llvm.org GIT mirror llvm / release_37 lib / Transforms / Utils / LoopUtils.cpp
release_37

Tree @release_37 (Download .tar.gz)

LoopUtils.cpp @release_37raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines common loop utility functions.
//
//===----------------------------------------------------------------------===//

#include "llvm/Analysis/LoopInfo.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/PatternMatch.h"
#include "llvm/IR/ValueHandle.h"
#include "llvm/Support/Debug.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
#include "llvm/IR/Module.h"
#include "llvm/Transforms/Utils/LoopUtils.h"

using namespace llvm;
using namespace llvm::PatternMatch;

#define DEBUG_TYPE "loop-utils"

bool RecurrenceDescriptor::areAllUsesIn(Instruction *I,
                                        SmallPtrSetImpl<Instruction *> &Set) {
  for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E; ++Use)
    if (!Set.count(dyn_cast<Instruction>(*Use)))
      return false;
  return true;
}

bool RecurrenceDescriptor::AddReductionVar(PHINode *Phi, RecurrenceKind Kind,
                                           Loop *TheLoop, bool HasFunNoNaNAttr,
                                           RecurrenceDescriptor &RedDes) {
  if (Phi->getNumIncomingValues() != 2)
    return false;

  // Reduction variables are only found in the loop header block.
  if (Phi->getParent() != TheLoop->getHeader())
    return false;

  // Obtain the reduction start value from the value that comes from the loop
  // preheader.
  Value *RdxStart = Phi->getIncomingValueForBlock(TheLoop->getLoopPreheader());

  // ExitInstruction is the single value which is used outside the loop.
  // We only allow for a single reduction value to be used outside the loop.
  // This includes users of the reduction, variables (which form a cycle
  // which ends in the phi node).
  Instruction *ExitInstruction = nullptr;
  // Indicates that we found a reduction operation in our scan.
  bool FoundReduxOp = false;

  // We start with the PHI node and scan for all of the users of this
  // instruction. All users must be instructions that can be used as reduction
  // variables (such as ADD). We must have a single out-of-block user. The cycle
  // must include the original PHI.
  bool FoundStartPHI = false;

  // To recognize min/max patterns formed by a icmp select sequence, we store
  // the number of instruction we saw from the recognized min/max pattern,
  //  to make sure we only see exactly the two instructions.
  unsigned NumCmpSelectPatternInst = 0;
  InstDesc ReduxDesc(false, nullptr);

  SmallPtrSet<Instruction *, 8> VisitedInsts;
  SmallVector<Instruction *, 8> Worklist;
  Worklist.push_back(Phi);
  VisitedInsts.insert(Phi);

  // A value in the reduction can be used:
  //  - By the reduction:
  //      - Reduction operation:
  //        - One use of reduction value (safe).
  //        - Multiple use of reduction value (not safe).
  //      - PHI:
  //        - All uses of the PHI must be the reduction (safe).
  //        - Otherwise, not safe.
  //  - By one instruction outside of the loop (safe).
  //  - By further instructions outside of the loop (not safe).
  //  - By an instruction that is not part of the reduction (not safe).
  //    This is either:
  //      * An instruction type other than PHI or the reduction operation.
  //      * A PHI in the header other than the initial PHI.
  while (!Worklist.empty()) {
    Instruction *Cur = Worklist.back();
    Worklist.pop_back();

    // No Users.
    // If the instruction has no users then this is a broken chain and can't be
    // a reduction variable.
    if (Cur->use_empty())
      return false;

    bool IsAPhi = isa<PHINode>(Cur);

    // A header PHI use other than the original PHI.
    if (Cur != Phi && IsAPhi && Cur->getParent() == Phi->getParent())
      return false;

    // Reductions of instructions such as Div, and Sub is only possible if the
    // LHS is the reduction variable.
    if (!Cur->isCommutative() && !IsAPhi && !isa<SelectInst>(Cur) &&
        !isa<ICmpInst>(Cur) && !isa<FCmpInst>(Cur) &&
        !VisitedInsts.count(dyn_cast<Instruction>(Cur->getOperand(0))))
      return false;

    // Any reduction instruction must be of one of the allowed kinds.
    ReduxDesc = isRecurrenceInstr(Cur, Kind, ReduxDesc, HasFunNoNaNAttr);
    if (!ReduxDesc.isRecurrence())
      return false;

    // A reduction operation must only have one use of the reduction value.
    if (!IsAPhi && Kind != RK_IntegerMinMax && Kind != RK_FloatMinMax &&
        hasMultipleUsesOf(Cur, VisitedInsts))
      return false;

    // All inputs to a PHI node must be a reduction value.
    if (IsAPhi && Cur != Phi && !areAllUsesIn(Cur, VisitedInsts))
      return false;

    if (Kind == RK_IntegerMinMax &&
        (isa<ICmpInst>(Cur) || isa<SelectInst>(Cur)))
      ++NumCmpSelectPatternInst;
    if (Kind == RK_FloatMinMax && (isa<FCmpInst>(Cur) || isa<SelectInst>(Cur)))
      ++NumCmpSelectPatternInst;

    // Check  whether we found a reduction operator.
    FoundReduxOp |= !IsAPhi;

    // Process users of current instruction. Push non-PHI nodes after PHI nodes
    // onto the stack. This way we are going to have seen all inputs to PHI
    // nodes once we get to them.
    SmallVector<Instruction *, 8> NonPHIs;
    SmallVector<Instruction *, 8> PHIs;
    for (User *U : Cur->users()) {
      Instruction *UI = cast<Instruction>(U);

      // Check if we found the exit user.
      BasicBlock *Parent = UI->getParent();
      if (!TheLoop->contains(Parent)) {
        // Exit if you find multiple outside users or if the header phi node is
        // being used. In this case the user uses the value of the previous
        // iteration, in which case we would loose "VF-1" iterations of the
        // reduction operation if we vectorize.
        if (ExitInstruction != nullptr || Cur == Phi)
          return false;

        // The instruction used by an outside user must be the last instruction
        // before we feed back to the reduction phi. Otherwise, we loose VF-1
        // operations on the value.
        if (std::find(Phi->op_begin(), Phi->op_end(), Cur) == Phi->op_end())
          return false;

        ExitInstruction = Cur;
        continue;
      }

      // Process instructions only once (termination). Each reduction cycle
      // value must only be used once, except by phi nodes and min/max
      // reductions which are represented as a cmp followed by a select.
      InstDesc IgnoredVal(false, nullptr);
      if (VisitedInsts.insert(UI).second) {
        if (isa<PHINode>(UI))
          PHIs.push_back(UI);
        else
          NonPHIs.push_back(UI);
      } else if (!isa<PHINode>(UI) &&
                 ((!isa<FCmpInst>(UI) && !isa<ICmpInst>(UI) &&
                   !isa<SelectInst>(UI)) ||
                  !isMinMaxSelectCmpPattern(UI, IgnoredVal).isRecurrence()))
        return false;

      // Remember that we completed the cycle.
      if (UI == Phi)
        FoundStartPHI = true;
    }
    Worklist.append(PHIs.begin(), PHIs.end());
    Worklist.append(NonPHIs.begin(), NonPHIs.end());
  }

  // This means we have seen one but not the other instruction of the
  // pattern or more than just a select and cmp.
  if ((Kind == RK_IntegerMinMax || Kind == RK_FloatMinMax) &&
      NumCmpSelectPatternInst != 2)
    return false;

  if (!FoundStartPHI || !FoundReduxOp || !ExitInstruction)
    return false;

  // We found a reduction var if we have reached the original phi node and we
  // only have a single instruction with out-of-loop users.

  // The ExitInstruction(Instruction which is allowed to have out-of-loop users)
  // is saved as part of the RecurrenceDescriptor.

  // Save the description of this reduction variable.
  RecurrenceDescriptor RD(RdxStart, ExitInstruction, Kind,
                          ReduxDesc.getMinMaxKind());

  RedDes = RD;

  return true;
}

/// Returns true if the instruction is a Select(ICmp(X, Y), X, Y) instruction
/// pattern corresponding to a min(X, Y) or max(X, Y).
RecurrenceDescriptor::InstDesc
RecurrenceDescriptor::isMinMaxSelectCmpPattern(Instruction *I, InstDesc &Prev) {

  assert((isa<ICmpInst>(I) || isa<FCmpInst>(I) || isa<SelectInst>(I)) &&
         "Expect a select instruction");
  Instruction *Cmp = nullptr;
  SelectInst *Select = nullptr;

  // We must handle the select(cmp()) as a single instruction. Advance to the
  // select.
  if ((Cmp = dyn_cast<ICmpInst>(I)) || (Cmp = dyn_cast<FCmpInst>(I))) {
    if (!Cmp->hasOneUse() || !(Select = dyn_cast<SelectInst>(*I->user_begin())))
      return InstDesc(false, I);
    return InstDesc(Select, Prev.getMinMaxKind());
  }

  // Only handle single use cases for now.
  if (!(Select = dyn_cast<SelectInst>(I)))
    return InstDesc(false, I);
  if (!(Cmp = dyn_cast<ICmpInst>(I->getOperand(0))) &&
      !(Cmp = dyn_cast<FCmpInst>(I->getOperand(0))))
    return InstDesc(false, I);
  if (!Cmp->hasOneUse())
    return InstDesc(false, I);

  Value *CmpLeft;
  Value *CmpRight;

  // Look for a min/max pattern.
  if (m_UMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    return InstDesc(Select, MRK_UIntMin);
  else if (m_UMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    return InstDesc(Select, MRK_UIntMax);
  else if (m_SMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    return InstDesc(Select, MRK_SIntMax);
  else if (m_SMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    return InstDesc(Select, MRK_SIntMin);
  else if (m_OrdFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    return InstDesc(Select, MRK_FloatMin);
  else if (m_OrdFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    return InstDesc(Select, MRK_FloatMax);
  else if (m_UnordFMin(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    return InstDesc(Select, MRK_FloatMin);
  else if (m_UnordFMax(m_Value(CmpLeft), m_Value(CmpRight)).match(Select))
    return InstDesc(Select, MRK_FloatMax);

  return InstDesc(false, I);
}

RecurrenceDescriptor::InstDesc
RecurrenceDescriptor::isRecurrenceInstr(Instruction *I, RecurrenceKind Kind,
                                        InstDesc &Prev, bool HasFunNoNaNAttr) {
  bool FP = I->getType()->isFloatingPointTy();
  bool FastMath = FP && I->hasUnsafeAlgebra();
  switch (I->getOpcode()) {
  default:
    return InstDesc(false, I);
  case Instruction::PHI:
    if (FP &&
        (Kind != RK_FloatMult && Kind != RK_FloatAdd && Kind != RK_FloatMinMax))
      return InstDesc(false, I);
    return InstDesc(I, Prev.getMinMaxKind());
  case Instruction::Sub:
  case Instruction::Add:
    return InstDesc(Kind == RK_IntegerAdd, I);
  case Instruction::Mul:
    return InstDesc(Kind == RK_IntegerMult, I);
  case Instruction::And:
    return InstDesc(Kind == RK_IntegerAnd, I);
  case Instruction::Or:
    return InstDesc(Kind == RK_IntegerOr, I);
  case Instruction::Xor:
    return InstDesc(Kind == RK_IntegerXor, I);
  case Instruction::FMul:
    return InstDesc(Kind == RK_FloatMult && FastMath, I);
  case Instruction::FSub:
  case Instruction::FAdd:
    return InstDesc(Kind == RK_FloatAdd && FastMath, I);
  case Instruction::FCmp:
  case Instruction::ICmp:
  case Instruction::Select:
    if (Kind != RK_IntegerMinMax &&
        (!HasFunNoNaNAttr || Kind != RK_FloatMinMax))
      return InstDesc(false, I);
    return isMinMaxSelectCmpPattern(I, Prev);
  }
}

bool RecurrenceDescriptor::hasMultipleUsesOf(
    Instruction *I, SmallPtrSetImpl<Instruction *> &Insts) {
  unsigned NumUses = 0;
  for (User::op_iterator Use = I->op_begin(), E = I->op_end(); Use != E;
       ++Use) {
    if (Insts.count(dyn_cast<Instruction>(*Use)))
      ++NumUses;
    if (NumUses > 1)
      return true;
  }

  return false;
}
bool RecurrenceDescriptor::isReductionPHI(PHINode *Phi, Loop *TheLoop,
                                          RecurrenceDescriptor &RedDes) {

  bool HasFunNoNaNAttr = false;
  BasicBlock *Header = TheLoop->getHeader();
  Function &F = *Header->getParent();
  if (F.hasFnAttribute("no-nans-fp-math"))
    HasFunNoNaNAttr =
        F.getFnAttribute("no-nans-fp-math").getValueAsString() == "true";

  if (AddReductionVar(Phi, RK_IntegerAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
    DEBUG(dbgs() << "Found an ADD reduction PHI." << *Phi << "\n");
    return true;
  }
  if (AddReductionVar(Phi, RK_IntegerMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
    DEBUG(dbgs() << "Found a MUL reduction PHI." << *Phi << "\n");
    return true;
  }
  if (AddReductionVar(Phi, RK_IntegerOr, TheLoop, HasFunNoNaNAttr, RedDes)) {
    DEBUG(dbgs() << "Found an OR reduction PHI." << *Phi << "\n");
    return true;
  }
  if (AddReductionVar(Phi, RK_IntegerAnd, TheLoop, HasFunNoNaNAttr, RedDes)) {
    DEBUG(dbgs() << "Found an AND reduction PHI." << *Phi << "\n");
    return true;
  }
  if (AddReductionVar(Phi, RK_IntegerXor, TheLoop, HasFunNoNaNAttr, RedDes)) {
    DEBUG(dbgs() << "Found a XOR reduction PHI." << *Phi << "\n");
    return true;
  }
  if (AddReductionVar(Phi, RK_IntegerMinMax, TheLoop, HasFunNoNaNAttr,
                      RedDes)) {
    DEBUG(dbgs() << "Found a MINMAX reduction PHI." << *Phi << "\n");
    return true;
  }
  if (AddReductionVar(Phi, RK_FloatMult, TheLoop, HasFunNoNaNAttr, RedDes)) {
    DEBUG(dbgs() << "Found an FMult reduction PHI." << *Phi << "\n");
    return true;
  }
  if (AddReductionVar(Phi, RK_FloatAdd, TheLoop, HasFunNoNaNAttr, RedDes)) {
    DEBUG(dbgs() << "Found an FAdd reduction PHI." << *Phi << "\n");
    return true;
  }
  if (AddReductionVar(Phi, RK_FloatMinMax, TheLoop, HasFunNoNaNAttr, RedDes)) {
    DEBUG(dbgs() << "Found an float MINMAX reduction PHI." << *Phi << "\n");
    return true;
  }
  // Not a reduction of known type.
  return false;
}

/// This function returns the identity element (or neutral element) for
/// the operation K.
Constant *RecurrenceDescriptor::getRecurrenceIdentity(RecurrenceKind K,
                                                      Type *Tp) {
  switch (K) {
  case RK_IntegerXor:
  case RK_IntegerAdd:
  case RK_IntegerOr:
    // Adding, Xoring, Oring zero to a number does not change it.
    return ConstantInt::get(Tp, 0);
  case RK_IntegerMult:
    // Multiplying a number by 1 does not change it.
    return ConstantInt::get(Tp, 1);
  case RK_IntegerAnd:
    // AND-ing a number with an all-1 value does not change it.
    return ConstantInt::get(Tp, -1, true);
  case RK_FloatMult:
    // Multiplying a number by 1 does not change it.
    return ConstantFP::get(Tp, 1.0L);
  case RK_FloatAdd:
    // Adding zero to a number does not change it.
    return ConstantFP::get(Tp, 0.0L);
  default:
    llvm_unreachable("Unknown recurrence kind");
  }
}

/// This function translates the recurrence kind to an LLVM binary operator.
unsigned RecurrenceDescriptor::getRecurrenceBinOp(RecurrenceKind Kind) {
  switch (Kind) {
  case RK_IntegerAdd:
    return Instruction::Add;
  case RK_IntegerMult:
    return Instruction::Mul;
  case RK_IntegerOr:
    return Instruction::Or;
  case RK_IntegerAnd:
    return Instruction::And;
  case RK_IntegerXor:
    return Instruction::Xor;
  case RK_FloatMult:
    return Instruction::FMul;
  case RK_FloatAdd:
    return Instruction::FAdd;
  case RK_IntegerMinMax:
    return Instruction::ICmp;
  case RK_FloatMinMax:
    return Instruction::FCmp;
  default:
    llvm_unreachable("Unknown recurrence operation");
  }
}

Value *RecurrenceDescriptor::createMinMaxOp(IRBuilder<> &Builder,
                                            MinMaxRecurrenceKind RK,
                                            Value *Left, Value *Right) {
  CmpInst::Predicate P = CmpInst::ICMP_NE;
  switch (RK) {
  default:
    llvm_unreachable("Unknown min/max recurrence kind");
  case MRK_UIntMin:
    P = CmpInst::ICMP_ULT;
    break;
  case MRK_UIntMax:
    P = CmpInst::ICMP_UGT;
    break;
  case MRK_SIntMin:
    P = CmpInst::ICMP_SLT;
    break;
  case MRK_SIntMax:
    P = CmpInst::ICMP_SGT;
    break;
  case MRK_FloatMin:
    P = CmpInst::FCMP_OLT;
    break;
  case MRK_FloatMax:
    P = CmpInst::FCMP_OGT;
    break;
  }

  Value *Cmp;
  if (RK == MRK_FloatMin || RK == MRK_FloatMax)
    Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
  else
    Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");

  Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
  return Select;
}

bool llvm::isInductionPHI(PHINode *Phi, ScalarEvolution *SE,
                          ConstantInt *&StepValue) {
  Type *PhiTy = Phi->getType();
  // We only handle integer and pointer inductions variables.
  if (!PhiTy->isIntegerTy() && !PhiTy->isPointerTy())
    return false;

  // Check that the PHI is consecutive.
  const SCEV *PhiScev = SE->getSCEV(Phi);
  const SCEVAddRecExpr *AR = dyn_cast<SCEVAddRecExpr>(PhiScev);
  if (!AR) {
    DEBUG(dbgs() << "LV: PHI is not a poly recurrence.\n");
    return false;
  }

  const SCEV *Step = AR->getStepRecurrence(*SE);
  // Calculate the pointer stride and check if it is consecutive.
  const SCEVConstant *C = dyn_cast<SCEVConstant>(Step);
  if (!C)
    return false;

  ConstantInt *CV = C->getValue();
  if (PhiTy->isIntegerTy()) {
    StepValue = CV;
    return true;
  }

  assert(PhiTy->isPointerTy() && "The PHI must be a pointer");
  Type *PointerElementType = PhiTy->getPointerElementType();
  // The pointer stride cannot be determined if the pointer element type is not
  // sized.
  if (!PointerElementType->isSized())
    return false;

  const DataLayout &DL = Phi->getModule()->getDataLayout();
  int64_t Size = static_cast<int64_t>(DL.getTypeAllocSize(PointerElementType));
  if (!Size)
    return false;

  int64_t CVSize = CV->getSExtValue();
  if (CVSize % Size)
    return false;
  StepValue = ConstantInt::getSigned(CV->getType(), CVSize / Size);
  return true;
}