llvm.org GIT mirror llvm / release_37 lib / Target / ARM / ARMTargetMachine.cpp
release_37

Tree @release_37 (Download .tar.gz)

ARMTargetMachine.cpp @release_37raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
//===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//
//===----------------------------------------------------------------------===//

#include "ARM.h"
#include "ARMFrameLowering.h"
#include "ARMTargetMachine.h"
#include "ARMTargetObjectFile.h"
#include "ARMTargetTransformInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/Scalar.h"
using namespace llvm;

static cl::opt<bool>
DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
                   cl::desc("Inhibit optimization of S->D register accesses on A15"),
                   cl::init(false));

static cl::opt<bool>
EnableAtomicTidy("arm-atomic-cfg-tidy", cl::Hidden,
                 cl::desc("Run SimplifyCFG after expanding atomic operations"
                          " to make use of cmpxchg flow-based information"),
                 cl::init(true));

static cl::opt<bool>
EnableARMLoadStoreOpt("arm-load-store-opt", cl::Hidden,
                      cl::desc("Enable ARM load/store optimization pass"),
                      cl::init(true));

// FIXME: Unify control over GlobalMerge.
static cl::opt<cl::boolOrDefault>
EnableGlobalMerge("arm-global-merge", cl::Hidden,
                  cl::desc("Enable the global merge pass"));

extern "C" void LLVMInitializeARMTarget() {
  // Register the target.
  RegisterTargetMachine<ARMLETargetMachine> X(TheARMLETarget);
  RegisterTargetMachine<ARMBETargetMachine> Y(TheARMBETarget);
  RegisterTargetMachine<ThumbLETargetMachine> A(TheThumbLETarget);
  RegisterTargetMachine<ThumbBETargetMachine> B(TheThumbBETarget);
}

static std::unique_ptr<TargetLoweringObjectFile> createTLOF(const Triple &TT) {
  if (TT.isOSBinFormatMachO())
    return make_unique<TargetLoweringObjectFileMachO>();
  if (TT.isOSWindows())
    return make_unique<TargetLoweringObjectFileCOFF>();
  return make_unique<ARMElfTargetObjectFile>();
}

static ARMBaseTargetMachine::ARMABI
computeTargetABI(const Triple &TT, StringRef CPU,
                 const TargetOptions &Options) {
  if (Options.MCOptions.getABIName().startswith("aapcs"))
    return ARMBaseTargetMachine::ARM_ABI_AAPCS;
  else if (Options.MCOptions.getABIName().startswith("apcs"))
    return ARMBaseTargetMachine::ARM_ABI_APCS;

  assert(Options.MCOptions.getABIName().empty() &&
         "Unknown target-abi option!");

  ARMBaseTargetMachine::ARMABI TargetABI =
      ARMBaseTargetMachine::ARM_ABI_UNKNOWN;

  // FIXME: This is duplicated code from the front end and should be unified.
  if (TT.isOSBinFormatMachO()) {
    if (TT.getEnvironment() == llvm::Triple::EABI ||
        (TT.getOS() == llvm::Triple::UnknownOS && TT.isOSBinFormatMachO()) ||
        CPU.startswith("cortex-m")) {
      TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
    } else {
      TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS;
    }
  } else if (TT.isOSWindows()) {
    // FIXME: this is invalid for WindowsCE
    TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
  } else {
    // Select the default based on the platform.
    switch (TT.getEnvironment()) {
    case llvm::Triple::Android:
    case llvm::Triple::GNUEABI:
    case llvm::Triple::GNUEABIHF:
    case llvm::Triple::EABIHF:
    case llvm::Triple::EABI:
      TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
      break;
    case llvm::Triple::GNU:
      TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS;
      break;
    default:
      if (TT.isOSNetBSD())
        TargetABI = ARMBaseTargetMachine::ARM_ABI_APCS;
      else
	TargetABI = ARMBaseTargetMachine::ARM_ABI_AAPCS;
      break;
    }
  }

  return TargetABI;
}

static std::string computeDataLayout(const Triple &TT, StringRef CPU,
                                     const TargetOptions &Options,
                                     bool isLittle) {
  auto ABI = computeTargetABI(TT, CPU, Options);
  std::string Ret = "";

  if (isLittle)
    // Little endian.
    Ret += "e";
  else
    // Big endian.
    Ret += "E";

  Ret += DataLayout::getManglingComponent(TT);

  // Pointers are 32 bits and aligned to 32 bits.
  Ret += "-p:32:32";

  // ABIs other than APCS have 64 bit integers with natural alignment.
  if (ABI != ARMBaseTargetMachine::ARM_ABI_APCS)
    Ret += "-i64:64";

  // We have 64 bits floats. The APCS ABI requires them to be aligned to 32
  // bits, others to 64 bits. We always try to align to 64 bits.
  if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
    Ret += "-f64:32:64";

  // We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
  // to 64. We always ty to give them natural alignment.
  if (ABI == ARMBaseTargetMachine::ARM_ABI_APCS)
    Ret += "-v64:32:64-v128:32:128";
  else
    Ret += "-v128:64:128";

  // Try to align aggregates to 32 bits (the default is 64 bits, which has no
  // particular hardware support on 32-bit ARM).
  Ret += "-a:0:32";

  // Integer registers are 32 bits.
  Ret += "-n32";

  // The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
  // aligned everywhere else.
  if (TT.isOSNaCl())
    Ret += "-S128";
  else if (ABI == ARMBaseTargetMachine::ARM_ABI_AAPCS)
    Ret += "-S64";
  else
    Ret += "-S32";

  return Ret;
}

/// TargetMachine ctor - Create an ARM architecture model.
///
ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, const Triple &TT,
                                           StringRef CPU, StringRef FS,
                                           const TargetOptions &Options,
                                           Reloc::Model RM, CodeModel::Model CM,
                                           CodeGenOpt::Level OL, bool isLittle)
    : LLVMTargetMachine(T, computeDataLayout(TT, CPU, Options, isLittle), TT,
                        CPU, FS, Options, RM, CM, OL),
      TargetABI(computeTargetABI(TT, CPU, Options)),
      TLOF(createTLOF(getTargetTriple())),
      Subtarget(TT, CPU, FS, *this, isLittle), isLittle(isLittle) {

  // Default to triple-appropriate float ABI
  if (Options.FloatABIType == FloatABI::Default)
    this->Options.FloatABIType =
        Subtarget.isTargetHardFloat() ? FloatABI::Hard : FloatABI::Soft;
}

ARMBaseTargetMachine::~ARMBaseTargetMachine() {}

const ARMSubtarget *
ARMBaseTargetMachine::getSubtargetImpl(const Function &F) const {
  Attribute CPUAttr = F.getFnAttribute("target-cpu");
  Attribute FSAttr = F.getFnAttribute("target-features");

  std::string CPU = !CPUAttr.hasAttribute(Attribute::None)
                        ? CPUAttr.getValueAsString().str()
                        : TargetCPU;
  std::string FS = !FSAttr.hasAttribute(Attribute::None)
                       ? FSAttr.getValueAsString().str()
                       : TargetFS;

  // FIXME: This is related to the code below to reset the target options,
  // we need to know whether or not the soft float flag is set on the
  // function before we can generate a subtarget. We also need to use
  // it as a key for the subtarget since that can be the only difference
  // between two functions.
  bool SoftFloat =
      F.hasFnAttribute("use-soft-float") &&
      F.getFnAttribute("use-soft-float").getValueAsString() == "true";
  // If the soft float attribute is set on the function turn on the soft float
  // subtarget feature.
  if (SoftFloat)
    FS += FS.empty() ? "+soft-float" : ",+soft-float";

  auto &I = SubtargetMap[CPU + FS];
  if (!I) {
    // This needs to be done before we create a new subtarget since any
    // creation will depend on the TM and the code generation flags on the
    // function that reside in TargetOptions.
    resetTargetOptions(F);
    I = llvm::make_unique<ARMSubtarget>(TargetTriple, CPU, FS, *this, isLittle);
  }
  return I.get();
}

TargetIRAnalysis ARMBaseTargetMachine::getTargetIRAnalysis() {
  return TargetIRAnalysis(
      [this](Function &F) { return TargetTransformInfo(ARMTTIImpl(this, F)); });
}


void ARMTargetMachine::anchor() { }

ARMTargetMachine::ARMTargetMachine(const Target &T, const Triple &TT,
                                   StringRef CPU, StringRef FS,
                                   const TargetOptions &Options,
                                   Reloc::Model RM, CodeModel::Model CM,
                                   CodeGenOpt::Level OL, bool isLittle)
    : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, isLittle) {
  initAsmInfo();
  if (!Subtarget.hasARMOps())
    report_fatal_error("CPU: '" + Subtarget.getCPUString() + "' does not "
                       "support ARM mode execution!");
}

void ARMLETargetMachine::anchor() { }

ARMLETargetMachine::ARMLETargetMachine(const Target &T, const Triple &TT,
                                       StringRef CPU, StringRef FS,
                                       const TargetOptions &Options,
                                       Reloc::Model RM, CodeModel::Model CM,
                                       CodeGenOpt::Level OL)
    : ARMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}

void ARMBETargetMachine::anchor() { }

ARMBETargetMachine::ARMBETargetMachine(const Target &T, const Triple &TT,
                                       StringRef CPU, StringRef FS,
                                       const TargetOptions &Options,
                                       Reloc::Model RM, CodeModel::Model CM,
                                       CodeGenOpt::Level OL)
    : ARMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}

void ThumbTargetMachine::anchor() { }

ThumbTargetMachine::ThumbTargetMachine(const Target &T, const Triple &TT,
                                       StringRef CPU, StringRef FS,
                                       const TargetOptions &Options,
                                       Reloc::Model RM, CodeModel::Model CM,
                                       CodeGenOpt::Level OL, bool isLittle)
    : ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, isLittle) {
  initAsmInfo();
}

void ThumbLETargetMachine::anchor() { }

ThumbLETargetMachine::ThumbLETargetMachine(const Target &T, const Triple &TT,
                                           StringRef CPU, StringRef FS,
                                           const TargetOptions &Options,
                                           Reloc::Model RM, CodeModel::Model CM,
                                           CodeGenOpt::Level OL)
    : ThumbTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, true) {}

void ThumbBETargetMachine::anchor() { }

ThumbBETargetMachine::ThumbBETargetMachine(const Target &T, const Triple &TT,
                                           StringRef CPU, StringRef FS,
                                           const TargetOptions &Options,
                                           Reloc::Model RM, CodeModel::Model CM,
                                           CodeGenOpt::Level OL)
    : ThumbTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL, false) {}

namespace {
/// ARM Code Generator Pass Configuration Options.
class ARMPassConfig : public TargetPassConfig {
public:
  ARMPassConfig(ARMBaseTargetMachine *TM, PassManagerBase &PM)
    : TargetPassConfig(TM, PM) {}

  ARMBaseTargetMachine &getARMTargetMachine() const {
    return getTM<ARMBaseTargetMachine>();
  }

  void addIRPasses() override;
  bool addPreISel() override;
  bool addInstSelector() override;
  void addPreRegAlloc() override;
  void addPreSched2() override;
  void addPreEmitPass() override;
};
} // namespace

TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
  return new ARMPassConfig(this, PM);
}

void ARMPassConfig::addIRPasses() {
  if (TM->Options.ThreadModel == ThreadModel::Single)
    addPass(createLowerAtomicPass());
  else
    addPass(createAtomicExpandPass(TM));

  // Cmpxchg instructions are often used with a subsequent comparison to
  // determine whether it succeeded. We can exploit existing control-flow in
  // ldrex/strex loops to simplify this, but it needs tidying up.
  if (TM->getOptLevel() != CodeGenOpt::None && EnableAtomicTidy)
    addPass(createCFGSimplificationPass(-1, [this](const Function &F) {
      const auto &ST = this->TM->getSubtarget<ARMSubtarget>(F);
      return ST.hasAnyDataBarrier() && !ST.isThumb1Only();
    }));

  TargetPassConfig::addIRPasses();

  // Match interleaved memory accesses to ldN/stN intrinsics.
  if (TM->getOptLevel() != CodeGenOpt::None)
    addPass(createInterleavedAccessPass(TM));
}

bool ARMPassConfig::addPreISel() {
  if ((TM->getOptLevel() != CodeGenOpt::None &&
       EnableGlobalMerge == cl::BOU_UNSET) ||
      EnableGlobalMerge == cl::BOU_TRUE) {
    // FIXME: This is using the thumb1 only constant value for
    // maximal global offset for merging globals. We may want
    // to look into using the old value for non-thumb1 code of
    // 4095 based on the TargetMachine, but this starts to become
    // tricky when doing code gen per function.
    bool OnlyOptimizeForSize = (TM->getOptLevel() < CodeGenOpt::Aggressive) &&
                               (EnableGlobalMerge == cl::BOU_UNSET);
    addPass(createGlobalMergePass(TM, 127, OnlyOptimizeForSize));
  }

  return false;
}

bool ARMPassConfig::addInstSelector() {
  addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));

  if (TM->getTargetTriple().isOSBinFormatELF() && TM->Options.EnableFastISel)
    addPass(createARMGlobalBaseRegPass());
  return false;
}

void ARMPassConfig::addPreRegAlloc() {
  if (getOptLevel() != CodeGenOpt::None) {
    addPass(createMLxExpansionPass());

    if (EnableARMLoadStoreOpt)
      addPass(createARMLoadStoreOptimizationPass(/* pre-register alloc */ true));

    if (!DisableA15SDOptimization)
      addPass(createA15SDOptimizerPass());
  }
}

void ARMPassConfig::addPreSched2() {
  if (getOptLevel() != CodeGenOpt::None) {
    if (EnableARMLoadStoreOpt)
      addPass(createARMLoadStoreOptimizationPass());

    addPass(createExecutionDependencyFixPass(&ARM::DPRRegClass));
  }

  // Expand some pseudo instructions into multiple instructions to allow
  // proper scheduling.
  addPass(createARMExpandPseudoPass());

  if (getOptLevel() != CodeGenOpt::None) {
    // in v8, IfConversion depends on Thumb instruction widths
    addPass(createThumb2SizeReductionPass([this](const Function &F) {
      return this->TM->getSubtarget<ARMSubtarget>(F).restrictIT();
    }));

    addPass(createIfConverter([this](const Function &F) {
      return !this->TM->getSubtarget<ARMSubtarget>(F).isThumb1Only();
    }));
  }
  addPass(createThumb2ITBlockPass());
}

void ARMPassConfig::addPreEmitPass() {
  addPass(createThumb2SizeReductionPass());

  // Constant island pass work on unbundled instructions.
  addPass(createUnpackMachineBundles([this](const Function &F) {
    return this->TM->getSubtarget<ARMSubtarget>(F).isThumb2();
  }));

  // Don't optimize barriers at -O0.
  if (getOptLevel() != CodeGenOpt::None)
    addPass(createARMOptimizeBarriersPass());

  addPass(createARMConstantIslandPass());
}