llvm.org GIT mirror llvm / release_35 lib / Target / R600 / AMDGPUAsmPrinter.cpp
release_35

Tree @release_35 (Download .tar.gz)

AMDGPUAsmPrinter.cpp @release_35raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
//===-- AMDGPUAsmPrinter.cpp - AMDGPU Assebly printer  --------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
///
/// The AMDGPUAsmPrinter is used to print both assembly string and also binary
/// code.  When passed an MCAsmStreamer it prints assembly and when passed
/// an MCObjectStreamer it outputs binary code.
//
//===----------------------------------------------------------------------===//
//

#include "AMDGPUAsmPrinter.h"
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "R600Defines.h"
#include "R600MachineFunctionInfo.h"
#include "R600RegisterInfo.h"
#include "SIDefines.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/ELF.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetLoweringObjectFile.h"

using namespace llvm;

// TODO: This should get the default rounding mode from the kernel. We just set
// the default here, but this could change if the OpenCL rounding mode pragmas
// are used.
//
// The denormal mode here should match what is reported by the OpenCL runtime
// for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but
// can also be override to flush with the -cl-denorms-are-zero compiler flag.
//
// AMD OpenCL only sets flush none and reports CL_FP_DENORM for double
// precision, and leaves single precision to flush all and does not report
// CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports
// CL_FP_DENORM for both.
//
// FIXME: It seems some instructions do not support single precision denormals
// regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32,
// and sin_f32, cos_f32 on most parts).

// We want to use these instructions, and using fp32 denormals also causes
// instructions to run at the double precision rate for the device so it's
// probably best to just report no single precision denormals.
static uint32_t getFPMode(const MachineFunction &F) {
  const AMDGPUSubtarget& ST = F.getTarget().getSubtarget<AMDGPUSubtarget>();
  // TODO: Is there any real use for the flush in only / flush out only modes?

  uint32_t FP32Denormals =
    ST.hasFP32Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT;

  uint32_t FP64Denormals =
    ST.hasFP64Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT;

  return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) |
         FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) |
         FP_DENORM_MODE_SP(FP32Denormals) |
         FP_DENORM_MODE_DP(FP64Denormals);
}

static AsmPrinter *createAMDGPUAsmPrinterPass(TargetMachine &tm,
                                              MCStreamer &Streamer) {
  return new AMDGPUAsmPrinter(tm, Streamer);
}

extern "C" void LLVMInitializeR600AsmPrinter() {
  TargetRegistry::RegisterAsmPrinter(TheAMDGPUTarget, createAMDGPUAsmPrinterPass);
}

AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM, MCStreamer &Streamer)
    : AsmPrinter(TM, Streamer) {
  DisasmEnabled = TM.getSubtarget<AMDGPUSubtarget>().dumpCode();
}

void AMDGPUAsmPrinter::EmitEndOfAsmFile(Module &M) {

  // This label is used to mark the end of the .text section.
  const TargetLoweringObjectFile &TLOF = getObjFileLowering();
  OutStreamer.SwitchSection(TLOF.getTextSection());
  MCSymbol *EndOfTextLabel =
      OutContext.GetOrCreateSymbol(StringRef(END_OF_TEXT_LABEL_NAME));
  OutStreamer.EmitLabel(EndOfTextLabel);
}

bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
  SetupMachineFunction(MF);

  OutStreamer.emitRawComment(Twine('@') + MF.getName() + Twine(':'));

  MCContext &Context = getObjFileLowering().getContext();
  const MCSectionELF *ConfigSection = Context.getELFSection(".AMDGPU.config",
                                              ELF::SHT_PROGBITS, 0,
                                              SectionKind::getReadOnly());
  OutStreamer.SwitchSection(ConfigSection);

  const AMDGPUSubtarget &STM = TM.getSubtarget<AMDGPUSubtarget>();
  SIProgramInfo KernelInfo;
  if (STM.getGeneration() > AMDGPUSubtarget::NORTHERN_ISLANDS) {
    getSIProgramInfo(KernelInfo, MF);
    EmitProgramInfoSI(MF, KernelInfo);
  } else {
    EmitProgramInfoR600(MF);
  }

  DisasmLines.clear();
  HexLines.clear();
  DisasmLineMaxLen = 0;

  OutStreamer.SwitchSection(getObjFileLowering().getTextSection());
  EmitFunctionBody();

  if (isVerbose()) {
    const MCSectionELF *CommentSection
      = Context.getELFSection(".AMDGPU.csdata",
                              ELF::SHT_PROGBITS, 0,
                              SectionKind::getReadOnly());
    OutStreamer.SwitchSection(CommentSection);

    if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
      OutStreamer.emitRawComment(" Kernel info:", false);
      OutStreamer.emitRawComment(" codeLenInByte = " + Twine(KernelInfo.CodeLen),
                                 false);
      OutStreamer.emitRawComment(" NumSgprs: " + Twine(KernelInfo.NumSGPR),
                                 false);
      OutStreamer.emitRawComment(" NumVgprs: " + Twine(KernelInfo.NumVGPR),
                                 false);
      OutStreamer.emitRawComment(" FloatMode: " + Twine(KernelInfo.FloatMode),
                                 false);
      OutStreamer.emitRawComment(" IeeeMode: " + Twine(KernelInfo.IEEEMode),
                                 false);
      OutStreamer.emitRawComment(" ScratchSize: " + Twine(KernelInfo.ScratchSize),
                                 false);
    } else {
      R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
      OutStreamer.emitRawComment(
        Twine("SQ_PGM_RESOURCES:STACK_SIZE = " + Twine(MFI->StackSize)));
    }
  }

  if (STM.dumpCode()) {
#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
    MF.dump();
#endif

    if (DisasmEnabled) {
      OutStreamer.SwitchSection(Context.getELFSection(".AMDGPU.disasm",
                                                  ELF::SHT_NOTE, 0,
                                                  SectionKind::getReadOnly()));

      for (size_t i = 0; i < DisasmLines.size(); ++i) {
        std::string Comment(DisasmLineMaxLen - DisasmLines[i].size(), ' ');
        Comment += " ; " + HexLines[i] + "\n";

        OutStreamer.EmitBytes(StringRef(DisasmLines[i]));
        OutStreamer.EmitBytes(StringRef(Comment));
      }
    }
  }

  return false;
}

void AMDGPUAsmPrinter::EmitProgramInfoR600(const MachineFunction &MF) {
  unsigned MaxGPR = 0;
  bool killPixel = false;
  const R600RegisterInfo *RI
    = static_cast<const R600RegisterInfo*>(TM.getRegisterInfo());
  const R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
  const AMDGPUSubtarget &STM = TM.getSubtarget<AMDGPUSubtarget>();

  for (const MachineBasicBlock &MBB : MF) {
    for (const MachineInstr &MI : MBB) {
      if (MI.getOpcode() == AMDGPU::KILLGT)
        killPixel = true;
      unsigned numOperands = MI.getNumOperands();
      for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) {
        const MachineOperand &MO = MI.getOperand(op_idx);
        if (!MO.isReg())
          continue;
        unsigned HWReg = RI->getEncodingValue(MO.getReg()) & 0xff;

        // Register with value > 127 aren't GPR
        if (HWReg > 127)
          continue;
        MaxGPR = std::max(MaxGPR, HWReg);
      }
    }
  }

  unsigned RsrcReg;
  if (STM.getGeneration() >= AMDGPUSubtarget::EVERGREEN) {
    // Evergreen / Northern Islands
    switch (MFI->getShaderType()) {
    default: // Fall through
    case ShaderType::COMPUTE:  RsrcReg = R_0288D4_SQ_PGM_RESOURCES_LS; break;
    case ShaderType::GEOMETRY: RsrcReg = R_028878_SQ_PGM_RESOURCES_GS; break;
    case ShaderType::PIXEL:    RsrcReg = R_028844_SQ_PGM_RESOURCES_PS; break;
    case ShaderType::VERTEX:   RsrcReg = R_028860_SQ_PGM_RESOURCES_VS; break;
    }
  } else {
    // R600 / R700
    switch (MFI->getShaderType()) {
    default: // Fall through
    case ShaderType::GEOMETRY: // Fall through
    case ShaderType::COMPUTE:  // Fall through
    case ShaderType::VERTEX:   RsrcReg = R_028868_SQ_PGM_RESOURCES_VS; break;
    case ShaderType::PIXEL:    RsrcReg = R_028850_SQ_PGM_RESOURCES_PS; break;
    }
  }

  OutStreamer.EmitIntValue(RsrcReg, 4);
  OutStreamer.EmitIntValue(S_NUM_GPRS(MaxGPR + 1) |
                           S_STACK_SIZE(MFI->StackSize), 4);
  OutStreamer.EmitIntValue(R_02880C_DB_SHADER_CONTROL, 4);
  OutStreamer.EmitIntValue(S_02880C_KILL_ENABLE(killPixel), 4);

  if (MFI->getShaderType() == ShaderType::COMPUTE) {
    OutStreamer.EmitIntValue(R_0288E8_SQ_LDS_ALLOC, 4);
    OutStreamer.EmitIntValue(RoundUpToAlignment(MFI->LDSSize, 4) >> 2, 4);
  }
}

void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo,
                                        const MachineFunction &MF) const {
  uint64_t CodeSize = 0;
  unsigned MaxSGPR = 0;
  unsigned MaxVGPR = 0;
  bool VCCUsed = false;
  const SIRegisterInfo *RI
    = static_cast<const SIRegisterInfo*>(TM.getRegisterInfo());

  for (const MachineBasicBlock &MBB : MF) {
    for (const MachineInstr &MI : MBB) {
      // TODO: CodeSize should account for multiple functions.
      CodeSize += MI.getDesc().Size;

      unsigned numOperands = MI.getNumOperands();
      for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) {
        const MachineOperand &MO = MI.getOperand(op_idx);
        unsigned width = 0;
        bool isSGPR = false;

        if (!MO.isReg()) {
          continue;
        }
        unsigned reg = MO.getReg();
        if (reg == AMDGPU::VCC || reg == AMDGPU::VCC_LO ||
	    reg == AMDGPU::VCC_HI) {
          VCCUsed = true;
          continue;
        }

        switch (reg) {
        default: break;
        case AMDGPU::SCC:
        case AMDGPU::EXEC:
        case AMDGPU::M0:
          continue;
        }

        if (AMDGPU::SReg_32RegClass.contains(reg)) {
          isSGPR = true;
          width = 1;
        } else if (AMDGPU::VReg_32RegClass.contains(reg)) {
          isSGPR = false;
          width = 1;
        } else if (AMDGPU::SReg_64RegClass.contains(reg)) {
          isSGPR = true;
          width = 2;
        } else if (AMDGPU::VReg_64RegClass.contains(reg)) {
          isSGPR = false;
          width = 2;
        } else if (AMDGPU::VReg_96RegClass.contains(reg)) {
          isSGPR = false;
          width = 3;
        } else if (AMDGPU::SReg_128RegClass.contains(reg)) {
          isSGPR = true;
          width = 4;
        } else if (AMDGPU::VReg_128RegClass.contains(reg)) {
          isSGPR = false;
          width = 4;
        } else if (AMDGPU::SReg_256RegClass.contains(reg)) {
          isSGPR = true;
          width = 8;
        } else if (AMDGPU::VReg_256RegClass.contains(reg)) {
          isSGPR = false;
          width = 8;
        } else if (AMDGPU::SReg_512RegClass.contains(reg)) {
          isSGPR = true;
          width = 16;
        } else if (AMDGPU::VReg_512RegClass.contains(reg)) {
          isSGPR = false;
          width = 16;
        } else {
          llvm_unreachable("Unknown register class");
        }
        unsigned hwReg = RI->getEncodingValue(reg) & 0xff;
        unsigned maxUsed = hwReg + width - 1;
        if (isSGPR) {
          MaxSGPR = maxUsed > MaxSGPR ? maxUsed : MaxSGPR;
        } else {
          MaxVGPR = maxUsed > MaxVGPR ? maxUsed : MaxVGPR;
        }
      }
    }
  }

  if (VCCUsed)
    MaxSGPR += 2;

  ProgInfo.NumVGPR = MaxVGPR;
  ProgInfo.NumSGPR = MaxSGPR;

  // Set the value to initialize FP_ROUND and FP_DENORM parts of the mode
  // register.
  ProgInfo.FloatMode = getFPMode(MF);

  // XXX: Not quite sure what this does, but sc seems to unset this.
  ProgInfo.IEEEMode = 0;

  // Do not clamp NAN to 0.
  ProgInfo.DX10Clamp = 0;

  const MachineFrameInfo *FrameInfo = MF.getFrameInfo();
  ProgInfo.ScratchSize = FrameInfo->estimateStackSize(MF);

  ProgInfo.CodeLen = CodeSize;
}

void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF,
                                         const SIProgramInfo &KernelInfo) {
  const AMDGPUSubtarget &STM = TM.getSubtarget<AMDGPUSubtarget>();
  const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();

  unsigned RsrcReg;
  switch (MFI->getShaderType()) {
  default: // Fall through
  case ShaderType::COMPUTE:  RsrcReg = R_00B848_COMPUTE_PGM_RSRC1; break;
  case ShaderType::GEOMETRY: RsrcReg = R_00B228_SPI_SHADER_PGM_RSRC1_GS; break;
  case ShaderType::PIXEL:    RsrcReg = R_00B028_SPI_SHADER_PGM_RSRC1_PS; break;
  case ShaderType::VERTEX:   RsrcReg = R_00B128_SPI_SHADER_PGM_RSRC1_VS; break;
  }

  unsigned LDSAlignShift;
  if (STM.getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
    // LDS is allocated in 64 dword blocks.
    LDSAlignShift = 8;
  } else {
    // LDS is allocated in 128 dword blocks.
    LDSAlignShift = 9;
  }

  unsigned LDSBlocks =
    RoundUpToAlignment(MFI->LDSSize, 1 << LDSAlignShift) >> LDSAlignShift;

  // Scratch is allocated in 256 dword blocks.
  unsigned ScratchAlignShift = 10;
  // We need to program the hardware with the amount of scratch memory that
  // is used by the entire wave.  KernelInfo.ScratchSize is the amount of
  // scratch memory used per thread.
  unsigned ScratchBlocks =
    RoundUpToAlignment(KernelInfo.ScratchSize * STM.getWavefrontSize(),
                       1 << ScratchAlignShift) >> ScratchAlignShift;

  if (MFI->getShaderType() == ShaderType::COMPUTE) {
    OutStreamer.EmitIntValue(R_00B848_COMPUTE_PGM_RSRC1, 4);

    const uint32_t ComputePGMRSrc1 =
      S_00B848_VGPRS(KernelInfo.NumVGPR / 4) |
      S_00B848_SGPRS(KernelInfo.NumSGPR / 8) |
      S_00B848_PRIORITY(KernelInfo.Priority) |
      S_00B848_FLOAT_MODE(KernelInfo.FloatMode) |
      S_00B848_PRIV(KernelInfo.Priv) |
      S_00B848_DX10_CLAMP(KernelInfo.DX10Clamp) |
      S_00B848_IEEE_MODE(KernelInfo.DebugMode) |
      S_00B848_IEEE_MODE(KernelInfo.IEEEMode);

    OutStreamer.EmitIntValue(ComputePGMRSrc1, 4);

    OutStreamer.EmitIntValue(R_00B84C_COMPUTE_PGM_RSRC2, 4);
    const uint32_t ComputePGMRSrc2 =
      S_00B84C_LDS_SIZE(LDSBlocks) |
      S_00B02C_SCRATCH_EN(ScratchBlocks > 0);

    OutStreamer.EmitIntValue(ComputePGMRSrc2, 4);

    OutStreamer.EmitIntValue(R_00B860_COMPUTE_TMPRING_SIZE, 4);
    OutStreamer.EmitIntValue(S_00B860_WAVESIZE(ScratchBlocks), 4);
  } else {
    OutStreamer.EmitIntValue(RsrcReg, 4);
    OutStreamer.EmitIntValue(S_00B028_VGPRS(KernelInfo.NumVGPR / 4) |
                             S_00B028_SGPRS(KernelInfo.NumSGPR / 8), 4);
  }

  if (MFI->getShaderType() == ShaderType::PIXEL) {
    OutStreamer.EmitIntValue(R_00B02C_SPI_SHADER_PGM_RSRC2_PS, 4);
    OutStreamer.EmitIntValue(S_00B02C_EXTRA_LDS_SIZE(LDSBlocks), 4);
    OutStreamer.EmitIntValue(R_0286CC_SPI_PS_INPUT_ENA, 4);
    OutStreamer.EmitIntValue(MFI->PSInputAddr, 4);
  }
}