(0, DL, SrcScalarVT);
  SmallVector<SDValue, 4> BuildVectorOperands(NumSrcElements, ScalarZero);
  SDValue Zero = DAG.getNode(ISD::BUILD_VECTOR, DL, SrcVT, BuildVectorOperands);

  // Shuffle the incoming lanes into the correct position, and pull all other
  // lanes from the zero vector.
  SmallVector<int, 16> ShuffleMask;
  ShuffleMask.reserve(NumSrcElements);
  for (int i = 0; i < NumSrcElements; ++i)
    ShuffleMask.push_back(i);

  int ExtLaneScale = NumSrcElements / NumElements;
  int EndianOffset = DAG.getDataLayout().isBigEndian() ? ExtLaneScale - 1 : 0;
  for (int i = 0; i < NumElements; ++i)
    ShuffleMask[i * ExtLaneScale + EndianOffset] = NumSrcElements + i;

  return DAG.getNode(ISD::BITCAST, DL, VT,
                     DAG.getVectorShuffle(SrcVT, DL, Zero, Src, ShuffleMask));
}

SDValue VectorLegalizer::ExpandBSWAP(SDValue Op) {
  EVT VT = Op.getValueType();

  // Generate a byte wise shuffle mask for the BSWAP.
  SmallVector<int, 16> ShuffleMask;
  int ScalarSizeInBytes = VT.getScalarSizeInBits() / 8;
  for (int I = 0, E = VT.getVectorNumElements(); I != E; ++I)
    for (int J = ScalarSizeInBytes - 1; J >= 0; --J)
      ShuffleMask.push_back((I * ScalarSizeInBytes) + J);

  EVT ByteVT = EVT::getVectorVT(*DAG.getContext(), MVT::i8, ShuffleMask.size());

  // Only emit a shuffle if the mask is legal.
  if (!TLI.isShuffleMaskLegal(ShuffleMask, ByteVT))
    return DAG.UnrollVectorOp(Op.getNode());

  SDLoc DL(Op);
  Op = DAG.getNode(ISD::BITCAST, DL, ByteVT, Op.getOperand(0));
  Op = DAG.getVectorShuffle(ByteVT, DL, Op, DAG.getUNDEF(ByteVT),
                            ShuffleMask.data());
  return DAG.getNode(ISD::BITCAST, DL, VT, Op);
}

SDValue VectorLegalizer::ExpandBITREVERSE(SDValue Op) {
  EVT VT = Op.getValueType();

  // If we have the scalar operation, it's probably cheaper to unroll it.
  if (TLI.isOperationLegalOrCustom(ISD::BITREVERSE, VT.getScalarType()))
    return DAG.UnrollVectorOp(Op.getNode());

  // If we have the appropriate vector bit operations, it is better to use them
  // than unrolling and expanding each component.
  if (!TLI.isOperationLegalOrCustom(ISD::SHL, VT) ||
      !TLI.isOperationLegalOrCustom(ISD::SRL, VT) ||
      !TLI.isOperationLegalOrCustom(ISD::AND, VT) ||
      !TLI.isOperationLegalOrCustom(ISD::OR, VT))
    return DAG.UnrollVectorOp(Op.getNode());

  // Let LegalizeDAG handle this later.
  return Op;
}

SDValue VectorLegalizer::ExpandVSELECT(SDValue Op) {
  // Implement VSELECT in terms of XOR, AND, OR
  // on platforms which do not support blend natively.
  SDLoc DL(Op);

  SDValue Mask = Op.getOperand(0);
  SDValue Op1 = Op.getOperand(1);
  SDValue Op2 = Op.getOperand(2);

  EVT VT = Mask.getValueType();

  // If we can't even use the basic vector operations of
  // AND,OR,XOR, we will have to scalarize the op.
  // Notice that the operation may be 'promoted' which means that it is
  // 'bitcasted' to another type which is handled.
  // This operation also isn't safe with AND, OR, XOR when the boolean
  // type is 0/1 as we need an all ones vector constant to mask with.
  // FIXME: Sign extend 1 to all ones if thats legal on the target.
  if (TLI.getOperationAction(ISD::AND, VT) == TargetLowering::Expand ||
      TLI.getOperationAction(ISD::XOR, VT) == TargetLowering::Expand ||
      TLI.getOperationAction(ISD::OR, VT) == TargetLowering::Expand ||
      TLI.getBooleanContents(Op1.getValueType()) !=
          TargetLowering::ZeroOrNegativeOneBooleanContent)
    return DAG.UnrollVectorOp(Op.getNode());

  // If the mask and the type are different sizes, unroll the vector op. This
  // can occur when getSetCCResultType returns something that is different in
  // size from the operand types. For example, v4i8 = select v4i32, v4i8, v4i8.
  if (VT.getSizeInBits() != Op1.getValueType().getSizeInBits())
    return DAG.UnrollVectorOp(Op.getNode());

  // Bitcast the operands to be the same type as the mask.
  // This is needed when we select between FP types because
  // the mask is a vector of integers.
  Op1 = DAG.getNode(ISD::BITCAST, DL, VT, Op1);
  Op2 = DAG.getNode(ISD::BITCAST, DL, VT, Op2);

  SDValue AllOnes = DAG.getConstant(
    APInt::getAllOnesValue(VT.getScalarType().getSizeInBits()), DL, VT);
  SDValue NotMask = DAG.getNode(ISD::XOR, DL, VT, Mask, AllOnes);

  Op1 = DAG.getNode(ISD::AND, DL, VT, Op1, Mask);
  Op2 = DAG.getNode(ISD::AND, DL, VT, Op2, NotMask);
  SDValue Val = DAG.getNode(ISD::OR, DL, VT, Op1, Op2);
  return DAG.getNode(ISD::BITCAST, DL, Op.getValueType(), Val);
}

SDValue VectorLegalizer::ExpandUINT_TO_FLOAT(SDValue Op) {
  EVT VT = Op.getOperand(0).getValueType();
  SDLoc DL(Op);

  // Make sure that the SINT_TO_FP and SRL instructions are available.
  if (TLI.getOperationAction(ISD::SINT_TO_FP, VT) == TargetLowering::Expand ||
      TLI.getOperationAction(ISD::SRL,        VT) == TargetLowering::Expand)
    return DAG.UnrollVectorOp(Op.getNode());

 EVT SVT = VT.getScalarType();
  assert((SVT.getSizeInBits() == 64 || SVT.getSizeInBits() == 32) &&
      "Elements in vector-UINT_TO_FP must be 32 or 64 bits wide");

  unsigned BW = SVT.getSizeInBits();
  SDValue HalfWord = DAG.getConstant(BW/2, DL, VT);

  // Constants to clear the upper part of the word.
  // Notice that we can also use SHL+SHR, but using a constant is slightly
  // faster on x86.
  uint64_t HWMask = (SVT.getSizeInBits()==64)?0x00000000FFFFFFFF:0x0000FFFF;
  SDValue HalfWordMask = DAG.getConstant(HWMask, DL, VT);

  // Two to the power of half-word-size.
  SDValue TWOHW = DAG.getConstantFP(1 << (BW/2), DL, Op.getValueType());

  // Clear upper part of LO, lower HI
  SDValue HI = DAG.getNode(ISD::SRL, DL, VT, Op.getOperand(0), HalfWord);
  SDValue LO = DAG.getNode(ISD::AND, DL, VT, Op.getOperand(0), HalfWordMask);

  // Convert hi and lo to floats
  // Convert the hi part back to the upper values
  // TODO: Can any fast-math-flags be set on these nodes?
  SDValue fHI = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), HI);
          fHI = DAG.getNode(ISD::FMUL, DL, Op.getValueType(), fHI, TWOHW);
  SDValue fLO = DAG.getNode(ISD::SINT_TO_FP, DL, Op.getValueType(), LO);

  // Add the two halves
  return DAG.getNode(ISD::FADD, DL, Op.getValueType(), fHI, fLO);
}


SDValue VectorLegalizer::ExpandFNEG(SDValue Op) {
  if (TLI.isOperationLegalOrCustom(ISD::FSUB, Op.getValueType())) {
    SDLoc DL(Op);
    SDValue Zero = DAG.getConstantFP(-0.0, DL, Op.getValueType());
    // TODO: If FNEG had fast-math-flags, they'd get propagated to this FSUB.
    return DAG.getNode(ISD::FSUB, DL, Op.getValueType(),
                       Zero, Op.getOperand(0));
  }
  return DAG.UnrollVectorOp(Op.getNode());
}

SDValue VectorLegalizer::ExpandCTLZ_CTTZ_ZERO_UNDEF(SDValue Op) {
  // If the non-ZERO_UNDEF version is supported we can let LegalizeDAG handle.
  unsigned Opc = Op.getOpcode() == ISD::CTLZ_ZERO_UNDEF ? ISD::CTLZ : ISD::CTTZ;
  if (TLI.isOperationLegalOrCustom(Opc, Op.getValueType()))
    return Op;

  // Otherwise go ahead and unroll.
  return DAG.UnrollVectorOp(Op.getNode());
}

SDValue VectorLegalizer::UnrollVSETCC(SDValue Op) {
  EVT VT = Op.getValueType();
  unsigned NumElems = VT.getVectorNumElements();
  EVT EltVT = VT.getVectorElementType();
  SDValue LHS = Op.getOperand(0), RHS = Op.getOperand(1), CC = Op.getOperand(2);
  EVT TmpEltVT = LHS.getValueType().getVectorElementType();
  SDLoc dl(Op);
  SmallVector<SDValue, 8> Ops(NumElems);
  for (unsigned i = 0; i < NumElems; ++i) {
    SDValue LHSElem = DAG.getNode(
        ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, LHS,
        DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
    SDValue RHSElem = DAG.getNode(
        ISD::EXTRACT_VECTOR_ELT, dl, TmpEltVT, RHS,
        DAG.getConstant(i, dl, TLI.getVectorIdxTy(DAG.getDataLayout())));
    Ops[i] = DAG.getNode(ISD::SETCC, dl,
                         TLI.getSetCCResultType(DAG.getDataLayout(),
                                                *DAG.getContext(), TmpEltVT),
                         LHSElem, RHSElem, CC);
    Ops[i] = DAG.getSelect(dl, EltVT, Ops[i],
                           DAG.getConstant(APInt::getAllOnesValue
                                           (EltVT.getSizeInBits()), dl, EltVT),
                           DAG.getConstant(0, dl, EltVT));
  }
  return DAG.getNode(ISD::BUILD_VECTOR, dl, VT, Ops);
}

}

bool SelectionDAG::LegalizeVectors() {
  return VectorLegalizer(*this).Run();
}