llvm.org GIT mirror llvm / release_36 lib / IR / Function.cpp
release_36

Tree @release_36 (Download .tar.gz)

Function.cpp @release_36raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
//===-- Function.cpp - Implement the Global object classes ----------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Function class for the IR library.
//
//===----------------------------------------------------------------------===//

#include "llvm/IR/Function.h"
#include "LLVMContextImpl.h"
#include "SymbolTableListTraitsImpl.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/RWMutex.h"
#include "llvm/Support/StringPool.h"
#include "llvm/Support/Threading.h"
using namespace llvm;

// Explicit instantiations of SymbolTableListTraits since some of the methods
// are not in the public header file...
template class llvm::SymbolTableListTraits<Argument, Function>;
template class llvm::SymbolTableListTraits<BasicBlock, Function>;

//===----------------------------------------------------------------------===//
// Argument Implementation
//===----------------------------------------------------------------------===//

void Argument::anchor() { }

Argument::Argument(Type *Ty, const Twine &Name, Function *Par)
  : Value(Ty, Value::ArgumentVal) {
  Parent = nullptr;

  if (Par)
    Par->getArgumentList().push_back(this);
  setName(Name);
}

void Argument::setParent(Function *parent) {
  Parent = parent;
}

/// getArgNo - Return the index of this formal argument in its containing
/// function.  For example in "void foo(int a, float b)" a is 0 and b is 1.
unsigned Argument::getArgNo() const {
  const Function *F = getParent();
  assert(F && "Argument is not in a function");

  Function::const_arg_iterator AI = F->arg_begin();
  unsigned ArgIdx = 0;
  for (; &*AI != this; ++AI)
    ++ArgIdx;

  return ArgIdx;
}

/// hasNonNullAttr - Return true if this argument has the nonnull attribute on
/// it in its containing function. Also returns true if at least one byte is
/// known to be dereferenceable and the pointer is in addrspace(0).
bool Argument::hasNonNullAttr() const {
  if (!getType()->isPointerTy()) return false;
  if (getParent()->getAttributes().
        hasAttribute(getArgNo()+1, Attribute::NonNull))
    return true;
  else if (getDereferenceableBytes() > 0 &&
           getType()->getPointerAddressSpace() == 0)
    return true;
  return false;
}

/// hasByValAttr - Return true if this argument has the byval attribute on it
/// in its containing function.
bool Argument::hasByValAttr() const {
  if (!getType()->isPointerTy()) return false;
  return getParent()->getAttributes().
    hasAttribute(getArgNo()+1, Attribute::ByVal);
}

/// \brief Return true if this argument has the inalloca attribute on it in
/// its containing function.
bool Argument::hasInAllocaAttr() const {
  if (!getType()->isPointerTy()) return false;
  return getParent()->getAttributes().
    hasAttribute(getArgNo()+1, Attribute::InAlloca);
}

bool Argument::hasByValOrInAllocaAttr() const {
  if (!getType()->isPointerTy()) return false;
  AttributeSet Attrs = getParent()->getAttributes();
  return Attrs.hasAttribute(getArgNo() + 1, Attribute::ByVal) ||
         Attrs.hasAttribute(getArgNo() + 1, Attribute::InAlloca);
}

unsigned Argument::getParamAlignment() const {
  assert(getType()->isPointerTy() && "Only pointers have alignments");
  return getParent()->getParamAlignment(getArgNo()+1);

}

uint64_t Argument::getDereferenceableBytes() const {
  assert(getType()->isPointerTy() &&
         "Only pointers have dereferenceable bytes");
  return getParent()->getDereferenceableBytes(getArgNo()+1);
}

/// hasNestAttr - Return true if this argument has the nest attribute on
/// it in its containing function.
bool Argument::hasNestAttr() const {
  if (!getType()->isPointerTy()) return false;
  return getParent()->getAttributes().
    hasAttribute(getArgNo()+1, Attribute::Nest);
}

/// hasNoAliasAttr - Return true if this argument has the noalias attribute on
/// it in its containing function.
bool Argument::hasNoAliasAttr() const {
  if (!getType()->isPointerTy()) return false;
  return getParent()->getAttributes().
    hasAttribute(getArgNo()+1, Attribute::NoAlias);
}

/// hasNoCaptureAttr - Return true if this argument has the nocapture attribute
/// on it in its containing function.
bool Argument::hasNoCaptureAttr() const {
  if (!getType()->isPointerTy()) return false;
  return getParent()->getAttributes().
    hasAttribute(getArgNo()+1, Attribute::NoCapture);
}

/// hasSRetAttr - Return true if this argument has the sret attribute on
/// it in its containing function.
bool Argument::hasStructRetAttr() const {
  if (!getType()->isPointerTy()) return false;
  if (this != getParent()->arg_begin())
    return false; // StructRet param must be first param
  return getParent()->getAttributes().
    hasAttribute(1, Attribute::StructRet);
}

/// hasReturnedAttr - Return true if this argument has the returned attribute on
/// it in its containing function.
bool Argument::hasReturnedAttr() const {
  return getParent()->getAttributes().
    hasAttribute(getArgNo()+1, Attribute::Returned);
}

/// hasZExtAttr - Return true if this argument has the zext attribute on it in
/// its containing function.
bool Argument::hasZExtAttr() const {
  return getParent()->getAttributes().
    hasAttribute(getArgNo()+1, Attribute::ZExt);
}

/// hasSExtAttr Return true if this argument has the sext attribute on it in its
/// containing function.
bool Argument::hasSExtAttr() const {
  return getParent()->getAttributes().
    hasAttribute(getArgNo()+1, Attribute::SExt);
}

/// Return true if this argument has the readonly or readnone attribute on it
/// in its containing function.
bool Argument::onlyReadsMemory() const {
  return getParent()->getAttributes().
      hasAttribute(getArgNo()+1, Attribute::ReadOnly) ||
      getParent()->getAttributes().
      hasAttribute(getArgNo()+1, Attribute::ReadNone);
}

/// addAttr - Add attributes to an argument.
void Argument::addAttr(AttributeSet AS) {
  assert(AS.getNumSlots() <= 1 &&
         "Trying to add more than one attribute set to an argument!");
  AttrBuilder B(AS, AS.getSlotIndex(0));
  getParent()->addAttributes(getArgNo() + 1,
                             AttributeSet::get(Parent->getContext(),
                                               getArgNo() + 1, B));
}

/// removeAttr - Remove attributes from an argument.
void Argument::removeAttr(AttributeSet AS) {
  assert(AS.getNumSlots() <= 1 &&
         "Trying to remove more than one attribute set from an argument!");
  AttrBuilder B(AS, AS.getSlotIndex(0));
  getParent()->removeAttributes(getArgNo() + 1,
                                AttributeSet::get(Parent->getContext(),
                                                  getArgNo() + 1, B));
}

//===----------------------------------------------------------------------===//
// Helper Methods in Function
//===----------------------------------------------------------------------===//

bool Function::isMaterializable() const {
  return getGlobalObjectSubClassData();
}

void Function::setIsMaterializable(bool V) { setGlobalObjectSubClassData(V); }

LLVMContext &Function::getContext() const {
  return getType()->getContext();
}

FunctionType *Function::getFunctionType() const {
  return cast<FunctionType>(getType()->getElementType());
}

bool Function::isVarArg() const {
  return getFunctionType()->isVarArg();
}

Type *Function::getReturnType() const {
  return getFunctionType()->getReturnType();
}

void Function::removeFromParent() {
  getParent()->getFunctionList().remove(this);
}

void Function::eraseFromParent() {
  getParent()->getFunctionList().erase(this);
}

//===----------------------------------------------------------------------===//
// Function Implementation
//===----------------------------------------------------------------------===//

Function::Function(FunctionType *Ty, LinkageTypes Linkage, const Twine &name,
                   Module *ParentModule)
    : GlobalObject(PointerType::getUnqual(Ty), Value::FunctionVal, nullptr, 0,
                   Linkage, name) {
  assert(FunctionType::isValidReturnType(getReturnType()) &&
         "invalid return type");
  setIsMaterializable(false);
  SymTab = new ValueSymbolTable();

  // If the function has arguments, mark them as lazily built.
  if (Ty->getNumParams())
    setValueSubclassData(1);   // Set the "has lazy arguments" bit.

  if (ParentModule)
    ParentModule->getFunctionList().push_back(this);

  // Ensure intrinsics have the right parameter attributes.
  if (unsigned IID = getIntrinsicID())
    setAttributes(Intrinsic::getAttributes(getContext(), Intrinsic::ID(IID)));

}

Function::~Function() {
  dropAllReferences();    // After this it is safe to delete instructions.

  // Delete all of the method arguments and unlink from symbol table...
  ArgumentList.clear();
  delete SymTab;

  // Remove the function from the on-the-side GC table.
  clearGC();

  // Remove the intrinsicID from the Cache.
  if (getValueName() && isIntrinsic())
    getContext().pImpl->IntrinsicIDCache.erase(this);
}

void Function::BuildLazyArguments() const {
  // Create the arguments vector, all arguments start out unnamed.
  FunctionType *FT = getFunctionType();
  for (unsigned i = 0, e = FT->getNumParams(); i != e; ++i) {
    assert(!FT->getParamType(i)->isVoidTy() &&
           "Cannot have void typed arguments!");
    ArgumentList.push_back(new Argument(FT->getParamType(i)));
  }

  // Clear the lazy arguments bit.
  unsigned SDC = getSubclassDataFromValue();
  const_cast<Function*>(this)->setValueSubclassData(SDC &= ~(1<<0));
}

size_t Function::arg_size() const {
  return getFunctionType()->getNumParams();
}
bool Function::arg_empty() const {
  return getFunctionType()->getNumParams() == 0;
}

void Function::setParent(Module *parent) {
  Parent = parent;
}

// dropAllReferences() - This function causes all the subinstructions to "let
// go" of all references that they are maintaining.  This allows one to
// 'delete' a whole class at a time, even though there may be circular
// references... first all references are dropped, and all use counts go to
// zero.  Then everything is deleted for real.  Note that no operations are
// valid on an object that has "dropped all references", except operator
// delete.
//
void Function::dropAllReferences() {
  setIsMaterializable(false);

  for (iterator I = begin(), E = end(); I != E; ++I)
    I->dropAllReferences();

  // Delete all basic blocks. They are now unused, except possibly by
  // blockaddresses, but BasicBlock's destructor takes care of those.
  while (!BasicBlocks.empty())
    BasicBlocks.begin()->eraseFromParent();

  // Prefix and prologue data are stored in a side table.
  setPrefixData(nullptr);
  setPrologueData(nullptr);
}

void Function::addAttribute(unsigned i, Attribute::AttrKind attr) {
  AttributeSet PAL = getAttributes();
  PAL = PAL.addAttribute(getContext(), i, attr);
  setAttributes(PAL);
}

void Function::addAttributes(unsigned i, AttributeSet attrs) {
  AttributeSet PAL = getAttributes();
  PAL = PAL.addAttributes(getContext(), i, attrs);
  setAttributes(PAL);
}

void Function::removeAttributes(unsigned i, AttributeSet attrs) {
  AttributeSet PAL = getAttributes();
  PAL = PAL.removeAttributes(getContext(), i, attrs);
  setAttributes(PAL);
}

// Maintain the GC name for each function in an on-the-side table. This saves
// allocating an additional word in Function for programs which do not use GC
// (i.e., most programs) at the cost of increased overhead for clients which do
// use GC.
static DenseMap<const Function*,PooledStringPtr> *GCNames;
static StringPool *GCNamePool;
static ManagedStatic<sys::SmartRWMutex<true> > GCLock;

bool Function::hasGC() const {
  sys::SmartScopedReader<true> Reader(*GCLock);
  return GCNames && GCNames->count(this);
}

const char *Function::getGC() const {
  assert(hasGC() && "Function has no collector");
  sys::SmartScopedReader<true> Reader(*GCLock);
  return *(*GCNames)[this];
}

void Function::setGC(const char *Str) {
  sys::SmartScopedWriter<true> Writer(*GCLock);
  if (!GCNamePool)
    GCNamePool = new StringPool();
  if (!GCNames)
    GCNames = new DenseMap<const Function*,PooledStringPtr>();
  (*GCNames)[this] = GCNamePool->intern(Str);
}

void Function::clearGC() {
  sys::SmartScopedWriter<true> Writer(*GCLock);
  if (GCNames) {
    GCNames->erase(this);
    if (GCNames->empty()) {
      delete GCNames;
      GCNames = nullptr;
      if (GCNamePool->empty()) {
        delete GCNamePool;
        GCNamePool = nullptr;
      }
    }
  }
}

/// copyAttributesFrom - copy all additional attributes (those not needed to
/// create a Function) from the Function Src to this one.
void Function::copyAttributesFrom(const GlobalValue *Src) {
  assert(isa<Function>(Src) && "Expected a Function!");
  GlobalObject::copyAttributesFrom(Src);
  const Function *SrcF = cast<Function>(Src);
  setCallingConv(SrcF->getCallingConv());
  setAttributes(SrcF->getAttributes());
  if (SrcF->hasGC())
    setGC(SrcF->getGC());
  else
    clearGC();
  if (SrcF->hasPrefixData())
    setPrefixData(SrcF->getPrefixData());
  else
    setPrefixData(nullptr);
  if (SrcF->hasPrologueData())
    setPrologueData(SrcF->getPrologueData());
  else
    setPrologueData(nullptr);
}

/// getIntrinsicID - This method returns the ID number of the specified
/// function, or Intrinsic::not_intrinsic if the function is not an
/// intrinsic, or if the pointer is null.  This value is always defined to be
/// zero to allow easy checking for whether a function is intrinsic or not.  The
/// particular intrinsic functions which correspond to this value are defined in
/// llvm/Intrinsics.h.  Results are cached in the LLVM context, subsequent
/// requests for the same ID return results much faster from the cache.
///
unsigned Function::getIntrinsicID() const {
  const ValueName *ValName = this->getValueName();
  if (!ValName || !isIntrinsic())
    return 0;

  LLVMContextImpl::IntrinsicIDCacheTy &IntrinsicIDCache =
    getContext().pImpl->IntrinsicIDCache;
  if (!IntrinsicIDCache.count(this)) {
    unsigned Id = lookupIntrinsicID();
    IntrinsicIDCache[this]=Id;
    return Id;
  }
  return IntrinsicIDCache[this];
}

/// This private method does the actual lookup of an intrinsic ID when the query
/// could not be answered from the cache.
unsigned Function::lookupIntrinsicID() const {
  const ValueName *ValName = this->getValueName();
  unsigned Len = ValName->getKeyLength();
  const char *Name = ValName->getKeyData();

#define GET_FUNCTION_RECOGNIZER
#include "llvm/IR/Intrinsics.gen"
#undef GET_FUNCTION_RECOGNIZER

  return 0;
}

/// Returns a stable mangling for the type specified for use in the name
/// mangling scheme used by 'any' types in intrinsic signatures.  The mangling
/// of named types is simply their name.  Manglings for unnamed types consist
/// of a prefix ('p' for pointers, 'a' for arrays, 'f_' for functions)
/// combined with the mangling of their component types.  A vararg function
/// type will have a suffix of 'vararg'.  Since function types can contain
/// other function types, we close a function type mangling with suffix 'f'
/// which can't be confused with it's prefix.  This ensures we don't have
/// collisions between two unrelated function types. Otherwise, you might
/// parse ffXX as f(fXX) or f(fX)X.  (X is a placeholder for any other type.)
static std::string getMangledTypeStr(Type* Ty) {
  std::string Result;
  if (PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
    Result += "p" + llvm::utostr(PTyp->getAddressSpace()) +
      getMangledTypeStr(PTyp->getElementType());
  } else if (ArrayType* ATyp = dyn_cast<ArrayType>(Ty)) {
    Result += "a" + llvm::utostr(ATyp->getNumElements()) +
      getMangledTypeStr(ATyp->getElementType());
  } else if (StructType* STyp = dyn_cast<StructType>(Ty)) {
    if (!STyp->isLiteral())
      Result += STyp->getName();
    else
      llvm_unreachable("TODO: implement literal types");
  } else if (FunctionType* FT = dyn_cast<FunctionType>(Ty)) {
    Result += "f_" + getMangledTypeStr(FT->getReturnType());
    for (size_t i = 0; i < FT->getNumParams(); i++)
      Result += getMangledTypeStr(FT->getParamType(i));
    if (FT->isVarArg())
      Result += "vararg";
    // Ensure nested function types are distinguishable.
    Result += "f"; 
  } else if (Ty)
    Result += EVT::getEVT(Ty).getEVTString();
  return Result;
}

std::string Intrinsic::getName(ID id, ArrayRef<Type*> Tys) {
  assert(id < num_intrinsics && "Invalid intrinsic ID!");
  static const char * const Table[] = {
    "not_intrinsic",
#define GET_INTRINSIC_NAME_TABLE
#include "llvm/IR/Intrinsics.gen"
#undef GET_INTRINSIC_NAME_TABLE
  };
  if (Tys.empty())
    return Table[id];
  std::string Result(Table[id]);
  for (unsigned i = 0; i < Tys.size(); ++i) {
    Result += "." + getMangledTypeStr(Tys[i]);
  }
  return Result;
}


/// IIT_Info - These are enumerators that describe the entries returned by the
/// getIntrinsicInfoTableEntries function.
///
/// NOTE: This must be kept in synch with the copy in TblGen/IntrinsicEmitter!
enum IIT_Info {
  // Common values should be encoded with 0-15.
  IIT_Done = 0,
  IIT_I1   = 1,
  IIT_I8   = 2,
  IIT_I16  = 3,
  IIT_I32  = 4,
  IIT_I64  = 5,
  IIT_F16  = 6,
  IIT_F32  = 7,
  IIT_F64  = 8,
  IIT_V2   = 9,
  IIT_V4   = 10,
  IIT_V8   = 11,
  IIT_V16  = 12,
  IIT_V32  = 13,
  IIT_PTR  = 14,
  IIT_ARG  = 15,

  // Values from 16+ are only encodable with the inefficient encoding.
  IIT_V64  = 16,
  IIT_MMX  = 17,
  IIT_METADATA = 18,
  IIT_EMPTYSTRUCT = 19,
  IIT_STRUCT2 = 20,
  IIT_STRUCT3 = 21,
  IIT_STRUCT4 = 22,
  IIT_STRUCT5 = 23,
  IIT_EXTEND_ARG = 24,
  IIT_TRUNC_ARG = 25,
  IIT_ANYPTR = 26,
  IIT_V1   = 27,
  IIT_VARARG = 28,
  IIT_HALF_VEC_ARG = 29,
  IIT_SAME_VEC_WIDTH_ARG = 30,
  IIT_PTR_TO_ARG = 31
};


static void DecodeIITType(unsigned &NextElt, ArrayRef<unsigned char> Infos,
                      SmallVectorImpl<Intrinsic::IITDescriptor> &OutputTable) {
  IIT_Info Info = IIT_Info(Infos[NextElt++]);
  unsigned StructElts = 2;
  using namespace Intrinsic;

  switch (Info) {
  case IIT_Done:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Void, 0));
    return;
  case IIT_VARARG:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::VarArg, 0));
    return;
  case IIT_MMX:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::MMX, 0));
    return;
  case IIT_METADATA:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Metadata, 0));
    return;
  case IIT_F16:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Half, 0));
    return;
  case IIT_F32:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Float, 0));
    return;
  case IIT_F64:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Double, 0));
    return;
  case IIT_I1:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 1));
    return;
  case IIT_I8:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 8));
    return;
  case IIT_I16:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer,16));
    return;
  case IIT_I32:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 32));
    return;
  case IIT_I64:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Integer, 64));
    return;
  case IIT_V1:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 1));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_V2:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 2));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_V4:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 4));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_V8:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 8));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_V16:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 16));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_V32:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 32));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_V64:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Vector, 64));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_PTR:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer, 0));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  case IIT_ANYPTR: {  // [ANYPTR addrspace, subtype]
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Pointer,
                                             Infos[NextElt++]));
    DecodeIITType(NextElt, Infos, OutputTable);
    return;
  }
  case IIT_ARG: {
    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Argument, ArgInfo));
    return;
  }
  case IIT_EXTEND_ARG: {
    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::ExtendArgument,
                                             ArgInfo));
    return;
  }
  case IIT_TRUNC_ARG: {
    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::TruncArgument,
                                             ArgInfo));
    return;
  }
  case IIT_HALF_VEC_ARG: {
    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::HalfVecArgument,
                                             ArgInfo));
    return;
  }
  case IIT_SAME_VEC_WIDTH_ARG: {
    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::SameVecWidthArgument,
                                             ArgInfo));
    return;
  }
  case IIT_PTR_TO_ARG: {
    unsigned ArgInfo = (NextElt == Infos.size() ? 0 : Infos[NextElt++]);
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::PtrToArgument,
                                             ArgInfo));
    return;
  }
  case IIT_EMPTYSTRUCT:
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct, 0));
    return;
  case IIT_STRUCT5: ++StructElts; // FALL THROUGH.
  case IIT_STRUCT4: ++StructElts; // FALL THROUGH.
  case IIT_STRUCT3: ++StructElts; // FALL THROUGH.
  case IIT_STRUCT2: {
    OutputTable.push_back(IITDescriptor::get(IITDescriptor::Struct,StructElts));

    for (unsigned i = 0; i != StructElts; ++i)
      DecodeIITType(NextElt, Infos, OutputTable);
    return;
  }
  }
  llvm_unreachable("unhandled");
}


#define GET_INTRINSIC_GENERATOR_GLOBAL
#include "llvm/IR/Intrinsics.gen"
#undef GET_INTRINSIC_GENERATOR_GLOBAL

void Intrinsic::getIntrinsicInfoTableEntries(ID id,
                                             SmallVectorImpl<IITDescriptor> &T){
  // Check to see if the intrinsic's type was expressible by the table.
  unsigned TableVal = IIT_Table[id-1];

  // Decode the TableVal into an array of IITValues.
  SmallVector<unsigned char, 8> IITValues;
  ArrayRef<unsigned char> IITEntries;
  unsigned NextElt = 0;
  if ((TableVal >> 31) != 0) {
    // This is an offset into the IIT_LongEncodingTable.
    IITEntries = IIT_LongEncodingTable;

    // Strip sentinel bit.
    NextElt = (TableVal << 1) >> 1;
  } else {
    // Decode the TableVal into an array of IITValues.  If the entry was encoded
    // into a single word in the table itself, decode it now.
    do {
      IITValues.push_back(TableVal & 0xF);
      TableVal >>= 4;
    } while (TableVal);

    IITEntries = IITValues;
    NextElt = 0;
  }

  // Okay, decode the table into the output vector of IITDescriptors.
  DecodeIITType(NextElt, IITEntries, T);
  while (NextElt != IITEntries.size() && IITEntries[NextElt] != 0)
    DecodeIITType(NextElt, IITEntries, T);
}


static Type *DecodeFixedType(ArrayRef<Intrinsic::IITDescriptor> &Infos,
                             ArrayRef<Type*> Tys, LLVMContext &Context) {
  using namespace Intrinsic;
  IITDescriptor D = Infos.front();
  Infos = Infos.slice(1);

  switch (D.Kind) {
  case IITDescriptor::Void: return Type::getVoidTy(Context);
  case IITDescriptor::VarArg: return Type::getVoidTy(Context);
  case IITDescriptor::MMX: return Type::getX86_MMXTy(Context);
  case IITDescriptor::Metadata: return Type::getMetadataTy(Context);
  case IITDescriptor::Half: return Type::getHalfTy(Context);
  case IITDescriptor::Float: return Type::getFloatTy(Context);
  case IITDescriptor::Double: return Type::getDoubleTy(Context);

  case IITDescriptor::Integer:
    return IntegerType::get(Context, D.Integer_Width);
  case IITDescriptor::Vector:
    return VectorType::get(DecodeFixedType(Infos, Tys, Context),D.Vector_Width);
  case IITDescriptor::Pointer:
    return PointerType::get(DecodeFixedType(Infos, Tys, Context),
                            D.Pointer_AddressSpace);
  case IITDescriptor::Struct: {
    Type *Elts[5];
    assert(D.Struct_NumElements <= 5 && "Can't handle this yet");
    for (unsigned i = 0, e = D.Struct_NumElements; i != e; ++i)
      Elts[i] = DecodeFixedType(Infos, Tys, Context);
    return StructType::get(Context, makeArrayRef(Elts,D.Struct_NumElements));
  }

  case IITDescriptor::Argument:
    return Tys[D.getArgumentNumber()];
  case IITDescriptor::ExtendArgument: {
    Type *Ty = Tys[D.getArgumentNumber()];
    if (VectorType *VTy = dyn_cast<VectorType>(Ty))
      return VectorType::getExtendedElementVectorType(VTy);

    return IntegerType::get(Context, 2 * cast<IntegerType>(Ty)->getBitWidth());
  }
  case IITDescriptor::TruncArgument: {
    Type *Ty = Tys[D.getArgumentNumber()];
    if (VectorType *VTy = dyn_cast<VectorType>(Ty))
      return VectorType::getTruncatedElementVectorType(VTy);

    IntegerType *ITy = cast<IntegerType>(Ty);
    assert(ITy->getBitWidth() % 2 == 0);
    return IntegerType::get(Context, ITy->getBitWidth() / 2);
  }
  case IITDescriptor::HalfVecArgument:
    return VectorType::getHalfElementsVectorType(cast<VectorType>(
                                                  Tys[D.getArgumentNumber()]));
  case IITDescriptor::SameVecWidthArgument: {
    Type *EltTy = DecodeFixedType(Infos, Tys, Context);
    Type *Ty = Tys[D.getArgumentNumber()];
    if (VectorType *VTy = dyn_cast<VectorType>(Ty)) {
      return VectorType::get(EltTy, VTy->getNumElements());
    }
    llvm_unreachable("unhandled");
  }
  case IITDescriptor::PtrToArgument: {
    Type *Ty = Tys[D.getArgumentNumber()];
    return PointerType::getUnqual(Ty);
  }
 }
  llvm_unreachable("unhandled");
}



FunctionType *Intrinsic::getType(LLVMContext &Context,
                                 ID id, ArrayRef<Type*> Tys) {
  SmallVector<IITDescriptor, 8> Table;
  getIntrinsicInfoTableEntries(id, Table);

  ArrayRef<IITDescriptor> TableRef = Table;
  Type *ResultTy = DecodeFixedType(TableRef, Tys, Context);

  SmallVector<Type*, 8> ArgTys;
  while (!TableRef.empty())
    ArgTys.push_back(DecodeFixedType(TableRef, Tys, Context));

  // DecodeFixedType returns Void for IITDescriptor::Void and IITDescriptor::VarArg
  // If we see void type as the type of the last argument, it is vararg intrinsic
  if (!ArgTys.empty() && ArgTys.back()->isVoidTy()) {
    ArgTys.pop_back();
    return FunctionType::get(ResultTy, ArgTys, true);
  }
  return FunctionType::get(ResultTy, ArgTys, false);
}

bool Intrinsic::isOverloaded(ID id) {
#define GET_INTRINSIC_OVERLOAD_TABLE
#include "llvm/IR/Intrinsics.gen"
#undef GET_INTRINSIC_OVERLOAD_TABLE
}

/// This defines the "Intrinsic::getAttributes(ID id)" method.
#define GET_INTRINSIC_ATTRIBUTES
#include "llvm/IR/Intrinsics.gen"
#undef GET_INTRINSIC_ATTRIBUTES

Function *Intrinsic::getDeclaration(Module *M, ID id, ArrayRef<Type*> Tys) {
  // There can never be multiple globals with the same name of different types,
  // because intrinsics must be a specific type.
  return
    cast<Function>(M->getOrInsertFunction(getName(id, Tys),
                                          getType(M->getContext(), id, Tys)));
}

// This defines the "Intrinsic::getIntrinsicForGCCBuiltin()" method.
#define GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN
#include "llvm/IR/Intrinsics.gen"
#undef GET_LLVM_INTRINSIC_FOR_GCC_BUILTIN

// This defines the "Intrinsic::getIntrinsicForMSBuiltin()" method.
#define GET_LLVM_INTRINSIC_FOR_MS_BUILTIN
#include "llvm/IR/Intrinsics.gen"
#undef GET_LLVM_INTRINSIC_FOR_MS_BUILTIN

/// hasAddressTaken - returns true if there are any uses of this function
/// other than direct calls or invokes to it.
bool Function::hasAddressTaken(const User* *PutOffender) const {
  for (const Use &U : uses()) {
    const User *FU = U.getUser();
    if (isa<BlockAddress>(FU))
      continue;
    if (!isa<CallInst>(FU) && !isa<InvokeInst>(FU))
      return PutOffender ? (*PutOffender = FU, true) : true;
    ImmutableCallSite CS(cast<Instruction>(FU));
    if (!CS.isCallee(&U))
      return PutOffender ? (*PutOffender = FU, true) : true;
  }
  return false;
}

bool Function::isDefTriviallyDead() const {
  // Check the linkage
  if (!hasLinkOnceLinkage() && !hasLocalLinkage() &&
      !hasAvailableExternallyLinkage())
    return false;

  // Check if the function is used by anything other than a blockaddress.
  for (const User *U : users())
    if (!isa<BlockAddress>(U))
      return false;

  return true;
}

/// callsFunctionThatReturnsTwice - Return true if the function has a call to
/// setjmp or other function that gcc recognizes as "returning twice".
bool Function::callsFunctionThatReturnsTwice() const {
  for (const_inst_iterator
         I = inst_begin(this), E = inst_end(this); I != E; ++I) {
    ImmutableCallSite CS(&*I);
    if (CS && CS.hasFnAttr(Attribute::ReturnsTwice))
      return true;
  }

  return false;
}

Constant *Function::getPrefixData() const {
  assert(hasPrefixData());
  const LLVMContextImpl::PrefixDataMapTy &PDMap =
      getContext().pImpl->PrefixDataMap;
  assert(PDMap.find(this) != PDMap.end());
  return cast<Constant>(PDMap.find(this)->second->getReturnValue());
}

void Function::setPrefixData(Constant *PrefixData) {
  if (!PrefixData && !hasPrefixData())
    return;

  unsigned SCData = getSubclassDataFromValue();
  LLVMContextImpl::PrefixDataMapTy &PDMap = getContext().pImpl->PrefixDataMap;
  ReturnInst *&PDHolder = PDMap[this];
  if (PrefixData) {
    if (PDHolder)
      PDHolder->setOperand(0, PrefixData);
    else
      PDHolder = ReturnInst::Create(getContext(), PrefixData);
    SCData |= (1<<1);
  } else {
    delete PDHolder;
    PDMap.erase(this);
    SCData &= ~(1<<1);
  }
  setValueSubclassData(SCData);
}

Constant *Function::getPrologueData() const {
  assert(hasPrologueData());
  const LLVMContextImpl::PrologueDataMapTy &SOMap =
      getContext().pImpl->PrologueDataMap;
  assert(SOMap.find(this) != SOMap.end());
  return cast<Constant>(SOMap.find(this)->second->getReturnValue());
}

void Function::setPrologueData(Constant *PrologueData) {
  if (!PrologueData && !hasPrologueData())
    return;

  unsigned PDData = getSubclassDataFromValue();
  LLVMContextImpl::PrologueDataMapTy &PDMap = getContext().pImpl->PrologueDataMap;
  ReturnInst *&PDHolder = PDMap[this];
  if (PrologueData) {
    if (PDHolder)
      PDHolder->setOperand(0, PrologueData);
    else
      PDHolder = ReturnInst::Create(getContext(), PrologueData);
    PDData |= (1<<2);
  } else {
    delete PDHolder;
    PDMap.erase(this);
    PDData &= ~(1<<2);
  }
  setValueSubclassData(PDData);
}