llvm.org GIT mirror llvm / release_35@215010 lib / Target / Mips / MipsDelaySlotFiller.cpp
release_35@215010

Tree @release_35@215010 (Download .tar.gz)

MipsDelaySlotFiller.cpp @release_35@215010raw · history · blame

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
//===-- MipsDelaySlotFiller.cpp - Mips Delay Slot Filler ------------------===//
//
//                     The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// Simple pass to fill delay slots with useful instructions.
//
//===----------------------------------------------------------------------===//

#include "MCTargetDesc/MipsMCNaCl.h"
#include "Mips.h"
#include "MipsInstrInfo.h"
#include "MipsTargetMachine.h"
#include "llvm/ADT/BitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetRegisterInfo.h"

using namespace llvm;

#define DEBUG_TYPE "delay-slot-filler"

STATISTIC(FilledSlots, "Number of delay slots filled");
STATISTIC(UsefulSlots, "Number of delay slots filled with instructions that"
                       " are not NOP.");

static cl::opt<bool> DisableDelaySlotFiller(
  "disable-mips-delay-filler",
  cl::init(false),
  cl::desc("Fill all delay slots with NOPs."),
  cl::Hidden);

static cl::opt<bool> DisableForwardSearch(
  "disable-mips-df-forward-search",
  cl::init(true),
  cl::desc("Disallow MIPS delay filler to search forward."),
  cl::Hidden);

static cl::opt<bool> DisableSuccBBSearch(
  "disable-mips-df-succbb-search",
  cl::init(true),
  cl::desc("Disallow MIPS delay filler to search successor basic blocks."),
  cl::Hidden);

static cl::opt<bool> DisableBackwardSearch(
  "disable-mips-df-backward-search",
  cl::init(false),
  cl::desc("Disallow MIPS delay filler to search backward."),
  cl::Hidden);

namespace {
  typedef MachineBasicBlock::iterator Iter;
  typedef MachineBasicBlock::reverse_iterator ReverseIter;
  typedef SmallDenseMap<MachineBasicBlock*, MachineInstr*, 2> BB2BrMap;

  class RegDefsUses {
  public:
    RegDefsUses(TargetMachine &TM);
    void init(const MachineInstr &MI);

    /// This function sets all caller-saved registers in Defs.
    void setCallerSaved(const MachineInstr &MI);

    /// This function sets all unallocatable registers in Defs.
    void setUnallocatableRegs(const MachineFunction &MF);

    /// Set bits in Uses corresponding to MBB's live-out registers except for
    /// the registers that are live-in to SuccBB.
    void addLiveOut(const MachineBasicBlock &MBB,
                    const MachineBasicBlock &SuccBB);

    bool update(const MachineInstr &MI, unsigned Begin, unsigned End);

  private:
    bool checkRegDefsUses(BitVector &NewDefs, BitVector &NewUses, unsigned Reg,
                          bool IsDef) const;

    /// Returns true if Reg or its alias is in RegSet.
    bool isRegInSet(const BitVector &RegSet, unsigned Reg) const;

    const TargetRegisterInfo &TRI;
    BitVector Defs, Uses;
  };

  /// Base class for inspecting loads and stores.
  class InspectMemInstr {
  public:
    InspectMemInstr(bool ForbidMemInstr_)
      : OrigSeenLoad(false), OrigSeenStore(false), SeenLoad(false),
        SeenStore(false), ForbidMemInstr(ForbidMemInstr_) {}

    /// Return true if MI cannot be moved to delay slot.
    bool hasHazard(const MachineInstr &MI);

    virtual ~InspectMemInstr() {}

  protected:
    /// Flags indicating whether loads or stores have been seen.
    bool OrigSeenLoad, OrigSeenStore, SeenLoad, SeenStore;

    /// Memory instructions are not allowed to move to delay slot if this flag
    /// is true.
    bool ForbidMemInstr;

  private:
    virtual bool hasHazard_(const MachineInstr &MI) = 0;
  };

  /// This subclass rejects any memory instructions.
  class NoMemInstr : public InspectMemInstr {
  public:
    NoMemInstr() : InspectMemInstr(true) {}
  private:
    bool hasHazard_(const MachineInstr &MI) override { return true; }
  };

  /// This subclass accepts loads from stacks and constant loads.
  class LoadFromStackOrConst : public InspectMemInstr {
  public:
    LoadFromStackOrConst() : InspectMemInstr(false) {}
  private:
    bool hasHazard_(const MachineInstr &MI) override;
  };

  /// This subclass uses memory dependence information to determine whether a
  /// memory instruction can be moved to a delay slot.
  class MemDefsUses : public InspectMemInstr {
  public:
    MemDefsUses(const MachineFrameInfo *MFI);

  private:
    typedef PointerUnion<const Value *, const PseudoSourceValue *> ValueType;

    bool hasHazard_(const MachineInstr &MI) override;

    /// Update Defs and Uses. Return true if there exist dependences that
    /// disqualify the delay slot candidate between V and values in Uses and
    /// Defs.
    bool updateDefsUses(ValueType V, bool MayStore);

    /// Get the list of underlying objects of MI's memory operand.
    bool getUnderlyingObjects(const MachineInstr &MI,
                              SmallVectorImpl<ValueType> &Objects) const;

    const MachineFrameInfo *MFI;
    SmallPtrSet<ValueType, 4> Uses, Defs;

    /// Flags indicating whether loads or stores with no underlying objects have
    /// been seen.
    bool SeenNoObjLoad, SeenNoObjStore;
  };

  class Filler : public MachineFunctionPass {
  public:
    Filler(TargetMachine &tm)
      : MachineFunctionPass(ID), TM(tm) { }

    const char *getPassName() const override {
      return "Mips Delay Slot Filler";
    }

    bool runOnMachineFunction(MachineFunction &F) override {
      bool Changed = false;
      for (MachineFunction::iterator FI = F.begin(), FE = F.end();
           FI != FE; ++FI)
        Changed |= runOnMachineBasicBlock(*FI);

      // This pass invalidates liveness information when it reorders
      // instructions to fill delay slot. Without this, -verify-machineinstrs
      // will fail.
      if (Changed)
        F.getRegInfo().invalidateLiveness();

      return Changed;
    }

    void getAnalysisUsage(AnalysisUsage &AU) const override {
      AU.addRequired<MachineBranchProbabilityInfo>();
      MachineFunctionPass::getAnalysisUsage(AU);
    }

  private:
    bool runOnMachineBasicBlock(MachineBasicBlock &MBB);

    /// This function checks if it is valid to move Candidate to the delay slot
    /// and returns true if it isn't. It also updates memory and register
    /// dependence information.
    bool delayHasHazard(const MachineInstr &Candidate, RegDefsUses &RegDU,
                        InspectMemInstr &IM) const;

    /// This function searches range [Begin, End) for an instruction that can be
    /// moved to the delay slot. Returns true on success.
    template<typename IterTy>
    bool searchRange(MachineBasicBlock &MBB, IterTy Begin, IterTy End,
                     RegDefsUses &RegDU, InspectMemInstr &IM,
                     IterTy &Filler) const;

    /// This function searches in the backward direction for an instruction that
    /// can be moved to the delay slot. Returns true on success.
    bool searchBackward(MachineBasicBlock &MBB, Iter Slot) const;

    /// This function searches MBB in the forward direction for an instruction
    /// that can be moved to the delay slot. Returns true on success.
    bool searchForward(MachineBasicBlock &MBB, Iter Slot) const;

    /// This function searches one of MBB's successor blocks for an instruction
    /// that can be moved to the delay slot and inserts clones of the
    /// instruction into the successor's predecessor blocks.
    bool searchSuccBBs(MachineBasicBlock &MBB, Iter Slot) const;

    /// Pick a successor block of MBB. Return NULL if MBB doesn't have a
    /// successor block that is not a landing pad.
    MachineBasicBlock *selectSuccBB(MachineBasicBlock &B) const;

    /// This function analyzes MBB and returns an instruction with an unoccupied
    /// slot that branches to Dst.
    std::pair<MipsInstrInfo::BranchType, MachineInstr *>
    getBranch(MachineBasicBlock &MBB, const MachineBasicBlock &Dst) const;

    /// Examine Pred and see if it is possible to insert an instruction into
    /// one of its branches delay slot or its end.
    bool examinePred(MachineBasicBlock &Pred, const MachineBasicBlock &Succ,
                     RegDefsUses &RegDU, bool &HasMultipleSuccs,
                     BB2BrMap &BrMap) const;

    bool terminateSearch(const MachineInstr &Candidate) const;

    TargetMachine &TM;

    static char ID;
  };
  char Filler::ID = 0;
} // end of anonymous namespace

static bool hasUnoccupiedSlot(const MachineInstr *MI) {
  return MI->hasDelaySlot() && !MI->isBundledWithSucc();
}

/// This function inserts clones of Filler into predecessor blocks.
static void insertDelayFiller(Iter Filler, const BB2BrMap &BrMap) {
  MachineFunction *MF = Filler->getParent()->getParent();

  for (BB2BrMap::const_iterator I = BrMap.begin(); I != BrMap.end(); ++I) {
    if (I->second) {
      MIBundleBuilder(I->second).append(MF->CloneMachineInstr(&*Filler));
      ++UsefulSlots;
    } else {
      I->first->insert(I->first->end(), MF->CloneMachineInstr(&*Filler));
    }
  }
}

/// This function adds registers Filler defines to MBB's live-in register list.
static void addLiveInRegs(Iter Filler, MachineBasicBlock &MBB) {
  for (unsigned I = 0, E = Filler->getNumOperands(); I != E; ++I) {
    const MachineOperand &MO = Filler->getOperand(I);
    unsigned R;

    if (!MO.isReg() || !MO.isDef() || !(R = MO.getReg()))
      continue;

#ifndef NDEBUG
    const MachineFunction &MF = *MBB.getParent();
    assert(MF.getTarget().getRegisterInfo()->getAllocatableSet(MF).test(R) &&
           "Shouldn't move an instruction with unallocatable registers across "
           "basic block boundaries.");
#endif

    if (!MBB.isLiveIn(R))
      MBB.addLiveIn(R);
  }
}

RegDefsUses::RegDefsUses(TargetMachine &TM)
  : TRI(*TM.getRegisterInfo()), Defs(TRI.getNumRegs(), false),
    Uses(TRI.getNumRegs(), false) {}

void RegDefsUses::init(const MachineInstr &MI) {
  // Add all register operands which are explicit and non-variadic.
  update(MI, 0, MI.getDesc().getNumOperands());

  // If MI is a call, add RA to Defs to prevent users of RA from going into
  // delay slot.
  if (MI.isCall())
    Defs.set(Mips::RA);

  // Add all implicit register operands of branch instructions except
  // register AT.
  if (MI.isBranch()) {
    update(MI, MI.getDesc().getNumOperands(), MI.getNumOperands());
    Defs.reset(Mips::AT);
  }
}

void RegDefsUses::setCallerSaved(const MachineInstr &MI) {
  assert(MI.isCall());

  // If MI is a call, add all caller-saved registers to Defs.
  BitVector CallerSavedRegs(TRI.getNumRegs(), true);

  CallerSavedRegs.reset(Mips::ZERO);
  CallerSavedRegs.reset(Mips::ZERO_64);

  for (const MCPhysReg *R = TRI.getCalleeSavedRegs(); *R; ++R)
    for (MCRegAliasIterator AI(*R, &TRI, true); AI.isValid(); ++AI)
      CallerSavedRegs.reset(*AI);

  Defs |= CallerSavedRegs;
}

void RegDefsUses::setUnallocatableRegs(const MachineFunction &MF) {
  BitVector AllocSet = TRI.getAllocatableSet(MF);

  for (int R = AllocSet.find_first(); R != -1; R = AllocSet.find_next(R))
    for (MCRegAliasIterator AI(R, &TRI, false); AI.isValid(); ++AI)
      AllocSet.set(*AI);

  AllocSet.set(Mips::ZERO);
  AllocSet.set(Mips::ZERO_64);

  Defs |= AllocSet.flip();
}

void RegDefsUses::addLiveOut(const MachineBasicBlock &MBB,
                             const MachineBasicBlock &SuccBB) {
  for (MachineBasicBlock::const_succ_iterator SI = MBB.succ_begin(),
       SE = MBB.succ_end(); SI != SE; ++SI)
    if (*SI != &SuccBB)
      for (MachineBasicBlock::livein_iterator LI = (*SI)->livein_begin(),
           LE = (*SI)->livein_end(); LI != LE; ++LI)
        Uses.set(*LI);
}

bool RegDefsUses::update(const MachineInstr &MI, unsigned Begin, unsigned End) {
  BitVector NewDefs(TRI.getNumRegs()), NewUses(TRI.getNumRegs());
  bool HasHazard = false;

  for (unsigned I = Begin; I != End; ++I) {
    const MachineOperand &MO = MI.getOperand(I);

    if (MO.isReg() && MO.getReg())
      HasHazard |= checkRegDefsUses(NewDefs, NewUses, MO.getReg(), MO.isDef());
  }

  Defs |= NewDefs;
  Uses |= NewUses;

  return HasHazard;
}

bool RegDefsUses::checkRegDefsUses(BitVector &NewDefs, BitVector &NewUses,
                                   unsigned Reg, bool IsDef) const {
  if (IsDef) {
    NewDefs.set(Reg);
    // check whether Reg has already been defined or used.
    return (isRegInSet(Defs, Reg) || isRegInSet(Uses, Reg));
  }

  NewUses.set(Reg);
  // check whether Reg has already been defined.
  return isRegInSet(Defs, Reg);
}

bool RegDefsUses::isRegInSet(const BitVector &RegSet, unsigned Reg) const {
  // Check Reg and all aliased Registers.
  for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
    if (RegSet.test(*AI))
      return true;
  return false;
}

bool InspectMemInstr::hasHazard(const MachineInstr &MI) {
  if (!MI.mayStore() && !MI.mayLoad())
    return false;

  if (ForbidMemInstr)
    return true;

  OrigSeenLoad = SeenLoad;
  OrigSeenStore = SeenStore;
  SeenLoad |= MI.mayLoad();
  SeenStore |= MI.mayStore();

  // If MI is an ordered or volatile memory reference, disallow moving
  // subsequent loads and stores to delay slot.
  if (MI.hasOrderedMemoryRef() && (OrigSeenLoad || OrigSeenStore)) {
    ForbidMemInstr = true;
    return true;
  }

  return hasHazard_(MI);
}

bool LoadFromStackOrConst::hasHazard_(const MachineInstr &MI) {
  if (MI.mayStore())
    return true;

  if (!MI.hasOneMemOperand() || !(*MI.memoperands_begin())->getPseudoValue())
    return true;

  if (const PseudoSourceValue *PSV =
      (*MI.memoperands_begin())->getPseudoValue()) {
    if (isa<FixedStackPseudoSourceValue>(PSV))
      return false;
    return !PSV->isConstant(nullptr) && PSV != PseudoSourceValue::getStack();
  }

  return true;
}

MemDefsUses::MemDefsUses(const MachineFrameInfo *MFI_)
  : InspectMemInstr(false), MFI(MFI_), SeenNoObjLoad(false),
    SeenNoObjStore(false) {}

bool MemDefsUses::hasHazard_(const MachineInstr &MI) {
  bool HasHazard = false;
  SmallVector<ValueType, 4> Objs;

  // Check underlying object list.
  if (getUnderlyingObjects(MI, Objs)) {
    for (SmallVectorImpl<ValueType>::const_iterator I = Objs.begin();
         I != Objs.end(); ++I)
      HasHazard |= updateDefsUses(*I, MI.mayStore());

    return HasHazard;
  }

  // No underlying objects found.
  HasHazard = MI.mayStore() && (OrigSeenLoad || OrigSeenStore);
  HasHazard |= MI.mayLoad() || OrigSeenStore;

  SeenNoObjLoad |= MI.mayLoad();
  SeenNoObjStore |= MI.mayStore();

  return HasHazard;
}

bool MemDefsUses::updateDefsUses(ValueType V, bool MayStore) {
  if (MayStore)
    return !Defs.insert(V) || Uses.count(V) || SeenNoObjStore || SeenNoObjLoad;

  Uses.insert(V);
  return Defs.count(V) || SeenNoObjStore;
}

bool MemDefsUses::
getUnderlyingObjects(const MachineInstr &MI,
                     SmallVectorImpl<ValueType> &Objects) const {
  if (!MI.hasOneMemOperand() ||
      (!(*MI.memoperands_begin())->getValue() &&
       !(*MI.memoperands_begin())->getPseudoValue()))
    return false;

  if (const PseudoSourceValue *PSV =
      (*MI.memoperands_begin())->getPseudoValue()) {
    if (!PSV->isAliased(MFI))
      return false;
    Objects.push_back(PSV);
    return true;
  }

  const Value *V = (*MI.memoperands_begin())->getValue();

  SmallVector<Value *, 4> Objs;
  GetUnderlyingObjects(const_cast<Value *>(V), Objs);

  for (SmallVectorImpl<Value *>::iterator I = Objs.begin(), E = Objs.end();
       I != E; ++I) {
    if (!isIdentifiedObject(V))
      return false;

    Objects.push_back(*I);
  }

  return true;
}

/// runOnMachineBasicBlock - Fill in delay slots for the given basic block.
/// We assume there is only one delay slot per delayed instruction.
bool Filler::runOnMachineBasicBlock(MachineBasicBlock &MBB) {
  bool Changed = false;

  for (Iter I = MBB.begin(); I != MBB.end(); ++I) {
    if (!hasUnoccupiedSlot(&*I))
      continue;

    ++FilledSlots;
    Changed = true;

    // Delay slot filling is disabled at -O0.
    if (!DisableDelaySlotFiller && (TM.getOptLevel() != CodeGenOpt::None)) {
      if (searchBackward(MBB, I))
        continue;

      if (I->isTerminator()) {
        if (searchSuccBBs(MBB, I))
          continue;
      } else if (searchForward(MBB, I)) {
        continue;
      }
    }

    // Bundle the NOP to the instruction with the delay slot.
    const MipsInstrInfo *TII =
      static_cast<const MipsInstrInfo*>(TM.getInstrInfo());
    BuildMI(MBB, std::next(I), I->getDebugLoc(), TII->get(Mips::NOP));
    MIBundleBuilder(MBB, I, std::next(I, 2));
  }

  return Changed;
}

/// createMipsDelaySlotFillerPass - Returns a pass that fills in delay
/// slots in Mips MachineFunctions
FunctionPass *llvm::createMipsDelaySlotFillerPass(MipsTargetMachine &tm) {
  return new Filler(tm);
}

template<typename IterTy>
bool Filler::searchRange(MachineBasicBlock &MBB, IterTy Begin, IterTy End,
                         RegDefsUses &RegDU, InspectMemInstr& IM,
                         IterTy &Filler) const {
  for (IterTy I = Begin; I != End; ++I) {
    // skip debug value
    if (I->isDebugValue())
      continue;

    if (terminateSearch(*I))
      break;

    assert((!I->isCall() && !I->isReturn() && !I->isBranch()) &&
           "Cannot put calls, returns or branches in delay slot.");

    if (delayHasHazard(*I, RegDU, IM))
      continue;

    if (TM.getSubtarget<MipsSubtarget>().isTargetNaCl()) {
      // In NaCl, instructions that must be masked are forbidden in delay slots.
      // We only check for loads, stores and SP changes.  Calls, returns and
      // branches are not checked because non-NaCl targets never put them in
      // delay slots.
      unsigned AddrIdx;
      if ((isBasePlusOffsetMemoryAccess(I->getOpcode(), &AddrIdx)
           && baseRegNeedsLoadStoreMask(I->getOperand(AddrIdx).getReg()))
          || I->modifiesRegister(Mips::SP, TM.getRegisterInfo()))
        continue;
    }

    Filler = I;
    return true;
  }

  return false;
}

bool Filler::searchBackward(MachineBasicBlock &MBB, Iter Slot) const {
  if (DisableBackwardSearch)
    return false;

  RegDefsUses RegDU(TM);
  MemDefsUses MemDU(MBB.getParent()->getFrameInfo());
  ReverseIter Filler;

  RegDU.init(*Slot);

  if (!searchRange(MBB, ReverseIter(Slot), MBB.rend(), RegDU, MemDU, Filler))
    return false;

  MBB.splice(std::next(Slot), &MBB, std::next(Filler).base());
  MIBundleBuilder(MBB, Slot, std::next(Slot, 2));
  ++UsefulSlots;
  return true;
}

bool Filler::searchForward(MachineBasicBlock &MBB, Iter Slot) const {
  // Can handle only calls.
  if (DisableForwardSearch || !Slot->isCall())
    return false;

  RegDefsUses RegDU(TM);
  NoMemInstr NM;
  Iter Filler;

  RegDU.setCallerSaved(*Slot);

  if (!searchRange(MBB, std::next(Slot), MBB.end(), RegDU, NM, Filler))
    return false;

  MBB.splice(std::next(Slot), &MBB, Filler);
  MIBundleBuilder(MBB, Slot, std::next(Slot, 2));
  ++UsefulSlots;
  return true;
}

bool Filler::searchSuccBBs(MachineBasicBlock &MBB, Iter Slot) const {
  if (DisableSuccBBSearch)
    return false;

  MachineBasicBlock *SuccBB = selectSuccBB(MBB);

  if (!SuccBB)
    return false;

  RegDefsUses RegDU(TM);
  bool HasMultipleSuccs = false;
  BB2BrMap BrMap;
  std::unique_ptr<InspectMemInstr> IM;
  Iter Filler;

  // Iterate over SuccBB's predecessor list.
  for (MachineBasicBlock::pred_iterator PI = SuccBB->pred_begin(),
       PE = SuccBB->pred_end(); PI != PE; ++PI)
    if (!examinePred(**PI, *SuccBB, RegDU, HasMultipleSuccs, BrMap))
      return false;

  // Do not allow moving instructions which have unallocatable register operands
  // across basic block boundaries.
  RegDU.setUnallocatableRegs(*MBB.getParent());

  // Only allow moving loads from stack or constants if any of the SuccBB's
  // predecessors have multiple successors.
  if (HasMultipleSuccs) {
    IM.reset(new LoadFromStackOrConst());
  } else {
    const MachineFrameInfo *MFI = MBB.getParent()->getFrameInfo();
    IM.reset(new MemDefsUses(MFI));
  }

  if (!searchRange(MBB, SuccBB->begin(), SuccBB->end(), RegDU, *IM, Filler))
    return false;

  insertDelayFiller(Filler, BrMap);
  addLiveInRegs(Filler, *SuccBB);
  Filler->eraseFromParent();

  return true;
}

MachineBasicBlock *Filler::selectSuccBB(MachineBasicBlock &B) const {
  if (B.succ_empty())
    return nullptr;

  // Select the successor with the larget edge weight.
  auto &Prob = getAnalysis<MachineBranchProbabilityInfo>();
  MachineBasicBlock *S = *std::max_element(B.succ_begin(), B.succ_end(),
                                           [&](const MachineBasicBlock *Dst0,
                                               const MachineBasicBlock *Dst1) {
    return Prob.getEdgeWeight(&B, Dst0) < Prob.getEdgeWeight(&B, Dst1);
  });
  return S->isLandingPad() ? nullptr : S;
}

std::pair<MipsInstrInfo::BranchType, MachineInstr *>
Filler::getBranch(MachineBasicBlock &MBB, const MachineBasicBlock &Dst) const {
  const MipsInstrInfo *TII =
    static_cast<const MipsInstrInfo*>(TM.getInstrInfo());
  MachineBasicBlock *TrueBB = nullptr, *FalseBB = nullptr;
  SmallVector<MachineInstr*, 2> BranchInstrs;
  SmallVector<MachineOperand, 2> Cond;

  MipsInstrInfo::BranchType R =
    TII->AnalyzeBranch(MBB, TrueBB, FalseBB, Cond, false, BranchInstrs);

  if ((R == MipsInstrInfo::BT_None) || (R == MipsInstrInfo::BT_NoBranch))
    return std::make_pair(R, nullptr);

  if (R != MipsInstrInfo::BT_CondUncond) {
    if (!hasUnoccupiedSlot(BranchInstrs[0]))
      return std::make_pair(MipsInstrInfo::BT_None, nullptr);

    assert(((R != MipsInstrInfo::BT_Uncond) || (TrueBB == &Dst)));

    return std::make_pair(R, BranchInstrs[0]);
  }

  assert((TrueBB == &Dst) || (FalseBB == &Dst));

  // Examine the conditional branch. See if its slot is occupied.
  if (hasUnoccupiedSlot(BranchInstrs[0]))
    return std::make_pair(MipsInstrInfo::BT_Cond, BranchInstrs[0]);

  // If that fails, try the unconditional branch.
  if (hasUnoccupiedSlot(BranchInstrs[1]) && (FalseBB == &Dst))
    return std::make_pair(MipsInstrInfo::BT_Uncond, BranchInstrs[1]);

  return std::make_pair(MipsInstrInfo::BT_None, nullptr);
}

bool Filler::examinePred(MachineBasicBlock &Pred, const MachineBasicBlock &Succ,
                         RegDefsUses &RegDU, bool &HasMultipleSuccs,
                         BB2BrMap &BrMap) const {
  std::pair<MipsInstrInfo::BranchType, MachineInstr *> P =
    getBranch(Pred, Succ);

  // Return if either getBranch wasn't able to analyze the branches or there
  // were no branches with unoccupied slots.
  if (P.first == MipsInstrInfo::BT_None)
    return false;

  if ((P.first != MipsInstrInfo::BT_Uncond) &&
      (P.first != MipsInstrInfo::BT_NoBranch)) {
    HasMultipleSuccs = true;
    RegDU.addLiveOut(Pred, Succ);
  }

  BrMap[&Pred] = P.second;
  return true;
}

bool Filler::delayHasHazard(const MachineInstr &Candidate, RegDefsUses &RegDU,
                            InspectMemInstr &IM) const {
  bool HasHazard = (Candidate.isImplicitDef() || Candidate.isKill());

  HasHazard |= IM.hasHazard(Candidate);
  HasHazard |= RegDU.update(Candidate, 0, Candidate.getNumOperands());

  return HasHazard;
}

bool Filler::terminateSearch(const MachineInstr &Candidate) const {
  return (Candidate.isTerminator() || Candidate.isCall() ||
          Candidate.isPosition() || Candidate.isInlineAsm() ||
          Candidate.hasUnmodeledSideEffects());
}