llvm.org GIT mirror llvm / release_35 include / llvm / IR / BasicBlock.h

Tree @release_35 (Download .tar.gz)

BasicBlock.h @release_35raw · history · blame

//===-- llvm/BasicBlock.h - Represent a basic block in the VM ---*- C++ -*-===//
//                     The LLVM Compiler Infrastructure
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
// This file contains the declaration of the BasicBlock class.


#include "llvm/ADT/Twine.h"
#include "llvm/ADT/ilist.h"
#include "llvm/IR/Instruction.h"
#include "llvm/IR/SymbolTableListTraits.h"
#include "llvm/Support/CBindingWrapping.h"
#include "llvm/Support/DataTypes.h"

namespace llvm {

class LandingPadInst;
class TerminatorInst;
class LLVMContext;
class BlockAddress;

template<> struct ilist_traits<Instruction>
  : public SymbolTableListTraits<Instruction, BasicBlock> {

  /// \brief Return a node that marks the end of a list.
  /// The sentinel is relative to this instance, so we use a non-static
  /// method.
  Instruction *createSentinel() const {
    // Since i(p)lists always publicly derive from their corresponding traits,
    // placing a data member in this class will augment the i(p)list.  But since
    // the NodeTy is expected to be publicly derive from ilist_node<NodeTy>,
    // there is a legal viable downcast from it to NodeTy. We use this trick to
    // superimpose an i(p)list with a "ghostly" NodeTy, which becomes the
    // sentinel. Dereferencing the sentinel is forbidden (save the
    // ilist_node<NodeTy>), so no one will ever notice the superposition.
    return static_cast<Instruction*>(&Sentinel);
  static void destroySentinel(Instruction*) {}

  Instruction *provideInitialHead() const { return createSentinel(); }
  Instruction *ensureHead(Instruction*) const { return createSentinel(); }
  static void noteHead(Instruction*, Instruction*) {}
  mutable ilist_half_node<Instruction> Sentinel;

/// \brief LLVM Basic Block Representation
/// This represents a single basic block in LLVM. A basic block is simply a
/// container of instructions that execute sequentially. Basic blocks are Values
/// because they are referenced by instructions such as branches and switch
/// tables. The type of a BasicBlock is "Type::LabelTy" because the basic block
/// represents a label to which a branch can jump.
/// A well formed basic block is formed of a list of non-terminating
/// instructions followed by a single TerminatorInst instruction.
/// TerminatorInst's may not occur in the middle of basic blocks, and must
/// terminate the blocks. The BasicBlock class allows malformed basic blocks to
/// occur because it may be useful in the intermediate stage of constructing or
/// modifying a program. However, the verifier will ensure that basic blocks
/// are "well formed".
class BasicBlock : public Value, // Basic blocks are data objects also
                   public ilist_node<BasicBlock> {
  friend class BlockAddress;
  typedef iplist<Instruction> InstListType;
  InstListType InstList;
  Function *Parent;

  void setParent(Function *parent);
  friend class SymbolTableListTraits<BasicBlock, Function>;

  BasicBlock(const BasicBlock &) LLVM_DELETED_FUNCTION;
  void operator=(const BasicBlock &) LLVM_DELETED_FUNCTION;

  /// \brief Constructor.
  /// If the function parameter is specified, the basic block is automatically
  /// inserted at either the end of the function (if InsertBefore is null), or
  /// before the specified basic block.
  explicit BasicBlock(LLVMContext &C, const Twine &Name = "",
                      Function *Parent = nullptr,
                      BasicBlock *InsertBefore = nullptr);
  /// \brief Get the context in which this basic block lives.
  LLVMContext &getContext() const;

  /// Instruction iterators...
  typedef InstListType::iterator iterator;
  typedef InstListType::const_iterator const_iterator;
  typedef InstListType::reverse_iterator reverse_iterator;
  typedef InstListType::const_reverse_iterator const_reverse_iterator;

  /// \brief Creates a new BasicBlock.
  /// If the Parent parameter is specified, the basic block is automatically
  /// inserted at either the end of the function (if InsertBefore is 0), or
  /// before the specified basic block.
  static BasicBlock *Create(LLVMContext &Context, const Twine &Name = "",
                            Function *Parent = nullptr,
                            BasicBlock *InsertBefore = nullptr) {
    return new BasicBlock(Context, Name, Parent, InsertBefore);

  /// \brief Return the enclosing method, or null if none.
  const Function *getParent() const { return Parent; }
        Function *getParent()       { return Parent; }

  const DataLayout *getDataLayout() const;

  /// \brief Returns the terminator instruction if the block is well formed or
  /// null if the block is not well formed.
  TerminatorInst *getTerminator();
  const TerminatorInst *getTerminator() const;

  /// \brief Returns a pointer to the first instruction in this block that is
  /// not a PHINode instruction.
  /// When adding instructions to the beginning of the basic block, they should
  /// be added before the returned value, not before the first instruction,
  /// which might be PHI. Returns 0 is there's no non-PHI instruction.
  Instruction* getFirstNonPHI();
  const Instruction* getFirstNonPHI() const {
    return const_cast<BasicBlock*>(this)->getFirstNonPHI();

  /// \brief Returns a pointer to the first instruction in this block that is not
  /// a PHINode or a debug intrinsic.
  Instruction* getFirstNonPHIOrDbg();
  const Instruction* getFirstNonPHIOrDbg() const {
    return const_cast<BasicBlock*>(this)->getFirstNonPHIOrDbg();

  /// \brief Returns a pointer to the first instruction in this block that is not
  /// a PHINode, a debug intrinsic, or a lifetime intrinsic.
  Instruction* getFirstNonPHIOrDbgOrLifetime();
  const Instruction* getFirstNonPHIOrDbgOrLifetime() const {
    return const_cast<BasicBlock*>(this)->getFirstNonPHIOrDbgOrLifetime();

  /// \brief Returns an iterator to the first instruction in this block that is
  /// suitable for inserting a non-PHI instruction.
  /// In particular, it skips all PHIs and LandingPad instructions.
  iterator getFirstInsertionPt();
  const_iterator getFirstInsertionPt() const {
    return const_cast<BasicBlock*>(this)->getFirstInsertionPt();

  /// \brief Unlink 'this' from the containing function, but do not delete it.
  void removeFromParent();

  /// \brief Unlink 'this' from the containing function and delete it.
  void eraseFromParent();

  /// \brief Unlink this basic block from its current function and insert it
  /// into the function that \p MovePos lives in, right before \p MovePos.
  void moveBefore(BasicBlock *MovePos);

  /// \brief Unlink this basic block from its current function and insert it
  /// right after \p MovePos in the function \p MovePos lives in.
  void moveAfter(BasicBlock *MovePos);

  /// \brief Return the predecessor of this block if it has a single predecessor
  /// block. Otherwise return a null pointer.
  BasicBlock *getSinglePredecessor();
  const BasicBlock *getSinglePredecessor() const {
    return const_cast<BasicBlock*>(this)->getSinglePredecessor();

  /// \brief Return the predecessor of this block if it has a unique predecessor
  /// block. Otherwise return a null pointer.
  /// Note that unique predecessor doesn't mean single edge, there can be
  /// multiple edges from the unique predecessor to this block (for example a
  /// switch statement with multiple cases having the same destination).
  BasicBlock *getUniquePredecessor();
  const BasicBlock *getUniquePredecessor() const {
    return const_cast<BasicBlock*>(this)->getUniquePredecessor();

  /// Instruction iterator methods
  inline iterator                begin()       { return InstList.begin(); }
  inline const_iterator          begin() const { return InstList.begin(); }
  inline iterator                end  ()       { return InstList.end();   }
  inline const_iterator          end  () const { return InstList.end();   }

  inline reverse_iterator        rbegin()       { return InstList.rbegin(); }
  inline const_reverse_iterator  rbegin() const { return InstList.rbegin(); }
  inline reverse_iterator        rend  ()       { return InstList.rend();   }
  inline const_reverse_iterator  rend  () const { return InstList.rend();   }

  inline size_t                   size() const { return InstList.size();  }
  inline bool                    empty() const { return InstList.empty(); }
  inline const Instruction      &front() const { return InstList.front(); }
  inline       Instruction      &front()       { return InstList.front(); }
  inline const Instruction       &back() const { return InstList.back();  }
  inline       Instruction       &back()       { return InstList.back();  }

  /// \brief Return the underlying instruction list container.
  /// Currently you need to access the underlying instruction list container
  /// directly if you want to modify it.
  const InstListType &getInstList() const { return InstList; }
        InstListType &getInstList()       { return InstList; }

  /// \brief Returns a pointer to a member of the instruction list.
  static iplist<Instruction> BasicBlock::*getSublistAccess(Instruction*) {
    return &BasicBlock::InstList;

  /// \brief Returns a pointer to the symbol table if one exists.
  ValueSymbolTable *getValueSymbolTable();

  /// \brief Methods for support type inquiry through isa, cast, and dyn_cast.
  static inline bool classof(const Value *V) {
    return V->getValueID() == Value::BasicBlockVal;

  /// \brief Cause all subinstructions to "let go" of all the references that
  /// said subinstructions are maintaining.
  /// This allows one to 'delete' a whole class at a time, even though there may
  /// be circular references... first all references are dropped, and all use
  /// counts go to zero.  Then everything is delete'd for real.  Note that no
  /// operations are valid on an object that has "dropped all references",
  /// except operator delete.
  void dropAllReferences();

  /// \brief Notify the BasicBlock that the predecessor \p Pred is no longer
  /// able to reach it.
  /// This is actually not used to update the Predecessor list, but is actually
  /// used to update the PHI nodes that reside in the block.  Note that this
  /// should be called while the predecessor still refers to this block.
  void removePredecessor(BasicBlock *Pred, bool DontDeleteUselessPHIs = false);

  /// \brief Split the basic block into two basic blocks at the specified
  /// instruction.
  /// Note that all instructions BEFORE the specified iterator stay as part of
  /// the original basic block, an unconditional branch is added to the original
  /// BB, and the rest of the instructions in the BB are moved to the new BB,
  /// including the old terminator.  The newly formed BasicBlock is returned.
  /// This function invalidates the specified iterator.
  /// Note that this only works on well formed basic blocks (must have a
  /// terminator), and 'I' must not be the end of instruction list (which would
  /// cause a degenerate basic block to be formed, having a terminator inside of
  /// the basic block).
  /// Also note that this doesn't preserve any passes. To split blocks while
  /// keeping loop information consistent, use the SplitBlock utility function.
  BasicBlock *splitBasicBlock(iterator I, const Twine &BBName = "");

  /// \brief Returns true if there are any uses of this basic block other than
  /// direct branches, switches, etc. to it.
  bool hasAddressTaken() const { return getSubclassDataFromValue() != 0; }

  /// \brief Update all phi nodes in this basic block's successors to refer to
  /// basic block \p New instead of to it.
  void replaceSuccessorsPhiUsesWith(BasicBlock *New);

  /// \brief Return true if this basic block is a landing pad.
  /// Being a ``landing pad'' means that the basic block is the destination of
  /// the 'unwind' edge of an invoke instruction.
  bool isLandingPad() const;

  /// \brief Return the landingpad instruction associated with the landing pad.
  LandingPadInst *getLandingPadInst();
  const LandingPadInst *getLandingPadInst() const;

  /// \brief Increment the internal refcount of the number of BlockAddresses
  /// referencing this BasicBlock by \p Amt.
  /// This is almost always 0, sometimes one possibly, but almost never 2, and
  /// inconceivably 3 or more.
  void AdjustBlockAddressRefCount(int Amt) {
    assert((int)(signed char)getSubclassDataFromValue() >= 0 &&
           "Refcount wrap-around");
  /// \brief Shadow Value::setValueSubclassData with a private forwarding method
  /// so that any future subclasses cannot accidentally use it.
  void setValueSubclassData(unsigned short D) {

// Create wrappers for C Binding types (see CBindingWrapping.h).

} // End llvm namespace